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Abstract: The synthesis of sulfide solid electrolytes in ball mills by mechanochemical routes not only is
efficient but also can enable the upscaling of material synthesis as required for the commercialization
of solid-state battery materials. On a laboratory scale, the Emax high energy ball mill accounts for
high stresses and power densities, as well as for temperature control, to prevent damage to the
material and equipment even for long process times. To overcome the merely phenomenological
treatment, we characterized the milling process in an Emax by DEM simulations, using the sulfide
solid electrolyte LPS as a model material for the calibration of input parameters to the DEM, and
compared it to a planetary ball mill for a selected parameter set. We derived mechanistic model
equations for the stressing conditions depending on the operation parameters of rotational speed,
media size and filling ratio. The stressing conditions are of importance as they determine the outcome
of the mechanochemical milling process, thus forming the basis for evaluating and interpreting
experiments and for establishing scaling rules for the process transfer to larger mills.

Keywords: high energy ball mill; discrete element method; stressing model; sulfide solid electrolyte

1. Introduction

Today’s use of ball mills is very promising for the synthesis of solid-state battery
materials, as mechanochemical milling processes offer the potential for the synthesis of large
amounts of solid electrolytes, which are required to drive forward the commercialization
of solid-state batteries [1]. In contrast, the employment of the classic solid-state synthesis
that is usually performed inside quartz ampoules in small quantities is challenging in
terms of scalability. An upscaling of liquid-based processes may be possible [2–4], but it is
accompanied by possible contamination of the solvent residues and a potentially higher
impact on the environment [2].

The alternative route through mechanical mixing and milling techniques allows not
only the mechanochemical synthesis of solid electrolytes [1,5] but also the processing of
cathode composites, even on a large scale [6], by ensuring high intensities, which result in
the required high ionic conductivities. So far, mechanochemical processes are most often
limited to the laboratory scale, e.g., in planetary ball or high energy mills, and viewed
solely experimentally.

When it comes to materials or processes that are sensitive to temperature effects,
sufficient temperature control can be crucial to account for temperature-dependent kinetics
or to prevent degradation and damage of the processed material or equipment. The Emax
high energy ball mill enables the cooling of milling chambers while providing stressing
energies and power densities similar to or even higher than those of planetary ball mills.
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An initial description of the power input of the Emax high energy ball mill was given
based on a kinematic model that was first introduced by Burgio et al. [7] and applied to
the Emax by Kessler et al. [8]. The product yield of a mechanocatalytic depolymerization
process was successfully correlated to the dissipated energy, while the influence of local
energy dissipation and the frequency of media collisions was not further investigated.

However, the operation parameters of the mechanochemical milling process have
a differentiated impact on the structure and the transport properties of ionic conductors
and, thus, their resulting performance as solid electrolytes. Therefore, beyond the power
input, the effect of local energy dissipation and frequency of stressing should be taken into
account. In this study, we investigate these stressing conditions in an Emax high energy
ball mill using discrete element method (DEM) simulations, as these conditions are not
experimentally accessible. The DEM includes friction through rolling and sliding and
accounts for changes in the motion pattern due to frictional effects, depending on the pow-
der properties [9,10]. According to considerations presented in other publications [10–12],
we describe these stressing conditions and their dependencies on the operation parame-
ters of media size, dmeida; media filling ratio, ϕmeida; and rotational speed, n and derive
mechanistic model equations.

The stressing conditions within the Emax high energy ball mill are not experimentally
accessible, nor have they been described systematically elsewhere in the literature. They
can hardly be estimated from the process parameters. Therefore, to access the important
characteristics of stressing intensity and collision frequency within this new mill type,
numerical simulations using DEM are required. By considering not only the energy overall
but also how often and at what intensity the material is stressed, the individual effects on
the structural formation and yield can be identified. The process transfer to larger mill
types, e.g., eccentric vibration mills or stirred media mills, shall be done with regard to
the optimum stressing conditions, which can be configured selectively, based on either
mechanistic models or DEM simulations.

