Selective Adsorption of Pb2+ in the Presence of Mg2+ by Layer-by-Layer Self-Assembled MnO2/Mxene Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Monolayer Manganese Oxide Nanosheets
2.2. Preparation of MnO2/MXene Composite Films
2.3. Characterization Test
2.4. Heavy Metal Ion Adsorption Test
3. Results
3.1. Morphology and Structure Characterization
3.2. Study of Adsorption Performance
3.2.1. Effect of pH on Adsorption Performance
3.2.2. Effect of Adsorption Time on Adsorption Performance
3.2.3. Effect of Initial Concentration on the Adsorption Capacity
3.2.4. Cycling Performance Test of Mno2/Mxene Composite Film
3.2.5. The Effect of Other Metal Cations on the Adsorption Performance
3.2.6. Adsorption Kinetic of MnO2/Mxene Composite Films
3.2.7. Comparison of Various MnO2-Based Adsorbents for Pb(II)
4. Conclusions
- (1)
- The pH value of the solution, adsorption time, and initial concentration all significantly affect the adsorption of Pb2+. The removal of Pb2+ by the MnO2/Mxene composite film reached 98.3% at pH 6 and reached adsorption equilibrium at 8 h. Increasing the content of Pb2+ in the initial solution can enhance the adsorption capacity of the MnO2/Mxene composite film, which reached 1235 µmol/g when the initial concentration of Pb2+ was 90 mg/L.
- (2)
- The MnO2/MXene composite film has a particular selectivity for Pb2+ adsorption, and the removal rate of Pb2+ can still reach 61.7% in the solution with high Mg2+ content (Mg2+/Pb2+ = 10:1).
- (3)
- The MnO2/Mxene composite film has the property of easy recovery; after five cycles of testing, its Pb2+ removal rate can still reach 96.4%.
- (4)
- The process of Pb2+ adsorption of by the MnO2/Mxene composite film is consistent with the pseudo-second-order models.
Author Contributions
Funding
Conflicts of Interest
References
- Sunil, K.; Karunakaran, G.; Yadav, S.; Padaki, M.; Zadorozhnyy, V.; Pai, R.K. Al-Ti2O6 a mixed metal oxide based composite membrane: A unique membrane for removal of heavy metals. Chem. Eng. J. 2018, 348, 678–684. [Google Scholar] [CrossRef]
- Xu, L.; Wang, T.; Wang, J.; Lu, A. Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China. Chemosphere 2017, 173, e61–e68. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, C.; Zhao, M.; Rong, H.; Zhang, K.; Chen, Q. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge. Chemosphere 2017, 168, e1152–e1157. [Google Scholar] [CrossRef]
- Sounthararajah, D.P.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Removing heavy metals using permeable pavement system with a titanate nano-fibrous adsorbent column as a post treatment. Chemosphere 2017, 168, e467–e473. [Google Scholar] [CrossRef] [PubMed]
- Tag El-Din, A.F.; El-Khouly, M.E.; Elshehy, E.A.; Atia, A.A.; El-Said, W.A. Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ionexchanger for cesium ions removal from seawater. Microporous Mesoporous Mater. 2018, 265, 211–218. [Google Scholar] [CrossRef]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Zhang, J.; Liang, S.; Yue, Q.Y.; Li, Q.; Nguyen, T.V. Applicability of agricultural waste and byproducts for adsorptive removal of heavy metals from wastewater. Bioresour. Technol. 2013, 148, 574–585. [Google Scholar] [CrossRef]
- Xu, J.; Cao, Z.; Zhang, Y.L.; Yuan, Z.L.; Lou, Z.M.; Xu, X.H.; Wang, X.K. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364. [Google Scholar] [CrossRef]
- Sarma, G.K.; Sen Gupta, S.; Bhattacharyya, K.G. Nanomaterials as versatile adsorbents for heavy metal ions in water: A review. Environ. Sci. Pollut. Res. 2019, 26, 6245–6278. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, X.F.; Hu, Z.H. The advantages of Shanglu biochar for Pb ion adsorption. J. Shihezi Univ. (Nat. Sci.) 2021, 39, 668–673. [Google Scholar]
- Zhai, F.J.; Zhang, C.; Song, G.F.; Jiang, S.X.; Shan, B.Q.; Song, Z.X. The adsorption mechanism of kapok biochar on Cr(VI) in aqueous solution. Acta Sci. Circumstantiae 2021, 41, 1891–1900. [Google Scholar]
- Wei, Z.P.; Zhu, Y.L.; Zhao, C.T.; Tang, J.X.; Gao, Y.X.; Li, M.X. Research Advances on Biochar Adsorption Mechanism for Heavy Metals and its Application Technology. Chin. J. Soil Sci. 2020, 51, 741–747. [Google Scholar]
- Peng, R.C.; Li, H.; Chen, Y.T.; Ren, F.P.; Tian, F.Y.; Gu, Y.W.; Zhang, H.L.; Huang, X.R. Highly efficient and selectivity removal of heavy metal ions using single-layer NaxKyMnO2 nanosheet: A combination of experimental and theoretical study. Chemosphere 2021, 275, 130068. [Google Scholar] [CrossRef]
- Song, Y.Q.; Tan, Q.; Lin, B.Y.; Liao, L.; Zeng, C.; He, Z.Z.; Lin, B.Y.; Qiu, W.M. Controllable synthesis of MnO2 with different crystal structures and their adsorption activity for heavy metals. Inorg. Chem. Ind. 2018, 50, 40–42, 53. [Google Scholar]
