NiS1−xSex Nanoparticles Anchored on Nitrogen-Doped Reduced Graphene Oxide as Highly Stable Anode for Sodium-Ion Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Spongy Ni(OH)2@GO Precursor
2.2. Preparation of NiS1−xSex@N–rGO Composites
2.3. Materials Characterizations
2.4. Electrochemical Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ou, X.; Cao, L.; Liang, X.; Zheng, F.; Zheng, H.S.; Yang, X.; Wang, J.H.; Yang, C.; Liu, M. Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium–ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano 2019, 13, 3666–3676. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wu, R.; Yan, X.; Liu, D.; Guo, P.; Li, W.; Pan, H. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200424. [Google Scholar] [CrossRef]
- Wu, R.; Qian, X.; Zhou, K.; Wei, J.; Lou, J.; Ajayan, P.M. Porous spinel ZnxCo3-xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 2014, 8, 6297–6303. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wu, R.; Ding, C.; Chen, Z.; Xu, H.; Liu, Y.; Zhang, J.; Ha, Y.; Fei, B.; Pan, H. Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li-S batteries. Nano-Micro Lett. 2021, 13, 151. [Google Scholar] [CrossRef]
- Fan, S.; Huang, S.; Chen, Y.; Shang, Y.; Wang, Y.; Kong, D.; Pam, M.E.; Shi, L.; Lim, Y.W.; Shi, Y.; et al. Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Mater. 2019, 23, 17–24. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Jia, H.; Xu, H.; Liu, M.; Wu, R. Iron-doping-induced phase transformation in dual-carbon-confined cobalt diselenide enabling superior lithium storage. ACS Nano 2019, 13, 6113–6124. [Google Scholar] [CrossRef]
- Ali, Z.; Zhang, T.; Asif, M.; Zhao, L.; Yu, Y.; Hou, Y. Transition metal chalcogenide anodes for sodium storage. Mater. Today 2020, 35, 131–167. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Z.; Guan, M.; Wu, F.; Chen, R. Toward rapid-charging sodium–ion batteries using hybrid-phase molybdenum sulfide selenide-based anodes. Adv. Mater. 2020, 32, 2003534. [Google Scholar] [CrossRef]
- General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702046. [CrossRef]
- Dai, H.; Tang, M.; Huang, J.; Wang, Z. A series of molecule-intercalated MoS2 as anode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 10870–10877. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, Y.; Wei, G.; Li, S.; Lu, Z.; Wang, X.; Lou, X. Sodium storage mechanism of N, S co-doped nanoporous carbon: Experimental design and theoretical evaluation. Energy Storage Mater. 2018, 11, 274–281. [Google Scholar] [CrossRef]
- Ou, X.; Li, J.; Zheng, F.; Wu, P.; Pan, Q.; Xiong, X.; Yang, C.; Liu, M. In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries. J. Power Sources 2017, 343, 483–491. [Google Scholar] [CrossRef]
- Angizi, S.; Alem, S.A.A.; Pakdel, A. Towards integration of two-dimensional hexagonal boron nitride (2D h–BN) in energy conversion and storage devices. Energies 2022, 15, 1162. [Google Scholar] [CrossRef]
- Fan, L.; Lu, B. Reactive oxygen-doped 3D interdigital carbonaceous materials for Li and Na ion batteries. Small 2016, 12, 2783–2791. [Google Scholar] [CrossRef]
- Kong, L.; Zhu, J.; Shuang, W.; Bu, X.-H. Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv. Energy Mater. 2018, 8, 1801515. [Google Scholar] [CrossRef]
- Kim, C.; Lee, K.-Y.; Kim, I.; Park, J.; Cho, G.; Kim, K.-W.; Ahn, J.-H.; Ahn, H.-J. Long-term cycling stability of porous Sn anode for sodium–ion batteries. J. Power Sources 2016, 317, 153–158. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, Y.; Lu, Y.; Han, X.; Cheng, F.; Chen, J. Spherical nano–Sb@C composite as a high-rate and ultra-stable anode material for sodium–ion batteries. Nano Res. 2015, 8, 3384–3393. [Google Scholar] [CrossRef]