The stressing conditions within a ball mill affect and determine the grinding, as well
as the mechanochemical processes and the quality of the products, as demonstrated by
Kwade et al., where the product fineness and yield were defined in detail [13]. Besides
the type of stressing, whether the particles are arranged as single particles, in layers, or in
particle beds, the product quality is affected by the stressing energy and stressing intensity,
as well as the collision frequency [11–15].

The stressing energy, SE, as a mill-related characteristic parameter, is transferred to the
particles during one stressing event. The ratio of stressing energy to the volume or mass
of the stressed particles is defined as the stressing intensity, SI, and is a product-related
characteristic parameter that describes the specific energy input at one stressing event. The
second mill-related characteristic parameter is the frequency of media collisions, CF. Hence,
it is immensely important to understand how the milling parameters and the stressing
conditions affect the energy transfer to the solids, and the resulting reactions or micro
processes in general [11–19]. This study focuses on the mill-related conditions of stressing
energy and collision frequency, which are calculated using numerical simulations.

As a model material, a sulfide solid electrolyte was used, as this class of material can
be synthesized via mechanochemical routes in ball mills [1,20–23]. The processing time for
solid electrolytes in planetary ball mills is often excessive due to the fact that long pause
times for cooling down have to be taken into account. A reduction in process times is
therefore desired, and it can be achieved by means of coolable, small laboratory or larger
stirred media mills.

2. Materials and Methods
2.1. Simulation Set-Up

The investigated high energy ball mill Emax (Retsch GmbH, Haan, Germany) features
two chambers that move on a circular path with a radius R = 17 mm in the same rotation
direction so that they are always located on the opposite side of their circular path to main-
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tain the balance of forces (Figure 1b). In the simulation, the movement of a single 125 mL
chamber is reproduced by superimposing two linear, orthogonal oscillations (Figure 1a),
both with an amplitude of the radius R. Assuming the starting point of the movement, M,
in the middle of the circle, oscillation θ1 starts first, while the second oscillation, θ2, starts
with a time offset, representing the time of a quarter rotation (Equation (1)).

toffset =
0.25
n·60

(1)
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Figure 1. Circular movement of one milling chamber: (a) implementation in the DEM simulation by
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2.2. Simulation Model

The movement of the chamber and media, and thereby the stressing conditions, are
modelled based on the discrete element method [10,24], using the software package EDEM
2.7 (DEM Solutions). For each media contact, the DEM calculates the forces of compression
and shear based on the contact model of Hertz [25] and Mindlin [26] and calculates the
resulting velocities and accelerations according to Newton’s law of motion.

In order to minimize the computational complexity, our DEM model limits the number
of discrete elements for the grinding media and excludes discretization of the processed
material by considering its effect by applying appropriate parameter values for friction
and restitution as already shown in the literature [10,27,28]. Using a robust calibration of
the friction and restitution coefficients described in the following, the simulation depicts
the number of stressing events, as well as the energy dissipation on local and global levels,
while the breakage and conversion of the educt material are not directly depicted. The
consideration of educt material as individual particles is thus not required.

However, due to the presence of material, both as a free-flowing powder and a layer
on surfaces, in the physical system, the friction and restitution behavior changes depending
on the product material. Studies show that the adjustment of the coefficients of friction and
restitution reproduces the system behavior and the media motion and, in doing so, enables
appropriate values for stressing conditions to be obtained [10,12,27]. The authors already
described the series of experiments and simulations required to adjust the coefficients of
the virtual system in detail [27]: Media covered with product particles are used to execute
free-fall tests, to determine the restitution. The fall and the bounce height of the media are
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recorded with a high-speed camera, and the coefficient of restitution, COR, of the collision
is described by the square root of the ratio of bounce height to fall height. The friction
coefficients are adjusted by correlating results gained from experiments, and simulations
that reproduce these experiments. First, the rolling behavior of a single grinding medium
inside a grinding chamber, both coated with material, is examined. The rolling behavior is
simulated in DEM while the coefficient of rolling friction, µR is varied until both position
curves coincide. The material coverage on the medium and the walls retards the rolling
motion, so the number of peaks is characteristic for a certain friction value [27,28]. The
rolling behavior remains almost unaffected by the static friction, µS that is examined in the
next step by the angle of repose. The angle is measured experimentally and afterwards
modeled in DEM for varied coefficients of static friction. Both values are finally compared,
and the correct friction coefficient is selected for matching values of angle of repose in
simulation and experiment [12,16].

