Developing a New Algorithm to Design Thermo-Vapor Compressors Using Dimensionless Parameters: A CFD Approach
Abstract
:1. Introduction
2. Materials and Method
2.1. Setup
2.2. Modeling and Simulation
2.2.1. Balance Equations
- Turbulence model
2.2.2. Solution to the Model Equations
2.2.3. Boundary Conditions
2.2.4. Identification of the Main Characteristic Lengths of TVC
2.3. Method
2.4. Computational Grid
2.5. Design of Experiments
3. Results and Discussion
3.1. Model Validation
3.2. The Effect of Various Geometrical Parameters on the Performance of TVC
3.3. Dimensionless Parameters for Scale-Up
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation | |
CFD | Computational Fluid Dynamics |
CR | Compression Ratio |
ER | Entrainment Ratio |
MED | Multi-Effect Distillation |
MSF | Multi-Stage Flash |
TVC | Thermal Vapor Compressor |
Variables | |
D (mm) | Diameter |
L (mm) | Length |
T (K) | Temperature |
P (kPa) | Pressure |
m (kg s−1) | Mass flow rate |
M | Mach number |
A (m2) | Cross-section area |
U (m s−1) | Velocity |
G (m m−2) | Gravitational acceleration |
E (j) | Total energy |
Greek letters | |
γ | Specific heat ratio |
μ | Dynamic viscosity |
ρ | Density |
Subscripts | |
th | Throat |
m | Mixing zone |
max | maximum |
c | Constant area zone |
d | Diverging zone |
0 | Stagnation properties |
References
- Dong, J.; Yu, M.; Wang, W.; Song, H.; Li, C.; Pan, X. Experimental investigation on low-temperature thermal energy driven steam ejector refrigeration system for cooling application. Appl. Therm. Eng. 2017, 123, 167–176. [Google Scholar] [CrossRef]
- Darvanjooghi, M.H.K.; Malakootikhah, M.; Magdouli, S.; Brar, S.K. Ethylene and cyclohexane co-production in the fixed-bed catalytic membrane reactor: Experimental study and modeling optimization. J. Membr. Sci. 2021, 643, 120044. [Google Scholar] [CrossRef]
- Hasany, M.; Malakootikhah, M.; Rahmanian, V.; Yaghmaei, S. Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor. Chin. J. Chem. Eng. 2015, 23, 1316–1325. [Google Scholar] [CrossRef]
- Croquer, S.; Poncet, S.; Galanis, N. Comparison of ejector predicted performance by thermodynamic and CFD models. Int. J. Refrig. 2016, 68, 28–36. [Google Scholar] [CrossRef]
- Petrovic, A.; Svorcan, J.; Pejcev, A.; Radenkovic, D.; Petrovic, A. Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods. Appl. Math. Model. 2018, 57, 206–225. [Google Scholar] [CrossRef]
- Balamurugan, S.; Gaikar, V.; Patwardhan, A. Effect of ejector configuration on hydrodynamic characteristics of gas–liquid ejectors. Chem. Eng. Sci. 2008, 63, 721–731. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, X.; Ren, X.; Qiu, Q.; Shen, S. Numerical investigation on the effect of nozzle position for design of high performance ejector. Appl. Therm. Eng. 2017, 126, 594–601. [Google Scholar] [CrossRef]
- Fu, W.; Liu, Z.; Li, Y.; Wu, H.; Tang, Y. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance. Int. J. Therm. Sci. 2018, 132, 509–516. [Google Scholar] [CrossRef]
- Sharifi, N.; Boroomand, M. An investigation of thermo-compressor design by analysis and experiment: Part 2. Development of design method by using comprehensive characteristic curves. Energy Convers. Manag. 2013, 69, 228–237. [Google Scholar] [CrossRef]
