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Abstract: To solve the problems of high labor intensity, low efficiency, and frequent errors in the
manual identification of cone yarn types, in this study five kinds of cone yarn were taken as the
research objects, and an identification method for cone yarn based on the improved Faster R-CNN
model was proposed. In total, 2750 images were collected of cone yarn samples in real of textile
industry environments, then data enhancement was performed after marking the targets. The
ResNet50 model with strong representation ability was used as the feature network to replace the
VGG16 backbone network in the original Faster R-CNN model to extract the features of the cone
yarn dataset. Training was performed with a stochastic gradient descent approach to obtain an
optimally weighted file to predict the categories of cone yarn. Using the same training samples
and environmental settings, we compared the method proposed in this paper with two mainstream
target detection algorithms, YOLOv3 + DarkNet-53 and Faster R-CNN + VGG16. The results showed
that the Faster R-CNN + ResNet50 algorithm had the highest mean average precision rate for the
five types of cone yarn at 99.95%, as compared with the YOLOv3 + DarkNet-53 algorithm with a
mean average precision rate that was 2.24% higher and the Faster R-CNN + VGG16 algorithm with a
mean average precision that was 1.19% higher. Regarding cone yarn defects, shielding, and wear,
the Faster R-CNN + ResNet50 algorithm can correctly identify these issues without misdetection
occurring, with an average precision rate greater than 99.91%.

Keywords: cone yarn; species recognition; Faster R-CNN; feature network

1. Introduction

The classification of cone yarn plays a vital role in weaving, dyeing, and finishing
processes [1]. In the production process, the types of cone yarn are distinguished accord-
ing to the color and marker on the top of the bobbin. During production, the working
environment is dark and there are many kinds of cone yarn. However, the colors on the
tops of the bobbins are similar and the size of the markers is limited. At present, the
identification of cone yarn types mainly depends on manual classification, which is labor-
intensive, inefficiency, and prone to errors after long identification times. This results in
the manufacture of defective fabrics in the textile production process. These issues restrict
the development of packaging and logistics automation processes [2,3]. Therefore, it is of
great significance to carry out research on possible identification methods for cone yarn to
improve the identification efficiency and control the yarn quality.

At present, the common practice in domestic and foreign textile mills is to use the
colors and markers on the tops of the bobbins as the main basis for distinguishing yarn
types [4]. Zhang [5] performed color shift correction, filtering, and other preprocessing
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processes on bobbin images to obtain color information. Then, the template matching
method was used to identify the bobbin. Yang [6] also used traditional machine learning
methods to perform preprocessing, such as HSV (hue, saturation, value) color conversion,
filtering, and denoising on each image. Finally, the hue and saturation were used as features
and a support vector machine (SVM) was used as the classifier for the final classification of
the bobbins. The traditional target detection approach mainly starts from the image features
obtained using machine vision methods, then image processing is performed based on the
differences in color, shape, or texture of the detected objects. Objects can be recognized
by manually extracting features [7,8]. Under factory conditions, due to the variety of
cone yarns that are used and the production environment where the work takes place,
the colors and shapes on the top markers on the bobbins are often incorrectly matched.
Traditional target detection methods are mainly based on experience and are easily affected
by subjective human factors [9]. The disadvantage of the traditional identification method
is that it requires a lot of human participation across the whole process. Feature extraction
also requires designers to have rich experience. Therefore, the traditional target detection
methods have limited generalization ability and cannot be used to find a general feature
model. In recent years, scholars have gradually turned their research focus for image
recognition to target detection algorithms based on deep learning, focusing on local areas
of images and specific object categories [10–13]. With the deepening of deep learning
algorithm research, deep learning models based on convolutional neural networks (CNNs)
have made significant progress in image detection. By using a convolutional neural network
to extract image multi-scale feature information, the detection and recognition effects
are remarkable. CNNs also have high recognition accuracy and strong anti-interference
ability. They can extract targets from complex backgrounds and can solve the issues
related to the weak generalizability of the recognized objects [14–16]. They have significant
success in distinguishing similar targets and have excellent development potential [17].
Convolutional neural network models have achieved considerable success in areas such as
image classification [18], object detection [19], pose estimation [20], image segmentation [21],
and facial recognition [22–24]. They also have great expansion advantages, although at the
same time they are restricted by resources and data acquisition conditions. On the other
hand, their ability for accurate recognition and classification of targets with a small number
of samples is gradually attracting researchers’ attention [25–29]. However, the tradeoff
between data quality and quantity is a complex problem that cannot be ignored [30–35].

