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Abstract: In the stochastic reconstruction of petroleum fractions, the domain configuration for param-
eters is of great significance to the performance of the model in terms of accuracy and convergence.
Based on the stochastic reconstruction model of gas oils, this work investigates the influence of
different domains on the simulating accuracy, the convergence rate and the ability to predict de-
tailed composition. In this paper, the parameters to be optimized in the model include histogram
distributions and gamma distributions, which are used to represent the structural attributes. In
each histogram distribution, the parameters are real numbers between zero and one that should
increase progressively. The mean and shape parameters are used as the tuning parameters for gamma
distribution. As for the mean, the lower and upper boundaries are configured as fixed values that
depend on the predefined values of the structural attributes. For the shape parameter, multiple
cases are considered for its upper boundary, which is set to 5, 10, 20, 50 and 100, respectively. The
lower boundary is set to 0 or 1, depending on the structural attribute. The results indicate that
the simulating accuracy of the stochastic reconstruction model improves with the increase of the
upper boundary for the shape parameter. When the upper boundary of each shape parameter is
20, the simulating accuracy is better than that when the upper boundary is 5 and 10, and close to
that when the upper boundary is 50 and 100. The detailed group-type analysis is involved in the
model to predict the distributions of mass fraction in chemical families against the carbon number.
The results show that the predicted distributions in normal paraffins, isoparaffins, naphthenes, and
aromatics are closest to the experimental distributions when the upper boundary is 20 and 50. When
the upper boundary is 5 and 10, the predicted distributions in normal paraffins and isoparaffins are
lower and broader than the experimental distributions. On the contrary, the predicted distributions
in normal paraffins and isoparaffins are higher when the upper boundary is 100. By studying the
effects of different domains on the results of the stochastic reconstruction model, a better molecular
characterization of petroleum fractions can be achieved.

Keywords: domain of parameters; stochastic reconstruction; gamma distribution; predicted distributions
of mass fraction

1. Introduction

Petroleum fractions consist of tens of thousands of molecular species that contain
carbon, hydrogen, sulfur, nitrogen, oxygen and metals. Due to the diverse origins of crude
oils and refining technologies, the compositions of material streams in the refining processes
vary widely. In recent years, with increasingly strict environmental regulations for fossil
fuels as well as more and more heavy crude oils, it is urgent to improve refining technolo-
gies [1,2]. As the foundation for the study of refining technologies, the characterization of
petroleum fractions and the construction of conversion mechanisms at the molecular level
have become the most important issues in refineries [3,4].

Due to the limitation of analytical chemistry technologies, computer-aided molecular
reconstruction is currently the most popular method to reflect the complicated compositions
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of petroleum with limited properties [4]. Since the early 1990s when the first molecular
reconstruction method was reported, a lot of molecular reconstruction methods have been
proposed and applied in the molecular modeling of refining processes [5–8], including
the stochastic reconstruction method (SR), structural-oriented lumping (SOL), molecular
type homologous series (MTHS) method and SR-reconstruction by entropy maximization
(SR-REM). Among them, the SR method is the most popular method in the characterization
of heavy petroleum fractions.

Klein et al. [9,10] first introduced the SR method to characterize heavy residue feed-
stocks. In the SR method, molecules are treated as the collection of structural attributes
(SA), and a probability density function (PDF) is imposed on each structural attribute. The
type of PDF varies for different structural attributes, such as the histogram distribution
for the determination of molecular families and the gamma distribution for ring numbers
and the length of chains. Monte Carlo sampling with a quadrature method is applied to
generate an equimolar set of molecules from PDFs. The parameters for each PDF were
adjusted in an optimization loop for simulated annealing or genetic algorithm to make the
bulk properties of generated mixtures close to those of the actual samples.

