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Abstract: The coupling of individual models in terms of end-to-end calculations for unit operations in
manufacturing processes is a challenging task. We present a probability distribution-based approach
for the combined outcomes of parametric and non-parametric models. With this so-called Bayesian
predictive ensemble, the statistical moments such as mean value and standard deviation can be
accurately computed without any further approximation. It is shown that the ensemble of different
model predictions leads to an uninformed prior distribution, which can be transformed into a
predictive posterior distribution using Bayesian inference and numerical Markov Chain Monte Carlo
calculations. We demonstrate the advantages of our method using several numerical examples.
Our approach is not restricted to certain unit operations, and can also be used for the more robust
interpretation and assessment of model predictions in general.

Keywords: unit operation models; Bayesian inference; machine learning; statistical and mechanistic
models; holistic process models; coupled end-to-end process models

1. Introduction

Bioprocess development and manufacturing for therapeutic drugs is often a challeng-
ing task. The parameter settings of individual unit operations at upstream, downstream
and formulation stages need to be adjusted so that the final drug product is produced at
high concentration with a robust and satisfying quality that meets regulatory and patients
requirements [1–3]. Due to the coupling of different process steps including cultivation,
purification, polishing, filtering and formulation among others, it is known that the di-
mension of process parameters which form the design space grows significantly with an
increasing number of unit operations [1].

Notably, the identification of global optimal process parameter settings for all com-
bined unit operations is not straightforward and provides some challenges for experimental
work. Most often, normal operating ranges (NORs) and proven-acceptable ranges (PARs)
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are defined for robust and local parameter settings of single unit operations. Hence, biopro-
cess optimization is mainly performed for all process steps individually while the combined
global optimization of parameter settings is often ignored due to the enormous amount of
experimental work.

In recent years, several computational modeling approaches were introduced to guide
experimental settings and to reduce laboratory work [1,3,4]. Standard methods are mecha-
nistic and hybrid models [5–14] in combination with statistical, data-driven or empirical
approaches for upstream and downstream process steps [15–18]. Parametric models are
usually calibrated in terms of certain experimental conditions and are often used to study
various process parameter settings. Noteworthy, most parametric modeling approaches are
computationally cheap and the calculations can be performed on short time scales, which
allows to accelerate development times significantly. In addition, the last years have also
seen a significant increase of non-parametric models in terms of machine learning [1,4].
Despite the underlying parametric or non-parametric characteristics, an important con-
cept for model development and application is validation, which is usually conducted in
comparison to experimental outcomes [19,20].

The straightforward application of modeling approaches further emerged recent
interest in the combined evaluation of process outcomes (Figure 1).
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Figure 1. Top row in blue color: Experimental set-up of three unit operations. The output values
of the individual unit operations B and C are used as input values for the next unit operations. In
addition, there exist certain CQA values such as A1, B1, D1, and the final process outcome D. The
corresponding experimental data is used for the parameterization or the training of models for the
individual unit operations (bottom row in green color). Three models represent the process behavior
at the unit operation stage and can be used for predictions. The results of the model predictions are
used as input values for the next models in combination with further CQAs. The corresponding
transfer functions with the model outputs are represented as green horizontal arrows.

Hence, over the last years, several combined end-to-end process models have been
developed, which are often called integrated process models, end-to-end bioprocess mod-
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els, holistic process models, bioprocess replicas, flowsheet models or bioprocess digital
twins [1,4,21–26]. Despite the fact that certain differences in the underlying methodology
and concepts are evident, all approaches offer the study of process parameter settings
across all unit operations in terms of global optimization. However, the coupling of models
between the individual unit operations is still a challenging task (Figure 1). A consistent
and combined multidimensional approach to estimate parameter ranges for predictions
has not been conclusively proposed. Recent approaches suggested a Monte Carlo sampling
scheme [22,25], whereas other publications favored a progression of discrete values for
further processing steps also in terms of model-predictive control strategies [27–29]. In
more detail, it was shown that the detailed evaluation of process parameter ranges crucially
affects the outcomes [22], such that the detailed consideration of coupled effects for all
models is of utmost importance.

Specifically the determination of confidence intervals is a challenging task for paramet-
ric and non-parametric models. Notably, standard techniques like bootstrapping [30–32] or
methods that consider Bayesian inference calculations [33,34] often rely on a reasonable
amount of model parameterization or training data. Recent articles already showed that the
transformation of outcome ranges along certain unit operations is not trivial and crucially
affects the specifications [22,25]. Further articles also focused on model-free identification
strategies for optimal parameter settings [35,36]. In terms of coupled unit operation models,
it is clear that the resulting design space is high dimensional and optimal parameter settings
can mainly be identified with stochastic approaches. In consequence, it can be assumed
that probabilistic and stochastic approaches for the calculation and optimization of process
outcomes will become even more important in the near future.

In this article, we present a probabilistic approach to predict process outcomes using
a Bayesian predictive ensemble approach. We show that an ensemble of different model
predictions leads to an uninformed prior distribution, which can be transformed into a
predictive posterior distribution using Bayesian inference in combination with Markov
Chain Monte Carlo (MCMC) calculations. Such approaches are particularly applicable
for the modeling of coupled process variables within the framework of end-to-end or
holistic process models. Our approach is not restricted to bioprocess models, and can be
independently used for all machine learning calculations as well as parametric models.