As the material covers the surfaces of the chamber wall and the grinding media, it
affects the media–wall and the media–media contacts in the same manner. The contact and
material parameters for the DEM model are shown in Tables 1 and 2.

Table 1. Contact parameters for the DEM model.

Model Parameter Calibrated Input Value

Coefficient of Rolling Friction µR 0.05
Coefficient of Static Friction µS 0.58
Coefficient of Restitution COR 0.47

Table 2. Material parameters for the DEM model for the grinding media and milling chamber, both
made from zirconia.

Parameter Input Value

Shear modulus G 8 · 1010 Pa
Poisson’s ratio ν 0.3

Density ρ 5900 kgm−3

As a tryout material to determine the input parameters of the DEM simulation, we
used the sulfide solid electrolyte Li6PS5Br (density 1.9 g/cm3). The material was prepared
by mechanochemical milling in a high-energy planetary ball mill (Pulverisette 7, Co. Fritsch
GmbH, Idar-Oberstein, Germany) with zirconia grinding media in a 125 mL chamber
made also made from zirconia. The starting materials were mixed with a stoichiometric
amount of lithium disulfide (Li2S, Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany),
phosphorus(V) sulfide (P2S5, Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) and
lithium bromide (LiBr, Thermo Fisher (Kandel) GmbH, Kandel Germany) at a rotation
speed of 510 min−1 for 10 h, which was 30 cycles of 10 min rest and 10 min milling time.
All educts were used as received.

As the time step, the critical Rayleigh time step [29] was chosen, which is calculated
from the minimal particle radius, the minimal density of the used materials, the maximum
shear modulus Gmax and Poisson’s ratio νmax. The minimal particle size equals the media
radius rmedia, as only one media size is used for each simulation.

tcrit =
πrmedia·

√
ρmin
Gmax

0.1631νmax + 0.8766
(2)

The contact parameters are average values and depend on the behavior of the con-
tact surface covered with particles. Although the coefficients depend on the material,
its hardness, plasticity and particle size, for a contact system of media covered with
particles, similar values can be found for other systems, such as for the comminution
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of marble [10] and alumina [12] and the mechanochemical synthesis of 5-(4-hydroxy-
3-methoxybenzylidene)barbituric acid [16]. Additionally, the system is not extremely
sensitive to the model parameters, especially when the operation parameters are varied,
and so it is assumed that all materials of comparable particle size and properties, e.g.,
other materials within the thiophosphate solid electrolyte material class, are represented by
these values.

2.3. Simulation Validation via Thermal Energy

The experimental milling set-up of the Emax high energy mill is not equipped with
a torque sensor, to enable the direct measurement of the power input. An electrical
measurement may give an estimation of the power draw but is subject to the influences in
the control of the complex drive mechanics, and thus a direct correlation between electric
energy consumption and energy dissipation in the grinding chamber cannot be ensured.

Instead, the heat dissipation to the internal cooling system is considered, to derive
the power draw experimentally, which is a less accurate but simpler method. As cooling
aid, 3 L of water was used (mass of fluid mf = 3 kg, cP = 4182 J kg−1 K−1), which was
pumped through the internal cooling system of the mill in a circuit at a pump frequency of
300 min−1. The temperature was measured on-line in the pump receiver tank (Huber Pilot
ONE) for a processing time of 30 min.

2.4. Simulation Operation Parameters

The operation parameters under investigation are the size of media, dmedia, made out
of zirconia; the media filling ratio, ϕmedia; and the rotational speed, n. The rotational speed
was varied between 600 and 1200 min−1. The chamber had a volume of 125 mL and was
also made from zirconia.