- Li, C.; Chen, T.; Xu, W.; Lou, X.; Pan, L.; Chen, Q.; Hu, B. Mesoporous nanostructured Co3O4 derived from MOF template: A high-performance anode material for lithium–ion batteries. J. Mater. Chem. A 2015, 3, 5585–5591. [Google Scholar] [CrossRef]
- Zhang, L.; He, W.; Ling, M.; Shen, K.; Liu, Y.; Guo, S. Self-standing MgMoO4/reduced graphene oxide nanosheet arrays for lithium and sodium ion storage. Electrochim. Acta 2017, 252, 322–330. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, C.; Zhang, M.; Huang, H.; Li, S.; Han, X.; Liu, Z.; Yang, J.; Xiao, W.; Liang, J.; et al. Ultrafine MoO2–carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 2017, 7, 1602880. [Google Scholar] [CrossRef]
- Hu, Z.; Zhu, Z.; Cheng, F.; Zhang, K.; Wang, J.; Chen, C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Env. Sci. 2015, 8, 1309–1316. [Google Scholar] [CrossRef]
- Li, D.; Sun, Y.; Chen, S.; Yao, J.; Zhang, Y.; Xia, Y.; Yang, D. Highly porous FeS/carbon fibers derived from Fe-carrageenan biomass: High-capacity and durable anodes for sodium–ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 17175–17182. [Google Scholar] [CrossRef]
- Dong, C.; Liang, J.; He, Y.; Li, C.; Chen, X.; Guo, L.; Tian, F.; Qian, Y.; Xu, L. NiS1.03 hollow spheres and cages as superhigh rate capacity and stable anode materials for half/full sodium–ion batteries. ACS Nano 2018, 12, 8277–8287. [Google Scholar] [CrossRef]
- Zhao, F.; Gong, Q.; Traynor, B.; Zhang, D.; Li, J.; Ye, H.; Chen, F.; Han, N.; Wang, Y.; Sun, X.; et al. Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Res. 2016, 9, 3162–3170. [Google Scholar] [CrossRef]
- Mahmood, N.; Zhang, C.; Hou, Y. Nickel sulfide/nitrogen-doped graphene composites: Phase-controlled synthesis and highperformance anode materials for lithium ion batteries. Small 2013, 9, 1321–1328. [Google Scholar] [CrossRef]
- Tao, H.; Zhou, M.; Wang, K.; Cheng, S.; Jiang, K. Nickel sulfide nanospheres anchored on reduced graphene oxide in situ doped with sulfur as a high performance anode for sodium–ion batteries. J. Mater. Chem. A 2017, 5, 9322–9328. [Google Scholar] [CrossRef]
- Shuang, W.; Huang, H.; Kong, L.; Zhong, M.; Li, A.; Wang, D.; Xu, Y.; Bu, X.-H. Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni–MOF for high performance sodium–ion battery anodes. Nano Energy 2019, 62, 154–163. [Google Scholar] [CrossRef]
- Pan, Q.; Tong, Z.; Su, Y.; Qin, S.; Tang, Y. Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv. Funct. Mater. 2021, 31, 2103912. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Kumar, V.; Lee, P.S. Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv. Energy Mater. 2017, 7, 1700180. [Google Scholar] [CrossRef]
- Shangguan, H.; Huang, W.; Engelbrekt, C.; Zheng, X.; Shen, F.; Xiao, X.; Ci, L.; Si, P.; Zhang, J. Well-defined cobalt sulfide nanoparticles locked in 3D hollow nitrogen-doped carbon shells for superior lithium and sodium storage. Energy Storage Mater. 2019, 18, 114–124. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, W.; Yuan, S.; Zhang, L.; Yang, Y.; Ge, P.; Ji, X. Designing rational interfacial bonds for hierarchical mineral-type trogtalite with double carbon towards ultra-fast sodium-ions storage properties. Adv. Funct. Mater. 2021, 31, 2100156. [Google Scholar] [CrossRef]