For the first time, we present a rigorous mathematical framework to describe unit
operation models in terms of time evolution operators. The corresponding approach allows
us to define meaningful and multivariate transformation functions for the connection of
unit operations in accordance with holistic process models. The corresponding introduc-
tion of predictive distributions facilitates Bayesian inference calculations for a meaningful
evaluation of confidence intervals. We show that point-like discrete connections or simple
Gaussian distributions lead to a strong increase of uncertainty after an increasing number
of connected unit operations. In contrast, our suggested approach of using conditional
probabilities in terms of posterior distribution functions results in a controllable increase
and further takes the process memory into full consideration. As a new concept, we intro-
duce the idea of using a collection of different model predictions. This so-called Bayesian
predictive ensemble allows us to overcome drawbacks in terms of limited experimental
data for model parametrization.

The article is organized as follows. In Section 2, we introduce a mathematical descrip-
tion for time-dependent models and discuss their influence on the underlying probability
distribution functions. The corresponding framework is then used to outline the main prop-
erties of the Bayesian predictive ensemble in combination with transformation functions in
terms of posterior and prior distributions. In Section 3, we present a simplified numerical
example to highlight the implications for the sake of clarity. We conclude and summarize
in Section 4.
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2. Theoretical Background

Biotechnological or chemical processes are often dominated by time-dependent behav-
ior. Hence, the corresponding process outcomes show a temporal evolution which hinders
the straightforward calculation of statistical moments. In the first subsection, we propose
a consistent scheme to compute statistical properties at certain time points for processes
with temporal evolution. In more detail, we present a time discretization scheme that
can be interpreted as the initial and the end time points of individual process steps. The
connections between these time points for the individual probability distribution functions
are described in terms of model propagation steps. Explicit evaluation of these distribution
functions is performed in terms of Bayesian inference. We show that the outcomes of differ-
ent models can be used as uninformed prior distributions. The application of numerical
Markov Chain Monte Carlo (MCMC) calculations allows us to compute the corresponding
posterior distribution for the considered process outcomes. The range of this distribution
reflects the impact of model or experimental uncertainty regarding the correct prediction.
Moreover, the respective posterior distribution can further be used as initial input for the
subsequent model in order to define a new prior distribution for the next unit operation.
This iterative scheme based on conditional probabilities represents a new approach for the
rational combination of unit operation models.

2.1. Non-Stationary Processes

Any non-stationary process is characterized by its explicit time dependency. Thus, the
evaluation of mean values 〈A〉 and higher moments like the variance σ2(A) = 〈(A− 〈A〉)2〉
for arbitrarily chosen variables or process outcomes A(t) with temporal evolution is chal-
lenging. As a further complication, the ergodic hypothesis [37]

lim
T→∞

1
T

∫ T

0
dt A(Γ, t) =

∫
Ω

dρ(Γ) A(Γ), (1)

is not applicable for time-dependent processes with temporal evolution. The left hand side
of Equation (1) denotes a time average whereas the right hand side highlights measurements
over different statistical replicas of the system

〈A(Γ)〉 =
∫

Ω
dρ(Γ) A(Γ), (2)

where the corresponding parameters are an arbitrarily chosen observable
A(Γ, t) = A(Γ(t))|Γ(0)=Γ and the normalized probability density

∫
Ω dρ(Γ) = 1, where

T denotes the measured time interval, and Ω the parameter space including all relevant pa-
rameters Ω = {Γ} in terms of Γ = (X), where X denotes all variables X = (X0, X1, . . . , XP)

T

in accordance with vector notation. Notably, the ergodic hypothesis holds for most systems
as long as the decorrelation times τ from autocorrelation functions

〈A(Γ, t = 0)A(Γ, t)〉 ∼ exp(−t/τ)β (3)

are short in accordance with the Markovian properties including the stretched exponential
factor β ∈ {R+, 0}.

Despite all challenges, it is possible to average over the values at certain fixed time
points tM, which results in∫ T

0
dt A(Γ, t)δ(t− tM) =

∫
Ω

dρ(Γ, tM) A(Γ, tM) (4)

and hence
〈A(Γ, t)〉tM =

∫
Ω

dρ(Γ, tM) A(Γ, tM) (5)
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for time dependent values ρ(Γ, t), A(Γ, t), where δ(t− tM) denotes the delta function, which
is δ(t− tM) = 1 for t = tM and 0 otherwise. Hence, if we assume that tM is the time point
of measurement, one can interpret 〈A(Γ, t)〉tM as the corresponding statistical outcome for
process values at identical time points for different replicas of the system. In consequence,
the implications from Equation (5) provide the usage of standard statistical approaches
for non-stationary processes like cultivation steps [15]. Thus, we introduced a framework
to project the outcomes of a set of non-stationary processes on fixed time points in order
to define distributions with mean values and standard deviations. With regard to such a
concept, we can consider time-dependent and stationary processes as equivalent in terms
of identical statistical considerations.

2.2. Time Evolution Propagators

In addition to the quasi-stationary approximation for the calculation of mean values
that we introduced in the previous subsection, it is also possible to define a similar interpre-
tation for the probability distribution functions in the presence of explicit time evolution.
For a constant and time-independent probability density, it follows

d
dt

ρ(Γ, t) = 0. (6)

which can be written as a continuity equation in accordance with [38]

∂ρ(Γ, t)
∂t

= −∇Γ
(
ρ(Γ)Γ̇

)
(7)

where the dot over the symbol denotes the first derivative in time according to
Γ̇ = (Ẋi, Ẋi+1, . . . , ẊN) and∇ΓΓ̇ = ∑N

i ∂Ẋi/∂Xi. Notably, Equation (7) can also be written as

i
∂ρ(Γ, t)

∂t
= L(Γ)ρ(Γ, t) (8)

with the Liouville-like operator [38]