Convolutional neural network models used for object detection can be divided into
two categories. The first type is based on the use of a regression algorithms, which directly
completes the candidate area generation and target recognition processes. Such models SSD
(single-shot multi-box detector) [36,37] and YOLO (you only look once) [36–38], among
others. They are also known as single-stage detection algorithms. The second category
includes algorithms based on region proposals. These are used to generate candidate
regions first and then to perform target classification on the candidate regions, and include
R-CNN [39], Fast R-CNN [40], Faster R-CNN [41], and other models. They are also known
as two-stage detection algorithms. Regression-based algorithms first need to generate
regions of interest based on feature extraction. Each region is then classified to directly
perform region generation and predicted target classification, which is an end-to-end
process. The YOLO series is a single-stage detection algorithm, proposed by Redmon [38],
which directly performs region generation and prediction target classification. During
prediction, the feature map is divided into grids, which dramatically improves the detection
speed. In view of the shortcomings of the YOLOv1 algorithm, such as the inaccurate
positioning and low detection accuracy, the YOLOv2 algorithm was also proposed using
the Darknet-19 model [42]. The YOLOv2 classification network is trained at high resolution
to improve the accuracy in target recognition. However, each cell is only responsible
for predicting one target, and the recognition effect for small targets and targets is not
good. The YOLOv3 algorithm [43] uses the Darknet-53 network and introduces multi-scale
fusion to improve the detection accuracy. This algorithm can be used for the recognition
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of small targets, occluded targets, and similar backgrounds in complex environments.
In the identification of the categories studied in this paper, the detection accuracy takes
precedence over the average detection speed. Compared with two-stage detectors, single-
stage detection algorithms are more suitable for package detection [44–46].

The R-CNN series of algorithms generate candidate regions and perform regression
classification in two stages, which is why they are called two-stage detection algorithms.
The R-CNN algorithm divides the input images into multiple candidate regions of different
kinds. It utilizes CNN to extract feature vectors. The feature vector classification is achieved
using SVM, which improves the efficiency of the target detection process. To overcome
the slow training speed caused by the number of candidate regions and inconsistent sizes,
many researchers have proposed improved methods to speed up the detection process.
Girshick [40] proposed the Fast R-CNN method, combining the ideas of R-CNN and
SPP (spatial pyramid pooling) [41]. Finally, an end-to-end object detection algorithm
was implemented to find candidate regions. The Fast R-CNN method directly obtains
candidate regions through neural networks, and the detection speed and accuracy are
greatly improved compared to R-CNN. The Faster R-CNN method proposed by Ren [42]
uses the region generation network (RPN) instead of the candidate box (anchor) extraction
method used in R-CNN. An anchor mechanism was proposed to generate candidate
boxes, which can simultaneously predict object boundaries and object scores at each
location. Compared with Fast R-CNN, the training time is considerably shortened, while
the detection accuracy is not reduced. Han [47] proposed a video detection method based
on the improved Faster R-CNN model by adjusting VGG16 convolutional layers and using
online case mining. By improving the deep learning network framework, the R-CNN series
of algorithms have improved the speed and accuracy of the detection processes. The Faster
R-CNN model based on regional features has a low recognition error rate and a low missed
detection rate. It can directly output the recognized detection results and can be used for
real-time detection [48,49]. Therefore, the Faster R-CNN model has certain advantages in
the target detection of cone yarn types [50,51].

To solve the problem of cone yarn identification in industry environments, the appli-
cation of deep learning method has been promoted for target detection. This paper takes
different cone yarn samples under actual production conditions as the research objects and
uses a self-established cone yarn image set combined with multi-model and multi-scale
positioning methods to add candidate frames. Finally, an improved Faster R-CNN model
for cone yarn detection is proposed. Aiming to overcome the problem of small targets
being prone to false and missed detection errors, the original network algorithm of the
Faster R-CNN model is improved. ResNet50 [52], having strong representation ability, is
used as the feature network instead of the original VGG16 backbone network. We conduct
research and build a deep-learning-based identification model for cone yarn types. We
are able to reduce the amount of human participation required in the design process and
the dependence on manual feature extraction. This model can not only reduce the errors
associated with the manual selection of cone yarn features, but is also more practical. It can
be applied to detection applications in different scenarios, and can effectively improve the
identification speed for use with cone yarns. The recognition algorithm embedded into the
device in this work has important reference significance for the development of intelligent
cone yarn classification and grading devices.

2. Materials and Methods
2.1. Construction and Preprocessing of Cone Yarn Image Dataset
2.1.1. Cone Yarn Image Data Acquisition

In the setup, the image acquisition device is located above the conveying channel of
the cone yarn, as shown in Figure 1. It consists of a shading box, light source, photoelectric
sensor, and Basler industrial camera (Basler Vision Technology Co., Ltd., Beijing, China,
model acA 1300-30gc, resolution = 1294 pixels × 964 pixels). The two cameras are located
at a height of 75 cm above the conveying channel with a depression angle of 45◦. The image
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acquisition device is driven by the photoelectric sensor signal. When the cone yarn to be
detected reaches the designated working position, the photoelectric sensor is blocked to
send out a working signal. After the image acquisition device receives the signal, the light
source group cooperates with the camera group to collect the cone yarn image. In order to
improve the processing speed and robustness of the algorithm, the external natural light
is isolated through the structural design of the system. An artificial light source is then
installed for the acquisition device. By designing the light path and illumination timing
control system, the illumination conditions of the system are in the state required by the
algorithm. The exposure time of the camera is set to 3 ms, and the brightness of the LED
light source is adjusted to match the camera to take pictures. This can ensure the quality of
the collected images and reduce the complexity of the algorithm.
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Figure 1. Image acquisition device: (1) photoelectric sensor transmitter; (2) photoelectric sensor 
receiver; (3) top light source in front of the cone yarn; (4) industrial camera on the top left of the cone 
yarn; (5) industrial camera on the top right of cone yarn; (6) upper light source behind the cone yarn; 
(7) cone yarn; (8) cone yarn conveying channel; (9) servo motor. 