Many studies that use the SR method have been reported. Petti et al. examined [11] the
usage of CPU resources in the SR method and suggested that a sample size of 10,000 molecules
could balance the simulation accuracy and computation expense. Zhang et al. [12] extended
a novel SR model to heavy vacuum residue fractions. The residue molecules were treated
as a combination of approximately 600 building substructures. Deniz et al. [13] introduced
a new structure parameter set for detailed ring and chain configurations into the SR method
to improve the method performance in heavy petroleum fractions. Moreover, Deniz et al.
investigated [14] the effects of methods for estimating the boiling point temperature and
density of pure compounds on the simulating accuracy of the SR method. It is observed
that the SR method has the highest accuracy with the group contribution method by
Gani [15–18] and the Yen-woods equations [19]. Haktanlr et al. [20] proposed a novel SR
method based on a custom predefined molecular library. This novel method focuses on
characterizing the petroleum fractions with exhausted molecular species. Meanwhile, a
sieving mechanism is introduced to make sure that the generated molecules are reasonable
in structure. Glazov et al. studied [21] the relationships between different PDFs of structural
attributes and bulk properties.

The general expression of the SR method is shown as below:

E = min f [x, ξ]
xlow ≤ x ≤ xupper

x ∈ R
(1)

where x stands for the parameters to be optimized, ξ are series of uniform random numbers
between 0 and 1. xlow and xupper are the lower and upper boundaries of x. The function f
stands for the gap between the experimental values of bulk properties and the predicted
values. The optimal parameters that make the predicted values of bulk properties close
enough to the experimental values are obtained by effective algorithm optimization.

In the SR method, the input parameters x are the parameters of PDFs. The structural
attributes generally contain the type of molecule, the number of naphthenic rings and aro-
matic rings, the length of paraffin chains and sidechains, the type of heteroatom-containing
molecule, etc. The types of PDF used to represent them are histogram distribution and
gamma distribution. The parameters in histogram distribution are real numbers between
0 and 1. If more than one parameter exists in a histogram distribution, they should increase
progressively. Given the total number of parameters in the model and the simulating
accuracy, the two-parameter gamma distribution is generally adopted in the SR method.
The two parameters are the shape parameter (SP) and scale parameter, or the shape param-
eter and mean. To characterize the complicated and diverse compositions in petroleum
fractions, it is crucial to reasonably configure the lower and upper boundaries of the param-
eters, which is the domain of parameters in the SR method. However, as far as the authors
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know, no study has been reported on this issue. To this point, this paper aims to study the
determination of domain and its effects on the performance of the SR method.

Section 2 illustrates the SR model based on gas oils. The bulk properties by ex-
periments, the setting of structural attributes and the building diagram are provided in
Section 2.1. Section 2.2 provides the configuration of the lower and upper boundaries for
the parameters in the histogram distributions and gamma distributions. Section 3 provides
the results and discussions. Finally, the conclusion is given in Section 4.

2. Methodology

Figure 1 shows the framework of the SR model adopted in this paper. The model starts
with initializing the input parameters, which are the tuning parameters in PDFs. Input
parameters are generated based on their lower and upper boundaries. For parameters in
histogram distributions, the monotonicity constraint, that parameters in the same histogram
distribution should increase progressively, should be satisfied. With the input parameters,
Monte Carlo sampling is used to generate pseudo molecules, the properties of which are
estimated by group contribution methods and empirical correlations. The bulk properties
of pseudo mixtures are calculated by mixing rules. The objective function is configured to
evaluate the input parameters by counting the gap between the experimental values and
the estimated values of the bulk properties. If the objective function value meets the stop
criterion, the optimal parameters and pseudo mixture are obtained. Otherwise, new input
parameters are generated in the optimization algorithm and evaluated until all constraints
are satisfied.

The setting of lower and upper boundaries for input parameters determines the values
of the input parameters in the SR model. Multiple cases of boundaries for input parameters
are tested and compared based on an SR model of gas oils.
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2.1. The SR Model of Gas Oils

The two gas oil samples used in this paper are from the work by Aleksandar [22],
including a gas oil sample and a vacuum gas oil sample. As listed in Table 1, the bulk
properties adopted contain the elemental analysis, density, H/C ratio, PINA analysis,
aromatic sulfur content and simulated distillation.
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Table 1. The bulk properties of gas oils.