L(Γ) = −i
N

∑
i

∂Ẋi
∂Xi

(9)

providing the Eigenvalue relation

L(Γ)ρ(Γ, t) = λjρ(Γ, t) (10)

with the eigenvalues λj. Here, we do not explicitly intend to introduce Hamiltonian and
thus deterministic energy conservation dynamics [38], but mainly rely on the idea of
conserved time evolution through operator formalisms. Thus, the Liouville-like operator
does not depend on the momenta and spatial derivatives of the microscopic variables
for our purposes. The complex conjugate of Equation (9) reads L∗ = −L, such that
Equation (10) yields

L∗(Γ)ρ(Γ, t) = −λjρ(Γ, t) (11)

which is equivalent to a time inversion t→ −t. The formal solution for Equation (8) reads

ρ(Γ, t) = ρ0(Γ)eiL(Γ)t. (12)

such that the exponential factor can be further interpreted as a time propagator

P(Γ, t) = eiL(Γ)t (13)

for the probability distribution with invertible and thus reversible time evolution. In
summary, Equation (13) can be considered as an universal time propagator that is used to
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evaluate model calculations in a mathematical consistent framework. Herewith, we are
able to map process parameter values to the corresponing outcomes. The concept allows us
to consider models for non-stationary and stationary processes by means of an identical
mathematical description.

2.3. Coupled Non-Stationary Processes: Model Propagator Dynamics

In terms of our previous discussions, it was shown that the propagator projects the
temporal evolution of the process outcome in terms of statistical quantities onto certain fixed
time points. Thus, it becomes immediately clear from Equation (13), that the progression of
probability distributions in terms of certain time points tM for a set of parameters ΓM can
be written as

ρtM (A(Γ)) = P(Γ, tM)ρt0(A(Γ)) (14)

with the probability distribution ρtj(A(Γ)) for observable A(Γ) at time tj and P∗(Γ, tM) =

P(Γ,−tM) in accordance with Equation (11). It has to be noted that Equation (14) is valid
for all times as long as the process parameter settings Γ remain unchanged.

For the following discussion, we replace the exact time evolution operator P with a
new model operatorM including identical time reversal symmetry conditions. In contrast
to P(Γ), the set of parameters forM(κ) is incomplete in terms of κ ⊆ Γ and κ 6= Γ. This can
be mainly understood with regard to our incomplete knowledge of underlying correlations
and effects for most processes as represented by model artifacts [19]. Hence, any model
reflects a certain kind of uncertainty such that the model outcomes after the training or
parameterization stage need to be carefully evaluated against experimental data, which can
be considered as the ground truth distribution [19]. With regard to a change of parameters
from Γ0 → κ1 at t0 → t1 according to

ρt1(A(κ1)) =M(κ1, t1)ρt0(A(Γ0)), (15)

it follows that ρt1(A(κ1)) also differs from the true distribution ρt1(A(Γ1)). In order to
correct model parameter settings with the corresponding experimental distributions, one
can introduce the Bayes theorem [39]

ρ(zi|yi) =
ρ(yi|zi)

ρ(yi)
ρ(zi) (16)

where ρ(·|·) denotes the conditional probability as defined by ρ(yi|zi) = ρ(yi ∩ zi)/p(zi)
where ρ(yi ∩ zi) denotes the joint probability for outcomes yi and zi. Statistical indepen-
dence is only evident for ρ(yi|zi) = ρ(yi) and ρ(zi|yi) = ρ(zi). The Bayes theorem thus
strongly relies on the prior uninformed probability distribution ρ(zi) in combination with
the likelihood ρ(yi|zi) for the calculation of the posterior distribution ρ(zi|yi). Applying
the Bayes theorem on Equation (15), one can show that the resulting posterior distribution
can be written as

ρt1(A(κ1)|A(Γ1)) =
ρt1(A(Γ1)|A(κ1))

ρt1(A(Γ1))
ρt1(A(κ1)) (17)

which now explicity incorporates the true experimental distribution of A in terms of the
full set of parameters Γ1. Furthermore, the corresponding predictive posterior distribution
can be computed by

ρ(Â(κ1)|A(κ1)) =
∫

ρt1(Â(κ1)|A(κ1), A(Γ1))ρt1(A(κ1)|A(Γ1))dA(κ1) (18)
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where Â(Γ1) denotes new data points generated by the model at t1. In addition, the poste-
rior distribution ρt1(A(κ1)|A(Γ1)) can be combined with a new model operator including
new parameters κ2 in order to yield

ρt2(A(κ2)) =M(κ2, t2)ρt1(A(κ1)|A(Γ1)) (19)

which can be interpreted as the prior distribution for the next step

ρt2(A(κ2)|A(Γ2)) =
ρt2(A(Γ2)|A(κ2))

ρt2(A(Γ2))
.ρt2(A(κ2)) (20)

In consequence, if we identify the different time points t0, t1, . . . tN as initial start-
ing points of N individual unit operations as described by different model propaga-
tors M1(κ1), . . . ,MN(κN), one can interpret the corresponding evolution equation as
a Bayesian hierarchical model [1] according to

ρtj (A(κj)|A(Γj)) = (21)

=
ρtj (A(Γj)|A(κj))

ρtj (A(Γj))
M(κj, tj)ρtj−1 (A(κj−1)|A(κj−2), . . . , A(κ1), A(Γ1))

for j = 4, . . . , N. With regard to the previous relations, one is thus able to project and to
combine distribution functions on certain time points in terms of Bayesian inference for
an improved prediction of model outcomes. Moreover, it becomes clear that the explicit
history of the process in terms of previous parameter settings and process outcomes is
well-defined and taken into consideration through conditional probabilities. In more detail,
Equation (21) represents the center of our proposed approach. Herewith, we can combine
individual unit operation models for stationary and non-stationary processes at fixed
time points in terms of transformation functions as represented by prior and posterior
distribution functions. The corresponding single model predictions can be used to define a
predictive distribution with well-defined confidence intervals, which can be used as prior
distribution for the next unit operation model. The corresponding mathematical framework
is applicable without any further restriction. In the next section we will show how this
approach can be used to refine predictions from different models in order to define suitable
transformation functions between coupled unit operations.