The research object of this paper is five types of cone yarn produced by Xinjiang 
Renhe Textile Technology Co., Ltd.( Huyanghe City, Xinjiang Province, China), namely a 
black twill bobbin, black fork bobbin, pure black bobbin, rose red bobbin, and green twill 
bobbin. The raw materials used in the company’s yarn include cotton, Tencel, polyester, 
acrylic, and nylon, meaning the color of the yarn is white. In March 2021, the 5 types of 
cotton spinning cones in the production process were photographed in real time using an 
image capture device. There were 550 images in each category for a total of 2750 images. 
Some of the cone yarn samples are shown in Figure 2. 

  

Figure 1. Image acquisition device: (1) photoelectric sensor transmitter; (2) photoelectric sensor
receiver; (3) top light source in front of the cone yarn; (4) industrial camera on the top left of the cone
yarn; (5) industrial camera on the top right of cone yarn; (6) upper light source behind the cone yarn;
(7) cone yarn; (8) cone yarn conveying channel; (9) servo motor.

The research object of this paper is five types of cone yarn produced by Xinjiang Renhe
Textile Technology Co., Ltd.( Huyanghe City, Xinjiang Province, China), namely a black
twill bobbin, black fork bobbin, pure black bobbin, rose red bobbin, and green twill bobbin.
The raw materials used in the company’s yarn include cotton, Tencel, polyester, acrylic,
and nylon, meaning the color of the yarn is white. In March 2021, the 5 types of cotton
spinning cones in the production process were photographed in real time using an image
capture device. There were 550 images in each category for a total of 2750 images. Some of
the cone yarn samples are shown in Figure 2.
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2.1.2. Image Preprocessing

In order to speed up the training and convergence of the network model and to
improve the accuracy, the image dataset for model training needs to be preprocessed.
Convolutional neural network models require a large number of sample images to train
with good recognition results [50]. The background for the images shown in this paper
was relatively simple and had less noise. Therefore, we only performed data enhancement
and label classification preprocessing, and no other processing was performed on it. Image
preprocessing enhances the model generalization and adaptability to avoid weakening
the training results of the model due to having too few sample images. Here, we use the
Pytorch algorithm tool library to perform spatial scale transformation and normalization
on the dataset. The image preprocessing process mainly includes the following aspects:

(1) Ensure that the training and test sets are mutually exclusive. First, the original
images are randomly divided into different datasets. Ensure each dataset is mutually
exclusive. Then, each dataset is augmented separately. After the expansion is completed,
the final training set and test set are formed. Make sure the image is in the test set and that
the augmented version of that image is definitely not in the training set;

(2) Ensure the uniformity of the dataset and improve the robustness of the model.
Each image is expanded once by randomly rotating 45◦, 90◦, and 270◦. Finally, the image
of each type of cone yarn is guaranteed to reach 1100;

(3) In this paper, the image is proportionally scaled. The maximum side length after
scaling is 800 pixels, and the minimum side length is 600 pixels. This ensures the speed
and quality of model training;

(4) This article uses the mainstream LabelImg annotation tool. The cone yarn image is
annotated according to the PASCAL VOC annotation format. Finally, a data format suitable
for the PyTorch deep learning framework is generated;

(5) After preprocessing and expansion, the total number of final images is 5500.

2.2. Recognition Methods
2.2.1. Faster R-CNN Model Framework

Faster R-CNN has an improved network structure over R-CNN and Fast R-CNN. The
main improvements in the network structures of R-CNN, Fast R-CNN, and Faster R-CNN
are shown in Table 1.

Table 1. Comparison of the three network structures.

Networks Extract Candidate Boxes Feature Extraction Feature Classification

R-CNN selective search CNN SVM
Fast R-CNN selective search CNN + ROI pooling CNN + ROI pooling

Faster R-CNN RPN CNN + ROI pooling CNN + ROI pooling

The Faster R-CNN network model introduces region proposal networks (RPN) based
on the Fast R-CNN model and replaces the selective search method in Fast R-CNN with
the RPN network. Thus, end-to-end training is achieved through back propagation and
stochastic gradient descent, which improves the accuracy and speed of detection. In this
paper, Faster R-CNN is selected as the primary network model for cone yarn detection and
identification, and its structure is shown in Figure 3.
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The process of cone yarn detection and recognition is mainly divided into four parts,
namely the cone yarn feature extraction, RPN network, ROI pooling interest region, and
cone yarn multi-classification regression. The steps for cone yarn detection and recognition
based on Faster R-CNN are as follows:

(1) Use the feature extraction network to extract the feature map of the cone yarn,
which is shared by the subsequent RPN network and Fast R-CNN network;

(2) The RPN network uses a 3 × 3 sliding window to traverse the entire feature
map. The Softmax classifier is mainly used to distinguish cone yarn and background
information and to determine whether anchors belong to the foreground or background.
The candidate frame position is obtained by anchor point regression. Bounding box
regression is mainly used to adjust the four parameters of the proposal box (that is, the
x-axis and y-axis coordinates of the center point of the proposal box and the width and
height), and preliminary screening is performed on the obtained proposal box. In this
way, the area containing the cone yarn is determined to the greatest extent, and the feature
submap is obtained;

(3) The ROI pooling process obtains the feature map and the proposal frame simultane-
ously, and then uses the proposal frame to intercept the feature map. To adjust the acquired
feature maps with different sizes to the size required by the classifier, the feature submaps
of different sizes can be normalized. The feature submaps of the same size are sent to the
subsequent fully connected layers for object classification and position adjustment;

(4) The classification and regression networks are mainly used to judge whether the
intercepted feature map contains cone yarn information and to adjust the suggestion box to
judge its category. At the same time, the bounding box is regressed to obtain the precise
shape and position of the candidate box.