- Zhang, X.; Weng, W.; Gu, H.; Hong, Z.; Xiao, W.; Wang, F.R.; Li, W.; Gu, D. Versatile preparation of mesoporous single-layered transition–metal sulfide/carbon composites for enhanced sodium storage. Adv. Mater. 2022, 34, 2104427. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, B.; Xia, H.; Cao, L.; Luo, B.; Fan, X.; Zhang, J.; Ou, X. Composition and architecture design of double-shelled Co0.85Se1−xSx@carbon/graphene hollow polyhedron with superior alkali (Li, Na, K)–ion storage. Small 2020, 16, 1905853. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Chao, D.; Tiep, N.H.; Zhang, Z.; Fan, H.J. Intercalation Na–ion storage in two-dimensional MoS2−xSex and capacity enhancement by selenium substitution. Energy Storage Mater. 2018, 14, 136–142. [Google Scholar] [CrossRef]
- Cao, D.; Wang, Y.; Kang, W.; Li, C.; Cao, D.; Fan, L.; Wang, R.; Sun, D. ZnSxSe1−x/N–C (x = 0.24) hierarchical nanosphere with improved energy storage capability as sodium–ion battery anode. J. Alloy. Compd. 2019, 771, 147–155. [Google Scholar] [CrossRef]
- Long, Y.; Yang, J.; Gao, X.; Xu, X.; Fan, W.; Yang, J.; Hou, S.; Qian, Y. Solid-solution anion-enhanced electrochemical performances of metal sulfides/selenides for sodium–ion capacitors: The case of FeS2−xSex. ACS Appl. Mater. Interfaces 2018, 10, 10945–10954. [Google Scholar] [CrossRef]
- Lin, J.; Zhong, Z.; Wang, H.; Zheng, X.; Wang, Y.; Qi, J.; Cao, J.; Fei, W.; Huang, Y.; Feng, J. Rational constructing free-standing Se doped nickel–cobalt sulfides nanotubes as battery-type electrode for high-performance supercapattery. J. Power Sources 2018, 407, 6–13. [Google Scholar] [CrossRef]
- Qiu, C.; Cai, F.; Wang, Y.; Liu, Y.; Wang, Q.; Zhao, C. 2–Methylimidazole directed ambient synthesis of zinc–cobalt LDH nanosheets for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2020, 565, 351–359. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Yang, L.; Jiang, Y.; Zhang, Y.; Hong, W.; Tian, Y.; Zhao, H.; Hu, J.; Zhou, L.; et al. Nickel chelate derived NiS2 decorated with bifunctional carbon: An efficient strategy to promote sodium storage performance. Adv. Funct. Mater. 2018, 28, 1803690. [Google Scholar] [CrossRef]
- Li, B.; Wang, R.; Chen, Z.; Sun, D.; Fang, F.; Wu, R. Embedding heterostructured MnS/Co1-xS nanoparticles in porous carbon/graphene for superior lithium storage. J. Mater. Chem. A 2019, 7, 1260–1266. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, H.-E.; Massé, R.C.; Cao, J.; Sui, J.; Li, J.; Cai, W.; Cao, G. Design of coherent anode materials with 0D Ni3S2 nanoparticles self-assembled on 3D interconnected carbon networks for fast and reversible sodium storage. J. Mater. Chem. A 2017, 5, 7394–7402. [Google Scholar] [CrossRef]
- Wang, R.; Li, B.; Lai, L.; Hou, M.; Gao, J.; Wu, R. 3D urchin-like architectures assembled by MnS nanorods encapsulated in N-doped carbon tubes for superior lithium storage capability. Chem. Eng. J. 2019, 355, 752–759. [Google Scholar] [CrossRef]
- Xu, S.; Li, Z.; Chu, K.; Yao, G.; Xu, Y.; Niu, P.; Yang, Y.; Chen, Q.; Zheng, F. Construction of NiS nanosheets anchored on the inner surface of nitrogen-doped hollow carbon matrixes with enhanced sodium and potassium storage performances. Acs Appl. Energy Mater. 2021, 4, 662–670. [Google Scholar] [CrossRef]
- Zhao, L.; He, R.; Rim, K.T.; Schiros, T.; Kim, K.S.; Zhou, H.; Gutierrez, C.; Chockalingam, S.P.; Arguello, C.J.; Palova, L.; et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 2011, 333, 999–1003. [Google Scholar] [CrossRef] [Green Version]
- Qutaish, H.; Lee, J.; Hyeon, Y.; Han, S.A.; Lee, I.-H.; Heo, Y.-U.; Whang, D.; Moon, J.; Park, M.-S.; Kim, J.H. Design of cobalt catalysed carbon nanotubes in bimetallic zeolitic imidazolate frameworks. Appl. Surf. Sci. 2021, 547, 149134. [Google Scholar] [CrossRef]
- Hyeon, Y.; Lee, J.; Qutaish, H.; Han, S.A.; Choi, S.H.; Moon, S.W.; Park, M.-S.; Whang, D.; Kim, J.H. Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures. Energy Storage Mater. 2020, 33, 95–107. [Google Scholar] [CrossRef]