2.4. Bayesian Predictive Ensemble: Combination of Different Models

In the previous subsection, we identified Γ and the corresponding probability distribu-
tion function ρ(A(Γ)) as the experimental ground truth without further restrictions. Such
an approach is beneficial if a sufficient amount of experimental data for identical process
parameter settings are available. Here, we show how the previous relations can be used
to assess the uncertainty of model predictions in terms of Bayesian predictive ensembles
with regard to coupled model descriptions. It has often been discussed that the accurate
calculation of ranges for process outcomes in terms of parametric and non-parametric
models is a challenging task. The condition of time inversion for the model propagator
introduces a deterministic behavior such that each parameter setting for a fixed model
yields an unique model prediction value. Due to these reasons, it is useful to combine
different models with reasonable accuracy in order to assess the uncertainty of correct
model predictions.

In principle, any modeling approach can be used for the prediction of singular values
for the variable A from the probability distribution function ρ(A(Γ)) =A(Γ)

∫ +∞
−∞ δ(x− Γ)dx

in accordance with Equation (15), such that

Āj(κj) =Mj(κj)A(Γ0) (22)
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whereMj denotes m individual models with the corresponding model parameters κj with
j ∈ [0, m]. Here, we ignore the explicit time-dependence for the sake of clarity. The consid-
eration of all model predictions Āj(κj) in terms of the distribution ρ(Ā0(κ0), . . . , Ām(κm))
can be used to evaluate the mean and standard deviation of model predictions. The corre-
sponding values can be used to define an uninformed prior distribution function ρ(Ā(κ̄))
in accordance with

ρ(Ā(κ̄)|Ā0(κ0), . . . , Ām(κm)) =
ρ(Ā0(κ0), . . . , Ām(κm)|ρ(Ā(κ̄))

ρ(Ā0(κ0), . . . , Ām(κm))
ρ(Ā(κ̄)) (23)

which provides the informed posterior distribution ρ(Ā(κ̄)|ρ(Ā0(κ0), . . . , Ām(κm)|ρ(Ā(κ̄))) as
needed for the definition of process parameter ranges for coupled models as well (Equation (21)).
The corresponding hierarchy of coupled model predictions and Bayesian inference calcula-
tions (Bayesian predictive ensemble) can be summarized as follows:

1. Bayesian predictive ensemble: Application of different models with varying accuracy
to estimate the prior distribution for a certain unit operation (mean value and standard
deviation) in accordance with Equation (22) based on Equations (5) and (13);

2. Bayesian inference to estimate the posterior probability distribution (MCMC calcu-
lations) from the prior distribution of step 1 in accordance with Equation (23) based
on Equation (22);

3. Representatives from the posterior distribution: Certain choices from the posterior
probability distribution as values for models of the next unit operation in accordance
with Equation (22);

4. Repeated application of step 1: Calculation of the prior distribution for the next unit
operation with values from step 3.

The corresponding steps 1 to 4 represent the basic implementation of the algorithm. As
a prerequisite, one parameterizes a set of models for predictions of a certain unit operation.
An alternative approach is to use one model that is trained on different sets of training
data in terms of the bootstrapping approach. The corresponding predictions of the models
for a certain parameter setting are performed in step 1. The set of predictions can be
interpreted as a prior distribution with a certain mean value and standard deviation. The
prior distribution is then transformed via MCMC calculations into a posterior distribution
in accordance with step 2. The resulting posterior distribution as represented by conditional
probabilities is interpreted as transformation function to be used for the next unit operation
in terms of the underlying input value distribution. Based on the posterior distribution,
certain values are randomly drawn, which are then used as new parameter input values in
combination with further process parameter settings as required for the next set of models
for the subsequent unit operation (step 3). Finally, steps 1, 2, and 3 are repeated for the
considered subsequent unit operations.

It has to be noted that the Bayesian predictive ensemble relies on different parametric
or non-parametric models without further restriction in combination with directed Bayesian
networks [40] in terms of conditional probability distribution functions. The corresponding
variations of the predictions from the different models allow us to draw some conclusions
on the uncertainty of the model predictions based on inaccurate parameterization or missing
information in the data. Moreover, Bayesian approaches are well-suited to be used for low
amounts of predictions [39]. Hence, only a limited number of available models can be used
for the Bayesian predictive ensemble. Furthermore, it has to be noted that also Bayesian
linear regression approaches [41] can be used as prior and posterior distribution functions.
If such models are applicable in terms of reliable model predictions, it becomes clear that
the time-consuming step 2 in the previous algorithm is already included in the Bayesian
linear regression approach. Finally, it has to be noted that the calculation of Equation (23)
is a straightforward task with regard to recent numerical MCMC sampling schemes [42].
Noteworthy, the previous conclusions hold as long as the number of considered variables is
low. Although also multidimensional Bayesian predictive ensembles can be defined, it has
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to be noted that certain convergence issues of MCMC steps for multivariate distributions
were often observed.