Gas Oil A Value Gas Oil B Value

Elemental analysis/wt% Elemental analysis/wt%
C 87.4 C 85.7
H 12.5 H 13.1
S 0.14 S 1.3

Density/kg·m−3 0.862 Density/kg·m−3 0.83
H/C ration/mol·mol−1 1.77 Aromatic sulfur content/wt% 0.15

PINA analysis/wt% PINA/wt%
P 17.3 P 24.3
I 21.3 I 29.7
N 17.3 N 13.5
A 44.1 A 32.5

ASTM-D2887/K ASTM-D2887/K
0.5% 399 0.5% 409
10% 550 10% 535
30% 595 30% 576
50% 625 50% 602
70% 650 70% 622
90% 684 90% 655

99.5% 775 99.5% 705

Based on the molecular characteristics of two gas oil samples, the probability dis-
tributions containing the histogram distribution and gamma distribution are adopted to
represent structural attributes. As shown in Table 2, the structural attributes represented
by the histogram distribution are the type of molecule, the acceptance of a naphthenic
ring on an aromatic ring, the acceptance of a branch on a paraffin chain, and the type
of sulfur-containing compound. The gamma distribution is adopted for other structural
attributes, such as the number of naphthenic rings, the number of aromatic rings, the length
of paraffin chain, the length of sidechain, and the length of sulfur-containing chain.

Table 2. The structural attributes and PDFs.

Index SA The Type of PDFs Parameters

1 The type of molecule Histogram x1, x2, x3
2 If accept a naphthenic ring on the aromatic ring Histogram x4
3 If the paraffin chain is branched Histogram x5
4 The type of sulfur-containing molecule Histogram x6, x7
5 The number of naphthenic rings Gamma x8, x9
6 The number of aromatic rings Gamma x10, x11
7 The length of sidechain Gamma x12, x13
8 The length of paraffin chain Gamma x14, x15
9 The length of sulfur-containing chain Gamma x16, x17

Based on the structural attributes in Table 2, a building diagram for the construction
of pseudo molecules is designed in Figure 2. In this building diagram, the first step is
to determine the type of molecule. Paraffin, naphthene, aromatic and sulfur-containing
compounds are considered in this work. If the type of molecule is paraffin, the next step is
to determine whether the paraffin is branched. Then the length of paraffin is determined.
If the type of molecule is naphthene, the number of naphthenic rings and the length of
sidechain should be determined, in this order. When the type of molecule is aromatic, the
number of aromatic rings should be determined first. If the number of aromatic rings is one
or two, it should be determined whether a naphthenic ring is accepted. Lastly, the length
of sidechain on aromatic rings is determined. There are three types of sulfur-containing
compounds, including benzothiophene, dibenzothiophene, and sulfur-containing paraffin.
Once the molecule is benzothiophene or dibenzothiophene, the length of sidechain should
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be determined. Otherwise, the length of sulfur-containing chain is determined. In this
work, the predefined range for the number of naphthenic rings in a core is one to three, and
for the number of aromatic rings is one to four. The number of sidechains on a core is no
more than one. The ranges for lengths of paraffin chains, sidechains and sulfur-containing
chains are determined based on the distillation curve.
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2.2. The Setting of Domains

For the parameters in the histogram distributions, their lower and upper boundaries
are set to 0 and 1, respectively. According to Table 2, the parameters in the histogram
distributions are x1, x2, x3, x4, x5, x6 and x7. Because x1, x2, x3 and x6, x7 are in a single his-
togram distribution, they should meet the constraint that parameters in the same histogram
distribution should increase in order, as shown in Equation (2).

x1 < x2 < x3
x6 < x7
x1, x2, . . . , x7 ∈ [0, 1]

(2)

The two-parameter gamma distribution is shown in Equations (3)–(5).

p(x) =
(x− rmin)

α−1e−
(x−rmin)

β

βαΓ(α)
(3)

Γ(x) =
∞∫

0

tx−1e−tdt (4)

β =
m− rmin

α
(5)

where α, β and rmin are the shape parameter, scale parameter and site parameter in the
gamma distribution, respectively. In this work, the shape parameter α and mean m are
adopted as the tuning parameters for each gamma distribution. The relationship between α,
β, rmin and m is shown in Equation (5). rmin in each gamma distribution is a fixed value in
this work, and depends on the predefined values of the corresponding structural attribute.