The media filling ratio (Equation (3)) is defined as the ratio of media bulk volume,
Vmedia, bulk, to the chamber volume, Vchamber. This definition is reasonable, as a filling
higher than 1 is not possible, although free pore volume in the media bulk is still available
to the processed material [1].

ϕmedia =
Vmedia, bulk

Vchamber
=

mmedia

(1 − ε)·ρmedia·Vchamber
(3)

The bulk volume of media can be calculated based on the mass, mmedia, and the
density, ρmedia, of media, as well as the bulk porosity, ε. Here, the bulk porosity of zirconia
media is assumed to be ε = 0.41 for all media sizes, which leads to the same mass of media
charge, regardless of media size, if the filling is kept constant

The media filling ratios and the corresponding media numbers are presented in Table 3.

Table 3. Emax—media filling for Vchamber = 125 mL.

Media Filling Ratio
ϕmedia

Media Number Nmedia

5 mm 7 mm 10 mm

0.1 - - 14
0.2 - - 28
0.3 332 123 42
0.4 451 164 56
0.5 - - 70
0.6 - - 84
0.7 - - 98

2.5. Comparison of High Energy Mill and Planetary Mill

While the simulation part of this study does not include any experimental outcome of
a mechanochemical synthesis, for some selected parameter settings the mechanochemical
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synthesis of Li6PS5Br was conducted in the Emax, as well as in a planetary ball mill
(Pulverisette 7, Fritsch GmbH, Idar-Oberstein, Germany) with a similar size range, in
order to compare these mills. The received product was characterized with regard to the
ionic conductivity.

For the experiments, the media filling ratio was kept constant at ϕmedia = 0.3, and two
media sizes, 5 mm and 10 mm, were tested. For comparison, an identical rotational speed
of 800 min−1 was chosen, as well as a higher rotational speed of 1200 min−1 for the Emax,
in order to adjust comparable stressing conditions in both mills. The parameter settings
used for experiments and simulation are shown in Table 4.

Table 4. Operation parameters for the comparison of Emax and planetary mill.

Mill Chamber
Volume/mL

Rotational Speed
n/min−1

Media Size
dmedia/mm

Media Number
Nmedia/−

Mass of
Educts/g

Emax 125 800 5 332 8
Emax 125 800 10 42 8
Emax 125 1200 5 332 8
Emax 125 1200 10 42 8

Planetary mill 80 800 5 216 5
Planetary mill 80 800 10 27 5

The starting materials were used in a constant ball-to-powder ratio and were mixed
with a stoichiometric amount of lithium disulfide (Li2S, Sigma-Aldrich Chemie GmbH,
Taufkirchen, Germany), phosphorus(V) sulfide (P2S5, Sigma Aldrich) and lithium bromide
(LiBr, Thermo Fisher (Kandel) GmbH, Kandel Germany).

The temperature of the Emax high energy mill was controlled by an internal water
cooling system at a constant fluid temperature of 20 ◦C. The planetary ball mill does not
feature active temperature control; therefore, the mill was always stopped after 5 min of
processing for a 15 min break, so the overall processing time was 4 times longer. The time
of mechanochemical processing was 10 h.

The ionic conductivities of the product were determined by electrochemical impedance
spectroscopy (EIS), by measuring the potentiostatic impedance spectra of powder pellets
(∼600 µm thickness, ∼2.01 cm2 electrode area). Therefore, the synthesized powder was
pelletized by uniaxial pressing at 380 MPa. The obtained pellets were placed in a Teflon
tube, and stainless steel rods were used as blocking electrodes on both sides. EIS was
conducted at 20 ◦C under 50 MPa uniaxial pressure using a Zennium potentiostat (Zahner-
elektrik GmbH & Co. KG, Kronach, Germany) at frequencies from 4 MHz to 10 Hz with an
amplitude of 10 mV.