2.5. Combination of Unit Operation Models: Error Propagation

As already discussed, the Bayesian predictive ensemble provides an unbiased estimate
for the uncertainty of different model predictions. Despite certain deviations from the
ground truth distribution, one can assume that all models are parameterized or trained to
provide the best predictions. In general, the difference between two distributions can be
studied in terms of the Kullback–Leibler divergence [43], which is defined as

D(ρ||q) =
∫ ∞

−∞
ρ(Ai) ln

(
ρ(Ai)

q(Ai)

)
dAi (24)

where ρ(A) denotes the model-predicted and q(A) the true distribution, respectively. In
more detail, the Kullback–Leibler divergence is closely related to information entropy,
such that large values of D(ρ||q) reveal a missing knowledge about the true distribution
and thus crucial deviations. For point-like predictions of a model δ(x) with vanishing
variance, it can be seen that D(ρ||q)→ ∞ such that the largest deviation from the ground
truth distribution with finite variance can be assumed. This becomes even more important
after combining a set of models in terms of coupled process model predictions where the
output parameter δ(x1) is used as an input parameter for the next unit operation and
so forth. Due to the logarithmic properties, the Kullback–Leibler divergence is additive
for certain distributions D(ρ1, ρ2, . . . , ρN ||q1, q2, . . . , qN) = ∑N

i=1 D(ρi||qi), which yields in
combination with Equation (24) the following expression for point-like predictions

D(δ1, δ2, . . . , δN ||q1, q2, . . . , qN) =
N

∏
i=1

∫ ∞

−∞
δi(Ai) ln

(
δi(Ai)

qi(Ai)

)
dAi (25)

such that D(ρ1, ρ2, . . . , ρN ||q1, q2, . . . , qN)→ ∞. Due to these reasons, it can be concluded
that point-like predictions from single as well as coupled unit operation models provide
the highest inaccuracy in comparison to the unknown true distributions.

Corresponding conclusions can also be drawn for the consideration of fixed model
predicted mean values 〈Ai〉 in combination with pre-defined standard deviations σ(Ai)
in terms of Gaussian noise. Hence, inserting the corresponding distributions ρi(Ai) =
Ni(〈Ai〉, σ(Ai)) into Equation (24) yields

D(N1,N2, . . . ,NN ||q1, q2, . . . , qN) = (26)

=
N

∏
i

∫ ∞

−∞
Ni(〈Ai〉, σ(Ai)) ln

(
N (〈Ai〉, σ(Ai))

qi(Ai)

)
dAi,

which implies that the Kullback–Leibler divergence monotonously grows with

D(N1,N2, . . . ,NN ||q1, q2, . . . , qN) ∝ N ln(N (〈x〉, σ(x))). (27)

In consequence, the model uncertainty for coupled unit operations also grows linearly
with O(N), which results in D(N1,N2, . . . ,NN ||q1, q2, . . . , qN)→ ∞ for N → ∞.

In contrast, coupled Bayesian predictive ensemble distributions reveal

D(ρ1, ρ2, . . . , ρN ||q1, q2, . . . , qN) ∝ ln ρN(AN |AN−1, AN−2, . . . A1) (28)

such that D(ρ1, ρ2, . . . , ρN ||q1, q2, . . . , qN)� ∞ stays finite for N → ∞. Hence, the accuracy
of coupled model predictions grows for point-like predictions via added stochastic noise
predictions to conditional probabilities for the Bayesian predictive ensemble method. It
is thus of significant importance to consider conditional probabilities for holistic process
models in order to reduce the progression of errors and uncertainties to a reasonable level.
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By means of holistic process models, it becomes clear that the coupled model design
space Ω of parameter settings for Γ becomes accessible [1]. If we focus on a certain
process outcome like the product concentration C(Γ) as a function of Γ, the corresponding
simulations for different parameter settings can be used to find the global optimum value
of C(Γmax) in accordance with

C(Γmax) = max
Γ∈Ω

C(Γ). (29)

Noteworthy, the search of global optima ina high dimensional spaces is a challenging
task. Besides the fact that it is not clear if one global maximum value exists or even none
or many, the search for these optimal conditions is usually performed via stochastic or
deterministic optimization algorithms [44–46].

3. Numerical Example
3.1. Numerical Details

The Bayesian predictive ensemble, as introduced in the previous section, is used in
combination with process steps for further illustration. We consider two simplified unit
operations for the sake of clarity, which can be associated with a filtration and a first order
chemical reaction step. All of the source code was written in Python 3.9.1 [47] in combina-
tion with the modules NumPy 1.19.5 [48], scikit-learn 1.0.1 [49], and PyMC3 3.11.4 [50]. In
addition to linear regression (LR), we use random forest (RF) [51], decision tree (DT) [52],
extra tree (ET) [53], gradient boosting (GB) [54], and Gaussian process (GP) [55] approaches
as non-parametric models for the prediction of process outcomes. The number of estimators
in the RF and GB models were chosen as 100 and we used a Gaussian white noise kernel for
the GP approach. All Bayesian inference [39] calculations were performed through pyMC3.
A standard MCMC approach with an acceptance criterion of 0.95 was used for all calcula-
tions. Before effective calculations, we conducted an equilibration phase of 2000 draws for
each of the two chains and hereafter the production run of 6000 draws, also each for the
two chains. All values are in dimensionless units for the sake of clarity. We mainly focused
on ensemble methods like GB, RF, and ET, which are less prone to overfitting.