2.2.2. RPN Network

The RPN structure is shown in Figure 4. The region candidate frame is mainly
generated by the end-to-end training method, enabling Faster R-CNN to achieve end-to-
end object detection. Instead of the original sliding window method and SS (selective
search) [53] algorithm, the generation speed of the detection frame is greatly improved.
The RPN network is a fully convolutional network that performs convolution operations
on the feature map through a sliding window. After the feature map is passed into the RPN,
each position in the feature map corresponds to an n-dimensional feature vector. Each
position corresponds to 9 possible candidate windows in the original image, and these
candidate windows have three areas measuring 1282, 2562, and 5122, respectively. Each
area size has three aspect ratios, which are 1:1, 1:2, and 2:1, respectively. These candidate
windows are called anchors. We use a 3 × 3 sliding window to generate a feature vector
of n-dimensional length and then pass this feature vector to the classification layer and
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regression layer, respectively. In the classification layer, the Softmax classifier is used to
judge the foreground and background of the anchor points, and the probability that the
nine anchors at each position belong to the foreground and background are the outputs. In
the regression layer, by adjusting the center coordinates and length and width of the anchor
point border, we output the parameters for the window corresponding to the 9 anchors
at each position, which should be translated and magnified. Then, we fit the position of
the candidate frame. The loss function [42] generated during the RPN network training
process consists of the classification layer loss function Lcls [42] and the regression layer
loss function Lreg [40]. The training loss function of the model is as follows:

L(p i, ti) =
1

Ncls
∑

i
Lcls(p i, pi

∗) + λ
1

Nreg
∑

i
pi
∗Lreg(t i, ti

∗) (1)

Lcls(pi, pi∗) = −log(pipi ∗+(1− pi∗)(1− pi)) (2)

Lreg(ti, ti
∗) = ∑

L1

smoothL1(ti − t∗i ) (3)

smoothL1(ti − t∗i ) =
{

0.5(ti − t∗i )
2(|ti − t∗i | < 1)

|ti − t∗i | − 0.5(|ti − t∗i | ≥ 1)
(4)

p
i
∗ =

{
1 (Anchor points are positive samples)
0 (Anchor points are negative samples)

(5)
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In Formulas (1)–(5), L represents the loss of the RPN network; Lcls represents the loss
of the classification layer; Lreg represents the loss of the regression layer; i represents the
anchor index; ti represents the predicted bounding box coordinate vector; ti * represents the
true bounding box coordinate vector; Ncls represents the number of classification samples;
Nreg represents the number of regression samples; Pi represents the predicted probability
of the target; Pi * represents the anchor point discriminant value; λ represents the weight
parameter; L1 represents the mean absolute error; smoothL1 represents the robust L1 loss.

2.2.3. Backbone Feature Extraction Network

In the process of cone yarn feature detection, the Faster R-CNN network needs to
select a trained network to increase the depth of the network and extract more abstract
image features, in order to improve the detection ability of the model and obtain an
ideal detection effect. However, as the number of network series increases, gradient
vanishing and exploding problems also arise. A previous study [52] proposed a residual
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network based on preserving the depth of the network, which makes the redundant layers
in the network perform identity mapping, effectively solving the problem of gradient
disappearance caused by the increase in the number of network layers. The residual
network structural unit is shown in Figure 5.
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The residual unit can be expressed as:

Xb+1 = Xb + F(Xb, Wb) (6)

For L of arbitrary depth:

XL = Xb +
L−1

∑
i=b

F(Xi, Wi) (7)

Equation (7) has good back propagation, assuming that the loss is ε, which can be
obtained according to the chain derivation rule:

∂ε

∂Xb

=
∂ε

∂XL

∂XL

∂Xb

=
∂ε

∂XL

(1 +
∂

∂Xb

L−1

∑
i=b

F(Xi, Wi)) (8)

In Formula (8) F (xi, wi) is the residual, and when F (xi, wi) is 0, it is the identity map-

ping process. Among them, ∂
∂Xb

L−1
∑

i=b
F(xi, wi) cannot be negative in the process of derivation

and continuous addition. Therefore, it is guaranteed that no gradient disappearance or
gradient explosion will occur in the parameter update of this node.

The basic convolutional neural network can choose different structures, such as
VGG-16 or ResNet [51], which have different performance and running times. Among
them, ResNet won first place in the classification task of the ImageNet competition, and is
widely used in detection, segmentation, recognition, and other fields due to its powerful
performance. Common ResNet structures are ResNet50 and ResNet101, where 50 and
101 correspond to the numbers of layers in the network. The deeper the network layer,
the slower the speed. Considering the speed and precision of cone yarn recognition, here
we select ResNet50 as the basic convolutional neural network model of the Faster R-CNN
detection model.

The ResNet50-based residual module includes two structures, the identity block and
convolution block, as shown in Figure 6. The dimensions of the input and output vectors
of the Identity Block module are the same, and the network can be directly deepened by
concatenation to learn deep semantic information. The dimensions of the input and output
vectors of the Conv Block module are different, and a 1 × 1 convolution process needs to
be performed to match the dimensions. ResNet50 consists of one convolutional layer, one
fully connected layer, and four sets of residual modules.
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Each group has 3, 4, 6, and 3 blocks, and each block has three convolutional layers.
The structure is shown in Figure 7.