Before setting the boundaries of parameters in gamma distributions, the range of
predefined values for structural attributes should be clarified. The range of predefined
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values for the number of naphthenic rings and aromatic rings are 1–3 and 1–4 in both gas
oils. According to the distillation curves in Table 1, the calculated ranges for the length of
sidechains are 1–35 for gas oil A and 1–23 for gas oil B. The ranges for the length of paraffin
chains are 8–41 and 8–30 for the two gas oil samples, respectively. Lastly, the ranges for the
length of sulfur-containing chains are 6–40 for gas oil A and 6–29 for gas oil B. The rmin in
each gamma distribution is equal to the minimum predefined value of the corresponding
structural attribute minus 1.

In the gamma distributions, multiple cases for the boundaries of parameters are
considered in Tables 3 and 4. There are five structural attributes that are represented by
gamma distribution. The parameters in the model are from x8 to x17. x8, x10, x12, x14 and x16
are the shape parameters of the gamma distributions for the number of naphthenic rings,
the number of aromatic rings, the length of sidechains, the length of paraffin chains and the
length of sulfur-containing chains, respectively. x9, x11, x13, x15 and x17 are the mean of the
gamma distributions. For both gas oils, the lower boundaries (LB) of x8, x10 are 0, and the
lower boundaries of x12, x14 and x16 are 1. The upper boundaries (UB) of x8, x10, x12, x14,
and x16 are given as 5, 10, 20, 50 and 100. As for the mean in each gamma distribution, the
lower boundary is set to the minimum predefined value of the corresponding structural
attribute minus 1, and the upper boundary is equal to the maximum predefined value
of the corresponding structural attribute plus 1. For simplicity of presentation, the cases
where the upper boundaries of the shape parameters are 5, 10, 20, 50 and 100 are marked
below as case 1, case 2, case 3, case 4 and case 5, respectively.

Table 3. The boundaries of parameters in gamma distributions for gas oil A.

Index of SA SP LB UB Mean LB UB

5 x8 0 5, 10, 20, 50, 100 x9 0 4
6 x10 0 5, 10, 20, 50, 100 x11 0 5
7 x12 1 5, 10, 20, 50, 100 x13 0 36
8 x14 1 5, 10, 20, 50, 100 x15 7 42
9 x16 1 5, 10, 20, 50, 100 x17 5 41

Table 4. The boundaries of parameters in gamma distributions for gas oil B.

Index of SA SP LB UB Mean LB UB

5 x8 0 5, 10, 20, 50, 100 x9 0 4
6 x10 0 5, 10, 20, 50, 100 x11 0 5
7 x12 1 5, 10, 20, 50, 100 x13 0 24
8 x14 1 5, 10, 20, 50, 100 x15 7 31
9 x16 1 5, 10, 20, 50, 100 x17 5 30

3. Results and Discussions
3.1. Comparison of Simulating Performance in Different Cases

Tables 5 and 6 show the simulation results with the smallest relative error for two gas
oils under different domains of the SR model. A fixed number of iterations that is specified
as 2000 is adopted as the stop criterion of the SR model. It is observed that the relative
errors are very small in all cases ranging from 0.03–0.06. This means that in the case of
different domains, the SR model is able to generate pseudo mixtures, the bulk properties of
which are very close to the experimental values (EV).
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Table 5. Comparison between experimental values and estimated values of bulk properties in
different cases for gas oil A.