The first unit operation can be regarded as a filtration step where a concentration A is
filtered to achieve a final concentration B. The following linear relation is used

B = χA + η1 (30)

where the filter constant was chosen as χ = 0.5, including the measurement uncertainty
〈η1(t)〉 = 0 and 〈η1(t)η1(t′)〉 = 0.2 δ(t− t′). The second unit operation can be regarded
as a chemical reaction step in which the concentration B transforms into the final product
concentration C according to the first order chemical reaction

C = Be−kτ + η2 (31)

with the rate constant k = 1, 〈η2(t)〉 = 0 and 〈η2(t)η2(t′)〉 = 0.1 δ(t− t′). The choice of such
simple equations for unit operations allows us to calculate values of B and C analytically
and to compare the outcomes with the model predictions accordingly. Furthermore, we can
discuss basic features of the method without having to focus on specifics of more complex
unit operations. In terms of a combined approach, the individual models were coupled to
predict the outcomes of a holistic process model for the filtration and the reaction step. The
coupled unit operation steps are schematically shown in Figure 2. The first unit operation
model predicts the concentration B from a fixed value of the concentration A in accordance
with Equation (30). From the corresponding posterior distribution of B as calculated by
the Bayesian predictive ensemble, certain values were randomly drawn, which are then
used for the calculation of C in accordance with Equation (31). Noteworthy, we limit the
calculations to only six training data points for each unit operation in order to mimic
realistic settings for parameterization purposes.
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Unit	
Operation:	
Filtration	

	
Model:	
A	à	B	

	
Parameters:	

χF	

Unit	
Operation:	
Reaction	
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Parameters:	

κF	

B	A	 C	
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Distribution	

A	=	25.0	
Single	Value	

Figure 2. Schematic representation of the coupled unit operations in terms of a Bayesian network [40]:
(i) filtering and (ii) chemical reaction. The models predict the concentration B from a fixed value
of the concentration A = 25.0 in accordance with Equation (30). From the corresponding posterior
distribution of B as calculated by the Bayesian predictive ensemble, 100 values were randomly drawn,
which were then used for the calculation of C in accordance with Equation (31). The species B react
to species C with a certain time constant κF.

3.2. Training Phase: Unit Operation Models

For reliable estimates of single unit operation outcomes, we first studied the predictive
accuracy of several non-parametric models for each process step individually. As training
data, we chose six values of Atr, which were used for the calculation of Btr in accordance
with Equation (30). The values of Atr were uniformly distributed between 49 and 51 to
mimic certain designs of the experiment conditions [56]. The low amount of training or
parameterization data is a standard problem for biotechnological model development as
experimental work is time-consuming and costly. The corresponding six data points were
used to train individual LR, GP, GB, RF, DT, and ET models. Hereafter, we again draw six
randomly chosen values of A as testing data [19] for the calculation of the corresponding
BExp values (Equation (30)) and for predictions of the models Bpred. The standard val-
ues [19], like the root-mean squared error (RMSE), the normalized root-mean squared error
(nRMSE), and the mean absolute error (MSE) between predicted Bpred and analytical values
BExp for the individual models are summarized in Table 1. It can clearly be seen that the
predictive accuracy of all models is rather low. This can be rationalized by the low amount
of training data and the corresponding influence of the measurement noise on BExp from
Equation (30). However, it comes out that the GP model reveals the highest predictive
accuracy despite certain deviations from the predicted values. The corresponding nRMSE
value of 0.54 is quite high, but is still acceptable for the sake of our simple example. Based
on these values, we chose the GP model as the corresponding representative approach for
the filtration unit operation. For the development of different models in accordance with
the Bayesian predictive ensemble, we split the previous training data set into four different
data sets with a test:training ratio of 20:80. Based on the individual data, we trained four
different GP models with each of these reduced training sets in accordance with the concept
of bootstrapping [31,32].

A comparable procedure for estimating the model with the highest predictive accuracy
was also performed for the chemical reaction unit operation.
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Table 1. Root-mean squared errors (RMSE), normalized root-mean squared errors (nRMSE), mean
absolute errors (MAE), and Pearson correlation coefficients R2 for the individual models regarding
the test data between predicted Bpred and observed values BExp for the filtration step.

Approach RMSE nRMSE MAE

GP 0.19 0.54 0.03
LR 0.19 0.57 0.04
RF 0.34 0.99 0.11
ET 0.36 1.06 0.13
DT 0.39 1.14 0.15
GB 0.39 1.14 0.15

We thus first prepared the training data set by choosing six values of B, which were
inserted into Equation (31) for the calculation of CExp. The values of B were uniformly
distributed between 24 and 26 to mimic a certain design of experiment conditions [56] and
the values of τ were uniformly distributed between 0.4 and 0.6. These data points were
used to train individual LR, GP, GB, RF, DT, and ET models. Hereafter, we repeated the
same procedure such that we draw six random values from a uniform distribution of B
and inserted them into Equation (31) for the calculation of CExp and for Cpred from model
predictions. The corresponding RMSE, nRMSE, and MAE values for the model predictions
are shown in Table 2.

Table 2. Root-mean squared errors (RMSE), normalized root-mean squared errors (nRMSE), mean
absolute errors (MAE), and Pearson correlation coefficients R2 for the individual models regarding
the test data between predicted Cpred and observed values CExp for the chemical reaction unit
operation step.

Approach RMSE nRMSE MAE

LR 0.25 0.25 0.06
ET 0.57 0.55 0.32
RF 0.71 0.69 0.51
GB 0.79 0.77 0.63
DT 0.83 0.81 0.69
GP 1.27 1.24 1.62

It can clearly be seen that the LR models reveal the highest predictive accuracy. Never-
theless, the nRMSE values are still rather high, which highlights certain deviations between
the predicted and the observed values. For reasons of simplicity, we ignore a further
improvement of the models and choose the pre-trained LR model as a corresponding repre-
sentative for the second unit operation. In agreement with the previous unit operation, we
split the corresponding training data set into four different data sets with a test:training ra-
tio of 20:80. Based on the individual data, we trained four reduced LR models that are used
for the Bayesian predictive ensemble in accordance with bootstrapping calculations [31,32]
in the next subsection.