The size of the original input image is 1278 pixels × 958 pixels, but the model network
of ResNet50 will resize the input image to 600 pixels on the shortest side. Therefore, the
inputs (800, 600, 3) in the structure all represent the cone yarn image with an input size
of 800 pixels × 600 pixels × 3 channels. The output (400 × 300 × 64) on the left side
of the model network structure represents the size of the output feature map. The right
side represents the convolutional composition of the multi-layer neural network. For
example, the size of the convolution kernel in “7 × 7 conv, 64, /2” is 7 × 7, the number of
channels is 64, and the stride is two. Conv Block1 represents the first convolutional block1,
containing one convolutional layer. Conv Block2-1, Conv Block3-1, Conv Block4-1, and
Conv Block5-1 represent residual blocks with added scales, and the number of residual
blocks is one. Conv Block2-x, Conv Block3-x, Conv Block4-x, and Conv Block5-x represent
residual blocks that do not change the size, while the numbers of residual blocks are 2, 3, 5,
and 2, respectively. Conv Block2 to Conv Block5 are defined as residual blocks 2, 3, 4, and
5, respectively. Each residual block consists of three convolutional layers; that is, a total of
3 × (3 + 4 + 6 + 3) + 1 = 49 convolutional layers.

In the neural network structure, Conv is a convolutional layer, BN is a batch nor-
malization operation, Pool represents a maximum pooling layer, Avg Pool represents
an average pooling layer, and Fc is a fully connected layer. The structure can be under-
stood as five convolution blocks as a whole, including a 7 × 7 convolution layer and
four 3 × 3 residual blocks, and the numbers of convolution kernels are 64, 64, 128, 256, and
512, respectively. For a 7 × 7 convolutional layer, “/2” means that the moving step size of
the convolution kernel is two, the data padding is one by default, and the convolutional
layer does not add bias. BN [54] accelerates the network training and places the BN layer
between the Conv and the activation function. For a 3 × 3 pooling layer, the stride equals
two and the data padding equals one.

The preprocessed image is input and processed through a series of residual blocks,
and the output feature map size equals 25 × 19 × 2048. After the average pooling layer
and flattening process, the output feature matrix becomes 1 × 1 × 2048. Then, this is input
to the fully connected layer Fc, so the number of channels of the output feature map equals
five. Finally, the corresponding probability values of the 5 kinds of cone yarn are output by
the Softmax classifier, thereby giving the identification results.
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2.2.4. Dropout Optimization Algorithm

To avoid the overfitting phenomenon in the model, the dropout optimization algorithm
is selected to improve the model’s performance [55,56]. The function of the dropout
algorithm is to randomly discard the neuron output values during the network training
process according to the set probability. “Inactivating” some neurons can avoid overfitting
during network training. In this paper, in the fully connected layer Fc of the ResNet50
model network structure, adding dropout can avoid the risk of overfitting and reduce the
classification and generalization error. Setting the dropout parameter to 0.5, the network
will randomly deactivate half of the neurons during training. When the gradient is back-
propagated, the disconnected neurons after deactivation will not participate in the update
of parameters. Dropout forward propagation is shown in Figure 8, whereby the gradient is
passed from the input neuron to the output neuron.
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3. Training and Evaluation of Species Recognition Models
3.1. Model Training Environment

The experimental environment for model training in this study is as follows: Windows
10 operating system (64 bit), Intel (R) Core (TM) i7-9700 K processor, 3.6 GHz main fre-
quency, NVIDIA GeForce RTX 2080 graphics card, 32 GB memory, 512 GB solid-state drive,
while using the CUDA platform to accelerate network training. The programming environ-
ment involves Python 3.8, Pytorch deep learning framework, Anaconda 3, and PyCharm.

3.2. Authentication Method

The dataset is further divided into a training set and test set, the proportions of
which are 80% and 20%, respectively. The model is trained on the training set, and the
model’s performance is evaluated on the test set, which is called the common verification
method of single verification. The single-shot verification method can obtain training
results more quickly and can optimize hyperparameters by training the model once. Cross-
validation is a method of model training and evaluation. After the dataset is divided,
image samples are reused during training and testing. Multiple sets of disjointed training
and test sets can be formed [57]. In this paper, the entire dataset is randomly divided
into five subdatasets with no intersection and the same number of samples. One of the
5 datasets is selected as the test set and the other 4 as the training set. Five independent
model training and testing procedures are then performed. Finally, the average of the test
results of the five models is taken as the generalization error of this model. Using cross-
validation provides a better approximation of the generalization error, giving an unbiased
assessment of the predictive performance of the model. We use the same training samples
and environmental settings to understand the impact of the experimental method on the
detection results. The Faster R-CNN + ResNet50 method in this paper is compared with
the two mainstream target detection algorithms of the YOLOv3 + DarkNet-53 algorithm
and the Faster R-CNN + VGG16 algorithm.