- Park, I. Robust numerical analysis based design of the thermal vapor compressor shape parameters for multi-effect desalination plants. Desalination 2009, 242, 245–255. [Google Scholar] [CrossRef]
- Kouhikamali, R.; Sharifi, N. Experience of modification of thermo-compressors in multiple effects desalination plants in Assaluyeh in IRAN. Appl. Therm. Eng. 2012, 40, 174–180. [Google Scholar] [CrossRef]
- Sharifi, N. Axisymmetric and three dimensional flow modeling within thermal vapor compressors. Heat Mass Transf. 2013, 49, 1489–1501. [Google Scholar] [CrossRef]
- Le Hocine, A.E.B.; Poncet, S.; Fellouah, H. CFD modeling and optimization by metamodels of a squirrel cage fan using OpenFoam and Dakota: Ventilation applications. Build. Environ. 2021, 205, 108145. [Google Scholar] [CrossRef]
- Hemidi, A.; Henry, F.; Leclaire, S.; Seynhaeve, J.-M.; Bartosiewicz, Y. CFD analysis of a supersonic air ejector. Part II: Relation between global operation and local flow features. Appl. Therm. Eng. 2009, 29, 2990–2998. [Google Scholar] [CrossRef] [Green Version]
- Friso, D. Mathematical Modelling of the Entrainment Ratio of High Performance Supersonic Industrial Ejectors. Processes 2022, 10, 88. [Google Scholar] [CrossRef]
- Thongtip, T.; Aphornratana, S. An alternative analysis applied to investigate the ejector performance used in R141b jet-pump refrigeration system. Int. J. Refrig. 2015, 53, 20–33. [Google Scholar] [CrossRef]
- Sharifi, N.; Boroomand, M. An investigation of thermo-compressor design by analysis and experiment: Part 1. Validation of the numerical method. Energy Convers. Manag. 2013, 69, 217–227. [Google Scholar] [CrossRef]
- Sriveerakul, T.; Aphornratana, S.; Chunnanond, K. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results. Int. J. Therm. Sci. 2007, 46, 812–822. [Google Scholar] [CrossRef]
Run No. | TVC Inlet Diameter, Di (A) | Throat Diameter of TVC, Dc (B) | Mixing Zone Diameter, Dm (C) | Length of Mixing Zone, Lm (D) | ER |
---|---|---|---|---|---|
1 | 1900 (+1) | 600 (0) | 800 (0) | 4000 (−1) | 0.73 |
2 | 1825 (0) | 600 (0) | 700 (−1) | 6000 (+1) | 0.65 |
3 | 1825 (0) | 600 (0) | 700 (−1) | 4000 (−1) | 0.63 |
4 | 1750 (−1) | 500 (−1) | 800 (0) | 5000 (0) | 0.24 |
5 | 1900 (+1) | 600 (0) | 700 (−1) | 5000 (0) | 0.65 |
6 | 1825 (0) | 500 (−1) | 700 (−1) | 5000 (0) | 0.43 |
7 | 1750 (−1) | 700 (+1) | 800 (0) | 5000 (0) | 0.88 |
8 | 1900 (+1) | 700 (+1) | 800 (0) | 5000 (0) | 0.87 |
9 | 1825 (0) | 600 (0) | 900 (+1) | 4000 (−1) | 0.73 |
10 | 1825 (0) | 700 (+1) | 900 (+1) | 5000 (0) | 0.99 |
11 | 1750 (−1) | 600 (0) | 800 (0) | 6000 (+1) | 0.69 |
12 | 1750 (−1) | 600 (0) | 700 (−1) | 5000 (0) | 0.65 |
13 | 1825 (0) | 700 (+1) | 800 (0) | 4000 (−1) | 0.86 |
14 | 1825 (0) | 500 (−1) | 800 (0) | 6000 (+1) | 0.22 |
15 | 1825 (0) | 600 (0) | 900 (+1) | 6000 (+1) | 0.58 |
16 | 1900 (+1) | 600 (0) | 800 (0) | 6000 (+1) | 0.69 |
17 | 1825 (0) | 700 (+1) | 700 (−1) | 5000 (0) | 0.66 |
18 | 1750 (−1) | 600 (0) | 800 (0) | 4000 (−1) | 0.73 |
19 | 1900 (+1) | 500 (−1) | 800 (0) | 5000 (0) | 0.32 |
20 | 1825 (0) | 500 (−1) | 800 (0) | 4000 (−1) | 0.48 |
21 (center) | 1825 (0) | 600 (0) | 800 (0) | 5000 (0) | 0.78 |