3.3. Bayesian Predictive Ensemble: Single Unit Operations

The corresponding pre-trained GP and LR models are used for the prediction of
process outcomes for the filtration and chemical reaction unit operation steps. Hence, we
chose an initial value of A = 50.0, which was inserted into the bootstrapped GP models and
the GP model trained with the full data set. The corresponding predictions of Bpred from
the four bootstrapped GP models are shown as red stars in Figure 3. The prediction of Bpred
from the GP model with the full training set is used as mean value for the prior distribution
function in combination with the corresponding standard deviation from the bootstrapped
GP model predictions in accordance with step 1 of the algorithm. Furthermore, the values
of Bpred from the boostrapped models were used as observed values for the corresponding
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MCMC calculations (step 2 of the algorithm). The outcomes of these calculations for the
posterior distribution BBPE are shown in Figure 3.

24.0 24.5 25.0 25.5 26.0
B [a.u.]
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F(

B)

BBS = 24.85 ± 0.06
BBPE = 24.93 ± 0.09
BExp = 24.93 ± 0.13

BPE
BS
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14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00
C [a.u.]
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2.5

3.0

3.5
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F(

C)

CBS = 15.23 ± 0.18
CBPE = 15.23 ± 0.21
CExp = 15.16 ± 0.11

BPE
BS
Exp

Figure 3. (Left side): Individual model predictions of B for a value of A = 50.0 from the bootstrapped
GP models (red stars) in combination with the mean value from the observed values (blue circle).
The blue curve shows the observed experimental distribution, the red curve the simplified estimate
from the boostrapped GP model predictions, and the black curve the corresponding distribution of B
from the Bayesian predictive ensemble calculations. (Right side): Individual model predictions of
C for values of B = 24.87 and τ = 0.5 from the bootstrapped GP models (red stars) in combination
with the mean value from the observed values (blue circle). The blue curve shows the observed
experimental distribution, the red curve the simplified estimate from the boostrapped GP model
predictions, and the black curve the corresponding distribution of C from the Bayesian predictive
ensemble calculations. All units are dimensionless.

In addition to the predictions from the Bayesian predictive ensemble, we also vi-
sualized the corresponding distribution of observed values BExp as reference and the
distribution of predictions BBS from the boostrapping calculations as simplified estimates.
One can clearly see that the distribution of BBS is different from BBSE in terms of the mean
value and the standard deviation. In comparison to the observed values, one can conclude
that the distribution of BBPE shows more similarities than BBS in terms of similar mean
values and standard deviations. Although the stochastic nature of the experimental values
BExp from six randomly chosen values of A has to be noted, one can assume that the
Bayesian predictive ensemble calculations provides a better description than the simplified
bootstrapping estimates. This can be partly understood by the low amount of training
data, which restricts the number of bootstrapped models such that these predictions are of
minor accuracy.

Corresponding conclusions can also be drawn for the predictions of the chemical
reaction unit operation as shown in the right side of Figure 3. We chose initial values of
B = 24.87 and τ = 0.5 that were inserted into the bootstrapped GP models and the full
GP model.The prediction of the full GP model in combination with the standard deviation
from the predictions of the bootstrapped GP models were used as mean value and standard
deviation, respectively, for the prior distribution function of C (in accordance with step
1 of the algorithm). The corresponding predictions from the boostrapped LR models
were used as observed values for the calculation of the posterior distribution function
in accordance with step 2 of the algorithm. The posterior distribution of CBPE from the
Bayesian predictive ensemble calculations after the MCMC steps in combination with the
bootstrapping distribution CBS are shown as black and red curves, respectively. It can be
seen that the mean values CBS and CBPE coincide, but the standard deviations differ. Hence,
the standard deviation from the BPE calculations is slightly broader and thus overlaps
with the corresponding observed experimental distribution function CExp. Although the
accuracy is not that high when compared to the previous unit operation, it can be concluded
that the combined BPE calculations provide reliable estimates for the distribution of process
outcomes with higher accuracy than simple Bootstrapping predictions. The corresponding
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mean values and standard deviations for all distributions and unit operations are shown
in Table 3.

Table 3. Mean values 〈B〉, 〈c〉, standard deviations σB, σC for experimental values (Exp), and calcu-
lations from the Bayesian predictive ensemble (BPE) and the simple estimates from the bootstrapped
models (BS). The results of the best ML model for a singular prediction of 〈B〉 (full GP model) and
〈C〉 (full LR model) are also shown.

Method 〈B〉 σ(B) 〈C〉 σ(C)

Exp 24.93 0.13 15.16 0.11
BS 24.85 0.06 15.23 0.18

BPE 24.93 0.09 15.23 0.21
ML 25.04 0.00 15.64 0.00

Moreover, we included point-like predictions for B and C for the corresponding
values from the full GP and the full LR model. As can be seen, the best ML models
provide good estimates but no reasonable standard deviation for estimating the model
uncertainty. However, their usage as mean value for the prior distribution function allows
us to improve the corresponding values for the posterior distribution function. Hence, it
can be concluded that the combination of both aspects in terms of the Bayesian predictive
ensemble calculations provides good estimates for model outcome ranges and mean values.