2.6. Calculation of Energy Dissipation

Considering the stressing energy, SE, a distinction is made between normal fractions
transferred by head-on collisions in the normal direction and total dissipation of the entire
collision, which also includes frictional energy. With regard to particle breakage, the normal
stressing energy, SEnormal, is by far the most relevant energy [12,30] and is calculated
from the conservation of energy and momentum during the collision [31]. It is a function
of the relative collision velocity, vrel,n, in the normal direction, which is extracted as a
simulation result, and the masses, m1 and m2, of the colliding media [10–12,24,31,32], as
well as the coefficient of restitution. The coefficient of restitution is a dimensionless number
reflecting the plastic–elastic behavior of the collision, which is thus used as a simulation
input parameter, as well as for the calculation of stressing energy.

SEnormal =
m1m2

2(m1 + m2)
vrel,n

2·
(

1 − COR2
)

(4)

Equation (4) demonstrates that the stressing energy can be much lower than the kinetic
energy of the milling media, as only part of it is actually dissipated. This is especially the
case if the relative velocity between the colliding milling media is low, or the coefficient of
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restitution is close to unity due to a high collision elasticity. Additionally, it already shows
that the local energy dissipation scales with the mass of milling media.

The power input, P, either total or in the normal direction, is the product of the collision
frequency, CF, and mean stressing energy, SE [13]. The power describes the energy that is
available per unit time for the total amount of educts, and can directly limit the process
rate [12,13,16]:

Pnormal = CF·SEnormal (5)

Ptotal = CF·SEtotal (6)

The total power, Ptotal (Equations (6) and (7)), is a function of the rotational speed,
n (compare Figure 1), and the torque, M, which is extracted from the respective DEM
simulation [12], although it may also be experimentally measured by a torque sensor, if
available. However, the investigated Emax mill is not equipped with a torque sensor, and
the power input is only accessible via DEM or kinematic models.

Ptotal = 2π·n·M (7)

The total stressing energy is not accessible via energy and momentum conservation,
but can be obtained as a mean value, SEtotal (Equation (8)), using the total power input and
the collision frequency, which is directly extracted from the simulation [16].

SEtotal =
Ptotal
CF

. (8)

The power values enable the calculation of the specific energy (compare
Equation (9)) [13], which describes the energy demand to synthesize or process a certain
product mass, mP. In order to identify the optimum stressing conditions, the specific energy
demand shall be compared [12,13,16], as the process time t does not necessarily correspond
to the energetic optimum.

Em =
P

mP
·t (9)

3. Results and Discussion
3.1. Simulation Validation

The simulation of a milling system, in which energy dissipation takes place via in-
dividual contacts, can be validated by the comparison of experimental and calculated
power input, as shown by Burmeister et al. [12]. However, the Emax high energy mill
is not equipped with a torque sensor; thus, the power draw for validation uses the heat
dissipation of the mill. The temperature curves over a process time of 30 min are depicted
in Figure 2 for varied rotational speeds. As expected, higher rotational speeds lead to
higher temperatures, indicating also higher power inputs. Each curve strives towards a
plateau, so the temperature increase is reduced over time, which is attributed to the larger
temperature difference between the cooling fluid and mill system and the atmosphere. The
system is not adiabatic and thus exchanges heat with its environment, and a temperature
equilibrium will be reached at a certain point.
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Thus, as temperature used for the calculation of heat, Q, and thermal power, PQ,
(Equations (10) and (11)) only the temperature of the cooling fluid (water) within the time
interval ∆t of 20 min was taken into account, to exclude the range of curve flattening.

Q = cP·mf·(T0 − T20min) (10)

PQ =
Q
∆t

, ∆t = 20min (11)

In Figure 3 the calculated thermal power from the heat experiment is compared to the
power of the chamber calculated by DEM simulations. To compare the experimental and
the simulation results, the experimental power from the heat measurement was divided
by 2 to obtain a comparable outcome. However, the simulation still shows much lower
power values, which can be attributed to the power consumption in the complex drive and
the mechanics to move the vessels. This power loss within the drive and the mechanics
cannot be depicted within the simulation, which only models the energy dissipation inside
the chamber.