26 | 1750 (−1) | 600 (0) | 900 (+1) | 5000 (0) | 0.73 |
27 | 1900 (+1) | 600 (0) | 900 (+1) | 5000 (0) | 0.73 |
28 | 1825 (0) | 700 (+1) | 800 (0) | 6000 (+1) | 0.90 |
29 | 1825 (0) | 500 (−1) | 900 (+1) | 5000 (0) | 0.33 |
Term * | Sum of Squares | Mean Square | F-Value | p-Value Prob > F |
---|---|---|---|---|
Model | 1.06 | 0.10 | 55.24 | <0.0001 |
A | 0.00 | 0.00 | 0.24 | 0.63 |
B | 0.83 | 0.83 | 474.92 | <0.0001 |
C | 0.02 | 0.02 | 9.04 | 0.01 |
D | 0.01 | 0.01 | 8.52 | 0.01 |
BC | 0.05 | 0.05 | 28.50 | <0.0001 |
BD | 0.02 | 0.02 | 12.44 | 0.00 |
CD | 0.01 | 0.01 | 4.52 | 0.05 |
A^2 | 0.01 | 0.01 | 6.12 | 0.02 |
B^2 | 0.11 | 0.11 | 63.30 | <0.0001 |
C^2 | 0.02 | 0.02 | 14.04 | 0.00 |
D^2 | 0.01 | 0.01 | 7.07 | 0.02 |
Residual | 0.03 | 0.00 | ||
Lack of Fit | 0.03 | 0.002 | 10,845 | <0.0001 |
Simulation No. | ER | ||
---|---|---|---|
1 | 9.76 | 66.04 | 0.80 |
2 | 8.20 | 47.16 | 0.54 |
3 | 11.32 | 47.16 | 0.84 |
4 | 11.32 | 66.04 | 0.95 |
5 | 8.20 | 66.04 | 0.54 |
6 | 8.20 | 56.60 | 0.54 |
7 (central) | 9.76 | 56.60 | 0.77 |
12 | 11.32 | 56.60 | 0.90 |
13 | 9.76 | 47.16 | 0.76 |
Test | Primary Nozzle Diameter Dth (mm) | Primary Nozzle Capacity (kg·s−1) | ER (Simulation) | Predicted ER (Characteristic Equation) | Relative Error (%) | |||
---|---|---|---|---|---|---|---|---|
Dimensionless parameters to find ERmax | 1 | 106 | 11.32 | 66.04 | 15.6 | 0.95 | 0.954 | 0.42% |
2 | 100 | 11.20 | 67.00 | 13.8 | 0.94 | 0.956 | 1.70% | |
3 | 95 | 11.00 | 68.42 | 12.53 | 0.94 | 0.943 | 0.31% | |
4 | 90 | 10.82 | 72.50 | 11.21 | 0.94 | 0.935 | 0.53% | |
5 | 84 | 10.71 | 75.00 | 9.79 | 0.94 | 0.945 | 0.53% | |
6 | 80 | 10.62 | 77.50 | 8.88 | 0.94 | 0.940 | 0.00% | |
7 | 74 | 10.58 | 80.00 | 7.55 | 0.95 | 0.951 | 0.10% | |
8 | 64 | 10.54 | 81.20 | 5.63 | 0.95 | 0.949 | 0.10% | |
Random dimensionless parameter values (other ER values) | 9 | 100 | 10 | 60 | 13.89 | 0.82 | 0.81 | 1.2% |
10 | 94 | 10 | 65 | 12.55 | 0.84 | 0.83 | 1.1% | |
11 | 84 | 10 | 50 | 9.79 | 0.79 | 0.77 | 2.5% | |
12 | 74 | 9 | 60 | 7.55 | 0.71 | 0.69 | 2.8% | |
13 | 64 | 9 | 70 | 5.7 | 0.72 | 0.7 | 2.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malakootikhah, M.; Valizadehderakhshan, M.; Shahbazi, A.; Mehrabani-Zeinabad, A. Developing a New Algorithm to Design Thermo-Vapor Compressors Using Dimensionless Parameters: A CFD Approach. Processes 2022, 10, 601. https://doi.org/10.3390/pr10030601
Malakootikhah M, Valizadehderakhshan M, Shahbazi A, Mehrabani-Zeinabad A. Developing a New Algorithm to Design Thermo-Vapor Compressors Using Dimensionless Parameters: A CFD Approach. Processes. 2022; 10(3):601. https://doi.org/10.3390/pr10030601
Chicago/Turabian StyleMalakootikhah, Mohammad, Mehrab Valizadehderakhshan, Abolghasem Shahbazi, and Arjomand Mehrabani-Zeinabad. 2022. "Developing a New Algorithm to Design Thermo-Vapor Compressors Using Dimensionless Parameters: A CFD Approach" Processes 10, no. 3: 601. https://doi.org/10.3390/pr10030601
APA StyleMalakootikhah, M., Valizadehderakhshan, M., Shahbazi, A., & Mehrabani-Zeinabad, A. (2022). Developing a New Algorithm to Design Thermo-Vapor Compressors Using Dimensionless Parameters: A CFD Approach. Processes, 10(3), 601. https://doi.org/10.3390/pr10030601