Property EV
UB of SP for Gas Oil A

5 10 20 50 100

Elemental analysis/wt%
C 87.4 87.04 87.07 87.05 87.03 87.02
H 12.5 12.82 12.79 12.81 12.83 12.84
S 0.14 0.14 0.141 0.14 0.138 0.14

Density/kg·m−3 0.862 0.868 0.864 0.863 0.861 0.862
H/C ratio/mol·mol−1 1.77 1.77 1.76 1.77 1.77 1.77

PINA/wt%
P 17.3 17.2 17.2 17.5 17.3 17.3
I 21.3 21.3 21.3 21.2 21.7 21.0
N 17.3 17.3 17.3 17.5 17.3 17.6
A 44.1 44.2 44.2 43.8 43.7 44.1

ASTM-D2887/K
0.5% 399 392 406 406 406 406
10% 550 522 539 541 546 554
30% 595 588 600 602 605 607
50% 625 623 627 627 627 632
70% 650 661 655 651 650 651
90% 684 704 707 699 687 707

99.5% 775 754 773 767 754 773
The sum of relative errors 0.0441 0.0346 0.0332 0.0341 0.0335

Table 6. Comparison between experimental values and estimated values of bulk properties in
different cases for gas oil B.

Property EV
UB of SP for Gas Oil B

5 10 20 50 100

Elemental analysis/wt%
C 85.7 85.2 85.2 85.6 85.0 85.0
H 13.1 13.5 13.5 13.2 13.7 13.7
S 1.3 1.34 1.31 1.28 1.28 1.3

Density/kg·m−3 0.83 0.835 0.833 0.852 0.829 0.832
Aromatic sulfur content/wt% 0.15 0.15 0.15 0.15 0.15 0.15

PINA/wt%
P 24.3 24.3 24.2 24.2 24.3 24.6
I 29.7 29.7 29.2 29.6 30.0 29.0
N 13.5 13.3 14.0 13.5 13.4 13.6
A 32.5 32.7 32.6 32.74 32.3 32.8

ASTM-D2887/K
0.5% 409 403 403 403 403 403
10% 535 505 506 546 561 546
30% 576 554 557 582 582 568
50% 602 590 595 607 600 595
70% 622 627 629 627 631 633
90% 655 673 672 653 664 661

99.5% 705 710 709 694 705 701
The sum of relative errors 0.0591 0.0540 0.0523 0.0493 0.0511

Figures 3 and 4 compare the variations of the average objective function value from
iterations 1–400 with different domains in the stochastic reconstruction of gas oil A. The
average objective function value is calculated by 20 runs for each case. In Figure 3a, it is
observed that at the early stage from iterations 1–200, the average objective function values
in cases 1 and 2 are significantly lower than those in cases 3, 4 and 5. This means that in a
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smaller domain the SR model is able to find parameters that can make the objective function
value smaller at the beginning of the simulation. The variations in the average objective
function value maintain the same trend for all cases between iterations 200–400. With the
number of iterations exceeding 350, the average objective function value in case 1 starts
to be larger than that in case 2. As the number of iterations increases from 400 to 1200,
as shown in Figure 3c,d, the average objective function value in case 1 gradually exceeds
the average objective function values in all other cases. Compared with the early stage of
simulation, gaps of average objective function values among all cases are smallest when
the number of iterations is around 1100. As the iteration continues, the average objective
function value in case 2 gradually exceeds those in cases 3, 4 and 5. There are approximate
rates in the decrease of average objective function values in case 3, 4 and 5. At the end of
the iteration, it can be observed that average objective function values in case 3, 4 and 5 are
very close, which are significantly smaller than those in case 1 and 2. This indicates that
even though the average objective function values decrease faster in smaller domains at
the beginning of the simulation, the SR model can find parameters that make the objective
function value smaller with adequate iterations in larger domains. Meanwhile, for case 3,
the decreasing rate of the average objective function value is larger than that in cases 4 and
5 at the early stage of simulation, and the final average objective function value is very close
to that in cases 4 and 5, as shown in Figure 3f. This indicates that case 3, where the upper
boundaries of shape parameters are 20, can not only make the SR model effectively find
promising parameters, but also make sure the targeted objective function value is achieved.
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3.2. Prediction of Compositions by the SR Model in Different Domains