3.3. Network Model Training Process

This paper uses Faster R-CNN as the basic network framework for cone yarn detection
and recognition. The initialized weights are obtained using the original Faster R-CNN
model trained on the PASCAL VOC 2007 dataset. The use of initial weights can speed
up training and reduce training costs. Therefore, we use the “voc weights resnet.pth”
pretrained model to initialize the weights. The alternate optimization training method is
adopted and the number of images extracted from the training set each time is the batch
size (batch size = 8). Training is performed under the ResNet50 feature extraction network,
with the learning rate initially set to 0.01, confidence to 0.5, crossover ratio (IOU) to 0.3, and
momentum factor to 0.9. The Adam optimization algorithm and cosine annealing are used
to adjust the learning rate for each epoch so that it gradually decreases. The parameters are
updated during gradient descent once per batch of samples, and the training epoch is set
to 200. In this experiment, the training strategy for dropout is adopted, and the value of the
dropout parameter is set to 0.5. The specific model training process is shown in Figure 9.
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3.4. Evaluation Indicators

To measure the effectiveness of the experimental model for identifying the types of
cone yarn, the precision (Pre), recall (Rec), average precision (AP), and mean value of the
average precision (mAP) were used as evaluation indicators. For each category, a curve
can be drawn based on recall and precision. The AP value is the area under the curve. The
AP value is used to measure the performance of a certain type of cone yarn. The higher
the AP value, the better the model performance. The mAP is obtained by averaging the
AP values of all categories. This is used to measure the comprehensive performance of the
multi-objective model on five categories of cone yarn, calculated as follows:

Pre =
TP

TP+FP
× 100% (9)

Rec =
TP

TP+FN
× 100% (10)

AP =

1∫
0

PreRecdRec (11)

mAP =
∑n

1 AP

n
(12)

In Formulas (9)–(10), Pre represents the precision, Rec represents the recall, Tp repre-
sents the positive sample predicted as a positive sample, Fp represents the negative sample
predicted as a positive sample, FN represents the positive sample predicted as a negative
sample, and N represents the number of categories.

The F1 score (F1) is a comprehensive evaluation index of precision and recall, which
achieves a good balance between the two. The calculation formula is:

F1 = 2× PreRec

Pre + Rec
× 100% (13)

4. Results and Discussion
4.1. Training Data Analysis
4.1.1. Training for Algebraic Analysis

After the training is completed, the loss value corresponding to each training is read
from the log file, and the curve of the loss value changing with the training algebra is drawn.
As shown in Figure 10, the loss values of the three methods decrease with the increase
in training algebra. The loss value drops quickly at the beginning, which is because of
the large initial learning rate setting. As the training algebra increases, the learning rate
gradually becomes smaller, while the change of the curve tends to be flat until it converges.
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The loss value of the YOLOv3 + DarkNet-53 algorithm is higher than that of the Faster
R-CNN + VGG16 method and the Faster R-CNN + ResNet50 method during the whole
experiment. The reason is that the YOLOv3 + DarkNet-53 algorithm employs single-grid
regression in the regression process, meaning the positioning of the bobbin is not accurate
enough, resulting in low detection accuracy. The loss value of the Faster R-CNN + VGG16
method is not much different from that of the Faster R-CNN + ResNet50 method, but the
loss value of the Faster R-CNN + ResNet50 method is always lower than that of the Faster
R-CNN + VGG16 method.
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4.1.2. Analysis of Evaluation Indicators

According to the log file, we can draw the change curve of the evaluation index with
the training algebra during the training process, as shown in Figure 11. For generations
0–30 in the training process, the overall trend is for F1, Rec, Pre, and mAP to increase.
After the 30th generation, the general direction of the evaluation indicators is stable,
only fluctuating within a small range. For the black twill bobbin, black fork bobbin,
pure black bobbin, rose red bobbin, and green twill bobbin, the maximum F1 values of
the Faster R-CNN + ResNet50 algorithm are 99.4%, 99.92%, 99.98%, 99.91%, and 99.95%,
respectively; the mean values are higher than for the YOLOv3 + DarkNet-53 model and
Faster R-CNN + VGG16 model by 9% and 6%, respectively. The F1, recall, and precision
values of the Faster R-CNN + ResNet50 model for the five types of cone yarns are all greater
than 99.88%, 99.90%, and 99.91%, respectively. Compared with the YOLOv3 + DarkNet-53
and Faster R-CNN + VGG16 algorithms, the Faster R-CNN + ResNet50 models all show
ideal detection results. Here, we select F1 and mAP to evaluate the training results, and
finally select the 200th generation as the final training network weight file. This file not
only has F1 and mAP values, but also high recall and precision.

4.2. Analysis of the Different Methods used for the Identification of Cone Yarns

Here, 550 images in the test set are tested with the trained model, and the results
are shown in Table 2. The precision of the Faster R-CNN + ResNet50 model for the
five types of cone yarns is higher than the other two algorithms, while the mean aver-
age precision is 99.95%. The mean average precision is higher than the 97.71% for the
YOLOv3 + DarkNet-53 model and 98.76% for the Faster R-CNN + VGG16 model, while
the highest precision for the cone yarn with the green twill bobbin is 99.98%. The above
results are due to the use of the residual structure of ResNet and the use of multi-scale
features for the detection of the five types of cone yarns, which improve the classification
precision. Secondly, the Faster R-CNN + ResNet50 algorithm has an average recall of
99.47%. In the more difficult-to-identify cone yarn with a black fork bobbin and the cone
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yarn with a pure black bobbin, the recall is still high, remaining above 99%. Third, in terms
of F1, the average value of the Faster R-CNN + ResNet50 algorithm is higher than that of
the YOLOv3 + DarkNet-53 model and Faster R-CNN + VGG16 model by nine percentage
points and six percentage points, respectively. This is because F1 is affected by the training
quantity of the cone yarns. Under the same training set, the more training images contain
cone yarns, the greater the F1 coefficient.
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Processes 2022, 10, 634 15 of 21

Table 2. Identification of cone yarns using different algorithms.