- Lee, J.; Choi, S.H.; Qutaish, H.; Hyeon, Y.; Han, S.A.; Heo, Y.-U.; Whang, D.; Lee, J.-W.; Moon, J.; Park, M.-S.; et al. Structurally stabilized lithium–metal anode via surface chemistry engineering. Energy Storage Mater. 2021, 37, 315–324. [Google Scholar] [CrossRef]
- Yi, M.; Wu, A.; Chen, Q.; Cai, D.; Zhan, H. In situ confined conductive nickel cobalt sulfoselenide with tailored composition in graphitic carbon hollow structure for energy storage. Chem. Eng. J. 2018, 351, 678–687. [Google Scholar] [CrossRef]
- Chen, N.; Du, Y.-X.; Zhang, G.; Lu, W.-T.; Cao, F.-F. Amorphous nickel sulfoselenide for efficient electrochemical urea-assisted hydrogen production in alkaline media. Nano Energy 2021, 81, 105605. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Huang, A.; Wen, M.; Wu, Q.; Zhao, L.; Wang, M.; Shen, Y.; Wang, Z.; Fu, Y. Nanostructured Ni2SeS on porous–carbon skeletons as highly efficient electrocatalyst for hydrogen evolution in acidic medium. Inorg. Chem. 2020, 59, 6018–6025. [Google Scholar] [CrossRef]
- Park, G.D.; Park, J.-S.; Kim, J.K.; Kang, Y.C. Metal sulfoselenide solid solution embedded in porous hollow carbon nanospheres as effective anode material for potassium–ion batteries with long cycle life and enhanced rate performance. Chem. Eng. J. 2022, 428, 131051. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Yan, D.; Hou, S.; Xu, X.; Lu, T.; Yao, Y.; Mai, W.; Pan, L. Design of pomegranate-like clusters with NiS2 nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance. J. Mater. Chem. A 2018, 6, 6595–6605. [Google Scholar] [CrossRef]
- Zhao, X.; Gong, F.; Zhao, Y.; Huang, B.; Qian, D.; Wang, H.-E.; Zhang, W.; Yang, Z. Encapsulating NiS nanocrystal into nitrogen-doped carbon framework for high performance sodium/potassium–ion storage. Chem. Eng. J. 2020, 392, 123675. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, X.; Yang, X. Synthesis of core–shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim. Acta 2016, 208, 238–243. [Google Scholar] [CrossRef]
- Su, C.; Ru, Q.; Cheng, S.; Gao, Y.; Chen, F.; Zhao, L.; Ling, F.C.-C. 3D pollen-scaffolded NiSe composite encapsulated by MOF-derived carbon shell as a high–low temperature anode for Na–ion storage. Compos. Part B Eng. 2019, 179, 107538. [Google Scholar] [CrossRef]
- Zhu, K.J.; Liu, G.; Wang, Y.J.; Liu, J.; Li, S.T.; Yang, L.Y.; Liu, S.L.; Wang, H.; Xie, T. Metal–organic frameworks derived novel hierarchical durian-like nickel sulfide (NiS2) as an anode material for high-performance sodium–ion batteries. Mater. Lett. 2017, 197, 180–183. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, R.; Cao, R.; Fang, F.; Wu, R. NiS1−xSex Nanoparticles Anchored on Nitrogen-Doped Reduced Graphene Oxide as Highly Stable Anode for Sodium-Ion Battery. Processes 2022, 10, 566. https://doi.org/10.3390/pr10030566
Zhang S, Wang R, Cao R, Fang F, Wu R. NiS1−xSex Nanoparticles Anchored on Nitrogen-Doped Reduced Graphene Oxide as Highly Stable Anode for Sodium-Ion Battery. Processes. 2022; 10(3):566. https://doi.org/10.3390/pr10030566
Chicago/Turabian StyleZhang, Shunjiang, Ruirui Wang, Ronggen Cao, Fang Fang, and Renbing Wu. 2022. "NiS1−xSex Nanoparticles Anchored on Nitrogen-Doped Reduced Graphene Oxide as Highly Stable Anode for Sodium-Ion Battery" Processes 10, no. 3: 566. https://doi.org/10.3390/pr10030566
APA StyleZhang, S., Wang, R., Cao, R., Fang, F., & Wu, R. (2022). NiS1−xSex Nanoparticles Anchored on Nitrogen-Doped Reduced Graphene Oxide as Highly Stable Anode for Sodium-Ion Battery. Processes, 10(3), 566. https://doi.org/10.3390/pr10030566