The predicted distributions of mass fraction against carbon number in normal paraf-
fins, isoparaffins, naphthenes and aromatics are compared with experimental values in
order to investigate the performance of the SR model on the prediction of detailed com-
positions in different domains. The representative predictions in each case are shown in
Figure 4. It is observed that there are no cases where the predicted distributions in normal
paraffins and isoparaffins fit well with the experimental distributions. The shapes of the
predicted distributions in normal paraffins and isoparaffins are broader and lower than in
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the experimental distributions. For naphthenes and aromatics, the predicted distributions
are very close to the experimental distributions in cases 1, 2 and 3. As the upper boundaries
of shape parameters increase, in cases 4 and 5, the shapes of the predicted distributions
become higher. As a result, the upper boundaries of shape parameters in the gamma distri-
butions should be less than 50 in order to fit well with the distributions of mass fraction in
naphthenes and aromatics.

As shown in Tables 5 and 6 and in Figure 4, even though the estimated bulk properties
in all cases are close to the experimental values, there are large deviations between the
predicted distributions of mass fractions and the experimental values in all cases. In order
to reduce the deviations between the predicted distributions and experimental distributions
in all chemical families, the PINA values are replaced by the more the detailed experimental
data from detailed group-type analysis.

The detailed group-type analysis data are mass fractions of homologous series in
gas oil samples, which contain normal paraffins (P), isoparaffins (I), mononaphthenes
(MN), dinaphthenes (DN), monoaromatics (MA), naphthenoaromatics (NA), diaromatics
(DA), naphthenodiaromatics (NDA), triaromatics (TrA), naphthenotriaromatics (NTrA) and
tetraaromatics (TeA). Based on detailed group-type analysis and other bulk properties, the
stochastic reconstruction of gas oil A is implemented under different domains. As shown
in Table 7, the predicted values of the bulk properties are also close to the experimental
values in all cases, and the sums of relative errors are between 0.11 and 0.14.
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Table 7. The comparison between experimental values and estimated values of bulk properties for
gas oil A in different cases.

Property EV
UB of SP for Gas Oil A

5 10 20 50 100

Elemental analysis/wt%

C 87.4 87.1 87.1 87.1 87.0 87.06
H 12.5 12.8 12.8 12.8 12.8 12.8
S 0.14 0.138 0.141 0.140 0.141 0.138

Density/kg·m−3 0.862 0.859 0.863 0.858 0.855 0.854
H/C ratio/mol·mol−1 1.77 1.76 1.76 1.77 1.77 1.77

Detailed group-type analysis/wt% - -
P 17.00 17.45 17.28 17.76 17.51 17.34
I 21.20 21.21 21.12 21.71 21.06 21.37

MN 15.39 15.26 15.58 15.15 15.02 15.34
DN 2.20 2.07 2.19 2.25 2.24 2.20
MA 16.80 15.27 13.97 14.65 16.17 17.31
NA 7.40 8.96 8.56 9.14 9.17 8.07
DA 8.43 8.91 10.07 8.74 8.58 8.85

NDA 6.40 6.00 6.42 5.80 5.47 4.40
TrA 3.92 4.01 3.88 3.87 3.92 4.14

NTrA + TeA 0.74 0.86 0.93 0.93 0.86 0.98

ASTM-D2887/K
0.5% 399 396 421 421 396 396
10% 550 503 522 521 507 503
30% 595 576 593 585 588 595
50% 625 629 635 624 629 629
70% 650 674 677 655 662 655
90% 684 729 727 692 699 687

99.5% 775 781 779 730 741 748
The sum of relative errors 0.1253 0.1340 0.1328 0.1170 0.1372