Type of Cone Yarn Algorithm Pre/% Rec/% F1/% AP/%

cone yarn with black
twill bobbin

YOLOv3 + DarkNet-53 96.43 98.23 97.32 98.89
Faster R-CNN + VGG16 96.68 98.54 97.60 99.01

Faster R-CNN + ResNet50 99.93 99.96 99.94 99.97

cone yarn with black
fork bobbin

YOLOv3 + DarkNet-53 94.96 95.23 94.84 96.17
Faster R-CNN + VGG16 97.26 98.62 97.94 99.12

Faster R-CNN + ResNet50 99.92 99.93 99.92 99.94

cone yarn with pure
black bobbin

YOLOv3 + DarkNet-53 94.52 96.86 95.68 97.18
Faster R-CNN + VGG16 96.26 98.01 97.13 98.36

Faster R-CNN + ResNet50 99.87 99.90 98.88 99.91

cone yarn with rose
red bobbin

YOLOv3 + DarkNet-53 96.18 97.26 96.72 98.08
Faster R-CNN + VGG16 96.80 99.05 97.76 99.05

Faster R-CNN + ResNet50 99.91 99.92 99.91 99.95

cone yarn with green
twill bobbin

YOLOv3 + DarkNet-53 96.39 97.67 97.03 98.25
Faster R-CNN + VGG16 96.21 97.63 96.91 98.28

Faster R-CNN + ResNet50 99.94 99.97 99.95 99.98

Five representative images are selected from the 550 cone yarn test dataset, which
are images of a normal cone yarn, cone yarn with yarn defects, cone yarn with a covered
bobbin, dirty cone yarn, and cone yarn with a worn bobbin.

Here, we select five representative pictures from the cone yarn test dataset, which
represent a normal cone yarn, cone yarn with yarn defects, cone yarn with a covered
bobbin, dirty cone yarn, and cone yarn with a worn bobbin. As shown in Figures 12–16,
YOLOv3 + DarkNet-53, Faster R-CNN + VGG16, and Faster R-CNN + ResNet50 algorithms
are used for testing.
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Figure 12. Identification of normal cone yarn with black twill bobbin: (a) original image; (b) YOLOv3
+ DarkNet-53 algorithm recognition results; (c) Faster R-CNN + VGG16 algorithm recognition results;
(d) Faster R-CNN + ResNet50 algorithm recognition results.
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Figure 13. Identification of cone yarn with yarn defects: (a) original image; (b) YOLOv3 + DarkNet-53
algorithm recognition results; (c) Faster R-CNN + VGG16 algorithm recognition results; (d) Faster
R-CNN + ResNet50 algorithm recognition results.
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As shown in Figure 12, for the normal cone yarn image, the average precision lev-
els of the three algorithms are 98.89%, 99.01%, and 99.97%, respectively. The Faster
R-CNN + ResNet50 algorithm has the highest average precision. It can accurately de-
tect the black twill bobbin cone yarn, while the position of the bounding rectangle box is
very accurate.

As shown in Figure 13, because the cone yarn has yarn defects, although the
YOLOv3 + DarkNet-53 algorithm measures the cone yarn with a black fork bobbin, the
average precision is only 96.17%. The YOLOv3 + DarkNet-53 algorithm still has errors
in detection, and the yarn defects are mistakenly identified as cone yarn with a rose red
bobbin. The average precision rate of the Faster R-CNN + VGG16 algorithm is 99.12%,
while the average precision rate of the Faster R-CNN + ResNet50 algorithm is 99.94%, and
there is no false detection.

As shown in Figure 14, for the target image with the covered bobbin, the average
precision rates of the three algorithms for the cone yarn with pure black bobbin are 97.18%,
98.36%, and 99.91%, respectively. Faster R-CNN + ResNet50 still has high average precision.

As shown in Figure 15, for dirty cone yarn, the average precision rates of the
three algorithms for detecting this type of cone yarn are 98.08%, 99.05%, and 99.95%,
respectively. The Faster R-CNN + ResNet50 algorithm accurately detects the cone yarn
with the rose red bobbin.
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As shown in Figure 16, the average precision rates for YOLOv3 + DarkNet-53 and
Faster R-CNN + VGG16 algorithms are 98.25% and 98.28%, respectively, for the cone yarn
with a worn bobbin. The above two algorithms are both lower than the average precision
of the Faster R-CNN algorithm by 1.7 percentage points.

For a very small number of bobbins with severe wear, there are instances of misclassi-
fication or no classification, as shown in Figure 17. Cone yarn is not identified, as shown in
Figure 18. The Faster R-CNN + ResNet50 detection model detects very few severely worn
bobbins. There are problems with misclassification and unrecognized types. However, it is
an abnormal for a bobbin to be severely worn. This phenomenon is completely avoidable.
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Figure 18. Unidentified cone yarn types: (a) cone yarn with the rose red bobbin; (b) cone yarn with
green twill bobbin.