- Peng, Q.; Guo, J.X.; Zhang, Q.R.; Xiang, J.Y.; Liu, B.Z.; Zhou, A.G.; Liu, R.P.; Tian, Y.J. Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide. J. Am. Chem. Soc. 2014, 136, 4113–4116. [Google Scholar] [CrossRef]
- Ma, C.X.; Huangfu, X.L.; Ma, J.; Huang, R.X.; He, Q.; Liu, C.H.; Zhou, J.; Jiang, J.; Zhu, Y.Y.; Huang, M.H. Deposition Kinetics of Nanosized Manganese Dioxide in Presence of Divalent Cations. China Water Wastewater 2018, 34, 31–35. [Google Scholar]
- Kim, E.J.; Lee, C.S.; Chang, Y.Y.; Chang, Y.S. Hierarchically Structured Manganese Oxide-Coated Magnetic Nanocomposites for the Efficient Removal of Heavy Metal Ions from Aqueous Systems. ACS Appl. Mater. Interfaces 2013, 5, 9628–9634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Kou, M. Applications of two dimensional material MXene in water treatment. J. Mater. Eng. 2021, 49, 14–26. [Google Scholar]
- Hou, J.H.; Yang, M.Y.; Sun, A.; Cao, C.B. Application of MXenes and their composite materials in the field of environment. Fine. Chemicals. 2021, 38, 2422–2431. [Google Scholar]
- Fan, M.; Wang, L.; Zhang, Y.J.; Pei, C.; Chai, Z.; Shi, W. Research progress of MXene materials in radioactive element and heavy metal ion sequestration. Sci. Sin. Chim. 2019, 49, 27–38. [Google Scholar] [CrossRef]
- Leng, Y.Y.; Zhang, S.Y.; Zong, X.X.; Li, Y.F. Research Progress on New Low Dimensional Materials MXene. Chem. Adhes. 2016, 38, 450–454. [Google Scholar]
- Wan, H.; Nan, L.; Geng, H.; Zhang, W.; Shi, H. Green Synthesis of A Novel MXene–CS Composite Applied in Treatment of Cr(VI) Contaminated Aqueous Solution. Processes 2021, 9, 524. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, K.; Sun, H.; Yin, S. One-Step Synthesis of Single-Layer MnO2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High-Performance Pseudocapacitors. Small 2015, 11, 2182–2191. [Google Scholar] [CrossRef]
- Chen, S.; Xiang, Y.; Xu, W.; Peng, C. A novel MnO2/MXene composite prepared by electrostatic self-assembly and its use as an electrode for enhanced supercapacitive performance. Inorg. Chem. Front. 2019, 6, 199–208. [Google Scholar] [CrossRef]
- Dinh, V.P.; Le, N.C.; Nguyen, T.P.; Nguyen, N.T. Synthesis of α-MnO2 Nanomaterial from a Precursor γ-MnO2: Characterization and Comparative Adsorption of Pb(II) and Fe(III). J. Chem. 2016, 2016, 8285717. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.N.; Li, X.L.; Zhu, J.F.; Jiao, H.Y.; Huang, J.X. Manganese Dioxide Morphology on Electrochemical Performance of Ti3C2TX@MnO2 Composites. J. Inorg. Mater. 2020, 35, 119–125. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, N.; Feng, J.; Ma, J.; Wen, Q.; Li, N.; Dong, Q. Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater. Chem. Phys. 2012, 136, 538–544. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Z. A facile one-step synthesized epsilon-MnO2 nanoflowers for effective removal of lead ions from wastewater. Chemosphere 2020, 250, 126329. [Google Scholar] [CrossRef]
- Guo, J.; Chen, T.; Zhou, X.; Zheng, T.; Xia, W.; Zhong, C.; Liu, Y. Preparation and Pb (II) adsorption in aqueous of 2D/2D g-C3N4/MnO2 composite. Appl. Organomet. Chem. 2019, 33, e5119. [Google Scholar] [CrossRef]
- Xia, W.; Liu, Y. Preparation of MnO2 modified magnetic graphitic carbon nitride composite and its adsorption toward Pb(II) in waste water. Water Pract. Technol. 2021, 16, 1498–1509. [Google Scholar] [CrossRef]
qe | k | R2 |
---|---|---|
116.53 | 0.433 | 0.98462 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, H.; Deng, J.; Peng, D.; Wei, T.; Zhang, H.; Peng, R. Selective Adsorption of Pb2+ in the Presence of Mg2+ by Layer-by-Layer Self-Assembled MnO2/Mxene Composite Films. Processes 2022, 10, 641. https://doi.org/10.3390/pr10040641
Qu H, Deng J, Peng D, Wei T, Zhang H, Peng R. Selective Adsorption of Pb2+ in the Presence of Mg2+ by Layer-by-Layer Self-Assembled MnO2/Mxene Composite Films. Processes. 2022; 10(4):641. https://doi.org/10.3390/pr10040641
Chicago/Turabian StyleQu, Hongjing, Jiayan Deng, Dan Peng, Tong Wei, Hang Zhang, and Ruichao Peng. 2022. "Selective Adsorption of Pb2+ in the Presence of Mg2+ by Layer-by-Layer Self-Assembled MnO2/Mxene Composite Films" Processes 10, no. 4: 641. https://doi.org/10.3390/pr10040641
APA StyleQu, H., Deng, J., Peng, D., Wei, T., Zhang, H., & Peng, R. (2022). Selective Adsorption of Pb2+ in the Presence of Mg2+ by Layer-by-Layer Self-Assembled MnO2/Mxene Composite Films. Processes, 10(4), 641. https://doi.org/10.3390/pr10040641