More accurate predictions on the distributions of mass fractions are observed with
detailed group-type analysis. As shown in Figure 5, the domain range has a large influ-
ence on the predicted distributions. In normal paraffins and isoparaffins, the predicted
distributions in cases 1 and 2, where the upper boundaries of the shape parameters are
5 and 10, are still lower and broader compared to the experimental values. In cases 3 and 4,
the predicted distributions become higher than those in cases 1 and 2, and agree best with
the experimental values. As the upper boundaries of the shape parameters increase, the
predicted curves continue to be higher, and a significant deviation is observed in case 5. As
for naphthenes and aromatics, similar predicted curves are shown in all cases. Small devia-
tions between the prediction and experiment are observed. The predicted mass fractions
of naphthenes are higher than the experimental values when the carbon number is small,
and lower than the experimental values as the carbon number increases. In conclusion,
the detailed group-type analysis can obviously improve the ability of the SR model to
predict distributions of mass fraction in chemical families. Cases 3 and 4, where the upper
boundaries of the shape parameters are 20 and 50, are the best cases for the prediction of
detailed compositions of gas oil A.

The variation in predicted compositions in different domains is because of the mech-
anism of the SR method and the characteristic of gamma distribution. In the SR method,
there are multiple combinations for the values of the parameters in the domain that make
the estimated values of properties close to the experimental values. The gamma distribution
curve tends to be lower and broader when the shape parameter is small, and tends to be
higher and steeper as the shape parameter increases. As a result, with the experimental
curves in this work, even though the target objective function value can be achieved in
the small domain, there are large gaps between the predicted curves and the experimental
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curves. When the value of the shape parameter is too large, for example, a value between
50 and 100 in this paper, an inappropriate curve can also be generated. Therefore, the
appropriate prediction of detailed compositions depends on the reasonable configuration
of domain.
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4. Conclusions

Based on gas oil samples, this work studies the performance of the SR model in
different domains of parameters. In the setting of domains, multiple cases for the up-
per boundaries of shape parameters in gamma distributions are considered. The results
show that in each case, the SR model can generate pseudo mixture, the bulk properties of
which agree well with the experimental values. The bulk properties adopted are elemental
analysis, density, H/C ratio, aromatic sulfur content, PINA analysis and simulated distil-
lation. By investigating the variations in average objective function value in each case, it
is observed that even though the decrease of average objective function value in smaller
domains is faster at the beginning of the simulation, the SR model can find parameters
in wider domains that make the average objective function value smaller. Case 3 is the
best case where the simulating accuracy and convergence performance are maintained
compared with other cases. The prediction of the SR model on compositions of gas oil
sample is not acceptable, despite the estimated values of bulk properties being very close
to the experimental values. Large derivations are observed in all cases.

The detailed group-type analysis contributes to more accurate predictions on compo-
sitions. The predicted distributions in normal paraffins and isoparaffins become higher
as the upper boundaries of shape parameters increase. In cases 3 and 4, the predicted
distributions fit best with the experimental distributions, compared to the other cases. As
for naphthenes and aromatics, the predicted distributions agree well with experimental
values in all cases. Because case 3 performed best in maintaining simulating accuracy and
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convergence rate, the best upper boundary of shape parameters is 20, compared to other
values in this work.

The domain of parameters in probability functions has a great influence on the perfor-
mance of the SR method. Due to the differences in bulk properties and compositions of
petroleum fractions, reasonably setting the domain of parameters is indispensable for the
accurate reconstruction of petroleum fractions.
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Abbreviations

PDF Probability density function
PINA Normal paraffins, isoparaffins, naphthenes, and aromatics
SA Structural attribute
SP Shape parameter
UB Upper boundary
LB Lower boundary
MN Mononaphthenes
DN Dinaphthenes
MA Monoaromatics
NA Naphthenoaromatics
DA Diaromatics
NDA Naphthenodiaromatics
TrA Triaromatics
NTrA Naphthenotriaromatics
TeA Tetraaromatics
EV Experimental value
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