3.4. Coupled Unit Operations: Holistic Process Models

In this subsection, we evaluate the corresponding model predictions for the coupled
unit operation steps of filtration and chemical reaction. For all predictions, the pre-trained
models from the previous subsection were used. The initial starting value for the first
unit operation (filtration) was chosen as A = 25.0. Thus, the calculations as well as the
values for the distribution of BC

pred were identical to the procedure as described in the

previous subsection. The corresponding posterior distribution BC
BPE when considered as

transformation function was used as starting distribution for the second unit operation in
accordance with step 2 of the algorithm. We draw six random samples from the posterior
distribution BC

pred in combination with a fixed value of τ = 0.5 (Equation (31)) which
are used as input values for the corresponding pre-trained bootstrapped LR models for
the chemical reaction step in accordance with step 3 of the algorithm. The outcomes
of these bootrapped GP models are used as observed values for the calculation of the
posterior distribution function CC

BPE. Moreover, we used the six random values of BC
BPE as

initial values for the full LR model. The resulting distribution is used as prior distribution
function for the MCMC calculations in accordance with step 2 for the calculation of CC

pred.

The corresponding posterior distributions for the coupled outcomes BC
pred and CC

pred are

shown in Figure 4 in combination with the observed coupled values BC
Exp and CC

Exp.

It can clearly be seen that the distribution for CC
BPE is roughly identical when compared

to CBPE for single unit operation models (Table 3). For single unit operation models, we
already used as input values a comparable value of B = 24.87 in order to estimate the
accuracy of the approaches after coupling. Hence, it can be concluded that the coupled
approaches reveal a high accuracy with reliable estimates for the predicted distributions.
Thus, all corresponding results reveal that the Bayesian predictive ensemble can be regarded
as a fast and straightforward approach to estimate the mean outcomes for coupled and
individual unit operation models in good agreement with the observed distribution.
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Figure 4. Posterior distributions of BC
pred (green solid curve) and CC

pred (blue solid curve) from Bayesian
predictive ensemble calculations for coupled unit operations. The corresponding observed values are
shown as dashed curves. More details can be found in the main text. All units are dimensionless.

4. Summary and Conclusions

In this study, we presented a new approach in accordance with Bayesian inference and
various model predictions for the advanced calculation of single unit as well as coupled
end-to-end process outcomes in combination with the corresponding uncertainty ranges.
The Bayesian predictive ensemble method provides a more robust interpretation of model
predictions and parameter ranges when compared to discrete or stochastic connections.
Due to the coupling of individual unit operations, a consistent consideration of conditional
probability distributions is introduced, which crucially relies on pre-defined parameter
uncertainty ranges. Hence, the standard deviations reflect the general model uncertainty in
combination with the variability of the observed data which was used for parameterization
or training purposes.

It has to be noted that this concept is also applicable for high-dimensional design
spaces as well as multivariate parameter distribution functions with certain limitations in
terms of MCMC convergence issues. Furthermore, the prior distributions for the Bayesian
inference calculations can include as much information as possible, including experimental
data as well, which thus increases the accuracy of the posterior distribution functions.
In addition to using different model types like neural network- or decision tree-based
approaches, it is also possible to focus on a single type of model with slight changes in
the hyper parameter settings or in combination with boostrapping concepts. It has to
be noted that the Bayesian framework reveals its full advantages for a small number of
model predictions. Herewith, we reweigh the corresponding model predictions under the
assumption that the majority of models shows a sufficient predictive accuracy.

In summary, we presented a robust, extensible, and consistent approach for single and
coupled unit operation models. The main advantages are the probabilistic interpretation
of outcome ranges in terms of uncertainty intervals. In consequence, we explicitly use
different models for the prediction of process outcomes. In terms of Bayesian inference and
the consideration of conditional probabilities, we incorporate the outcomes of previous unit
operations as implicit knowledge into the resulting posterior distributions. Thereby, we
present a consistent approach to transfer the resulting distributions with meaningful and
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interpretable ranges between the individual unit operations. In contrast to other approaches,
the proposed transfer functions including prior and posterior distributions have well
defined and interpretable ranges. Furthermore, we have shown that the deviations from
the true distribution deviate only marginally after certain process steps in contrast to other
approaches. Hence, our approach provides a controllable and finite error progression
for any holistic process description in terms of parametric or non-parametric models.
Noteworthy, the method is also applicable for limited experimental data sets in order
to obtain reliable distributions from MCMC calculations. Despite all benefits, it has to
be noted that the MCMC calculations are rather time consuming and may show some
convergence issues for poorly behaving model predictions. The computational costs for
these calculations increase linearly with the amount of considered unit operations and the
number of dimensions in the model design space. It has to be noted that our concept is not
restricted to chemical or biotechnological process models, as it also can be used for other
machine learning applications. As an outlook, we assume that the presented approach
provides a robust basis for the development of future holistic process models to support
the development of optimized and robust manufacturing processes.

Author Contributions: Conceptualization, J.S.; methodology, J.S.; formal analysis, J.S.; validation,
J.S., T.E., I.-T.H., B.S., M.M. and E.B.; supervision, J.S., L.M.H., R.G., M.L., E.B. and A.J.; project
administration, J.S., R.G., M.L., A.J. and E.B.; funding acqusition: J.S., L.M.H., A.J. and E.B.; writing—
original draft preparation: J.S., L.M.H., T.E. and E.B, writing—review and editing, all authors. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Boehringer Ingelheim Pharma GmbH & Co. KG, Development
Biologicals and the Digital Innovation Unit.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Hermann Schuchnigg for valuable discussions. We acknowledge
funding from the Digital Innovation Unit and Boehringer Ingelheim Pharma GmbH & Co. KG.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NOR Normal operation range
PAR Proven acceptable range
PAT Process Analytical Technology
BS Bootstrapping
MCMC Markov Chain Monte Carlo
LR Linear Regression
GB Gradient Boosting
DT Decision Trees
ET Extra Trees
GP Gaussian Processes
RF Random Forest
RMSE Root-Mean Squared Error
nRMSE Normalized Root-Mean Squared Error
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