To sum up, the detection model based on Faster R-CNN + ResNet50 shows high
accuracy for the five cone yarn test images, which reflects the strong generalization ability
of the model. At the same time, the average precision rates for the cone yarn with yarn
defects, the cone yarn with a covered bobbin, and the cone yarn with a worn bobbin
are greater than 99.91%. This shows that the Faster R-CNN + ResNet50 algorithm has
better robustness.

4.3. Detection Speed and Precision Rates of the Different Recognition Methods

As shown in Table 3, in terms of the recognition speed, the processing speed for
YOLOv3 + DarkNet-53 reaches 45.73 image·s−1. The Faster R-CNN + VGG16 model shows
decreased results compared to YOLOv3 + DarkNet-53, processing 14.26 image·s−1, which
is higher than the detection speed for Faster R-CNN + ResNet50 with 4.79 image·s−1. How-
ever, in terms of the detection accuracy, the average precision rate of YOLOv3 + DarkNet-53
is the lowest among the three methods at 97.71%. The final average precision achieved by
the Faster R-CNN + VGG16 method is 98.76%. Faster R-CNN + ResNet50 has an average
precision rate of 99.95%, the highest among the three methods.

Table 3. Detection speed and precision rates of the different recognition methods.

Algorithm Number of Images Total Detection
Time/ms

Average Detection
Time/ms

Detection Speed
/(image·s−1)

mAP
/%

YOLOv3 + DarkNet-53 550 12028.37 21.87 45.73 97.71
Faster R-CNN + VGG16 550 38576.89 70.14 14.26 98.76

Faster R-CNN + ResNet50 550 114819.01 208.76 4.79 99.95
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Therefore, the Faster RCNN + ResNet50 algorithm has more advantages than the
YOLOv3 + DarkNet53 algorithm and the Faster R-CNN + VGG16 algorithm, and its
detection precision is higher. Although the Faster RCNN + ResNet50 algorithm has the
slowest detection speed, it can fully detect the targets in real time.

5. Conclusions

In this study, an image recognition method for cone yarn based on Faster
R-CNN + ResNet50 was proposed. We selected five pictures of cone yarn samples, namely
with a black twill bobbin, black fork bobbin, pure black bobbin, rose red bobbin, and
green twill bobbin, in order to establish a database. Based on the convolutional neu-
ral network model, the recognition rates for the five kinds of cone yarn were analyzed.
The YOLOv3 + DarkNet-53, Faster R-CNN + VGG16, and Faster R-CNN + ResNet50 al-
gorithms were used for comparative experiments. The results showed that the Faster
R-CNN + ResNet50 algorithm had the highest average precision rates for the five types
of cone yarn, namely with a black twill bobbin, black fork bobbin, pure black bobbin,
rose red bobbin, and green twill bobbin. For the above five types of cone yarn, the
Faster R-CNN + ResNet50 algorithm AP gave precision rates of 99.97%, 99.94%, 99.91%,
99.95%, and 99.98%, with an mAP of 99.95%. Compared with the YOLOv3 + DarkNet-
53 algorithm, the mAP for the Faster R-CNN + ResNet50 algorithm was 2.24% higher,
while the single image detection time increased by 186.96 ms. Compared with the Faster
R-CNN + VGG16 algorithm, the mAP for the Faster R-CNN + ResNet50 algorithm was
1.19% higher, while the single image detection time was reduced by 138.63 ms. Although
the Faster R-CNN + ResNet50 algorithm had a low detection speed, it was fully capable of
real-time detection of targets. Faster R-CNN + ResNet50 had the highest average detection
precision, while the F1 coefficients were all higher than 99.91%. Faster R-CNN + ResNet50
showed good recognition precision and the best overall performance. For cone yarns with
yarn defects, the Faster R-CNN + ResNet50 algorithm could correctly identify the target
without missing and avoiding incorrect detection, with an average precision rate greater
than 99.94%. The YOLOv3 + DarkNet-53 algorithm could detect cone yarn with yarn
defects, but false detection occurred. Although Faster R-CNN + VGG16 detected cone yarn
with a green twill bobbin, the average recognition precision was 1.70 percentage points
lower than the Faster R-CNN + ResNet50 algorithm for the cone yarn with a worn bobbin.

The Faster R-CNN + ResNet50 identification algorithm designed in this paper had
higher average accuracy and a faster detection speed. It accurately identified the different
types of yarn with high average precision. A neural network was used to automatically
extract deep-level abstract features to make up for the shortcomings of manual feature
extraction. The recognition algorithm of the Faster R-CNN + ResNet50 model has practical
significance for improving the identification efficiency of cone yarn types and controlling
yarn quality.

The detection method proposed in this paper was based on the need to identify a large
amount of actual sample data and manually label the targets according to the standard for
model training. Under actual production conditions, the color and shape of the bobbin
markers can be matched arbitrarily. Therefore, there are many types of bobbin markers.
However, the type of new cone yarn can only be identified after the training of recognition
model. In response to this problem, semantic labels will be added to the dataset later to
enrich the sample data. In addition, it is still necessary to simplify the model network and
reduce the weight, calculation costs, and resource consumption. However, it is possible
to carry out embedded development research while ensuring high precision, and these
recognition algorithms can be deployed in embedded devices. The image recognition
information can be transmitted to the execution structure (manipulator or pneumatic
device) in production applications.
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