It is expected that the higher the power and thus the temperature, the more inaccurate
the measurement becomes. This can explain the differences in slope between experiment
and simulation, where the simulation shows a stronger increase in power with rotational
speed. Although the simulation does not perfectly fit the experimental data, the comparison
shows a reasonable agreement, and the heat measurement could also easily be applied to
other systems when simulations are not applicable or available.

3.2. Effect of Media Size and Rotational Speed

Both parameters, the media size and the rotational speed, not only are easy to adjust,
but also have a direct effect on the stressing conditions. However, the appropriate selection
of each of these parameters may facilitate the generation, interpretation and discussion of
experimental results. First, we show the effect on the power input, which is depicted in
Figure 4 as a function of rotational speed, for different media sizes at a filling ratio of 0.3.
The power input, both for collisions in total and only in the normal direction, is mainly
determined by the rotational speed, while the media size shows a minor effect.
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That means, that in terms of evaluation, one can vary the media size without changing
the power input significantly, in order to investigate the effect of stressing energy and the
number of stressing events.

In contrast, the variation of speed can reveal how the process, be it a comminution or
a mechanochemical synthesis, is affected by the power input. For the chosen setting, with
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constant friction and damping parameters, the following model equations can be derived
(Tables 5 and 6):

Ptotal = kP,t·naP,t (12)

Pnormal = kP,n·naP,n ·dmedia
bP,n (13)

Table 5. Variables for model equation (Equation (12)) to describe the total power input based on
rotational speed n (in min−1).

Filling Ratio
ϕmedia/−

Coefficient
kP,t/−

Exponent aP,t/−

0.3 1.06 × 10−7 2.84
0.4 1.06 × 10−7 2.86

Table 6. Variables for model equation (Equation (13)) to describe the normal power input based on
rotational speed n (in min−1) and media size dmedia (in mm).

Filling Ratio
ϕmedia/− Coefficient kP,n/− Exponent aP,n/− Exponent bP,n/−

0.3 6.75 × 10−9 2.91 0.50
0.4 6.75 × 10−9 2.96 0.44

The fitted data show that there is no systematic effect of the media size on the total
power input (Equation (12)), and, for an increase in filling ratio, slightly higher powers are
reached due to a higher exponent for the rotational speed (an increase from 2.84 to 2.86).

In contrast, the normal power input is affected by the media size and the rotational
speed (Equation (13)). The exponent is in a similar range (2.91 for ϕmedia = 0.3 and 2.96
for ϕmedia = 0.4), while the exponent for the media size lies around 0.5, indicating that for
smaller media the fraction of normal power is reduced compared to the total power.

Similar to this approach, Kessler et al. [8] developed a kinematic model to calculate
the power input. The calculation uses the energy dissipation of head-on collisions and does
not include friction, so only the normal power is considered, which shows a comparable
dependency on the rotation speed of n3, and a slight effect of media diameter. However, in
contrast to our results, the kinematic model results in higher power input of 5 mm over
larger media of 10 mm.

Contrary to the effect on the power, the media size strongly affects the stressing energy,
as depicted in Figure 5 for the normal stressing energy at a media filling ratio of 0.3. Coarser
media not only dissipate larger energies due to the higher mass (according to Equation (4)),
but the dependencies (Equations (14) and (15)) also show that coarser diameters favor a
regime that leads to even higher dissipation than derived from the mass increase, resulting
in an exponent larger than 3. Not shown are the results for the total stressing energy at
a filling of 0.3, as well as the stressing energies at a filling of 0.4, as the dependencies are
almost identical: the total stressing energy is always higher than the normal, and increasing
the higher filling ratio shifts the curves to lower values, which is discussed in more detailed
in the corresponding section below (Tables 7 and 8).

SEnormal = kn ·nan ·dmedia
bn (14)

SEtotal = kt ·nat ·dmedia
bt (15)
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Table 7. Variables for model equation (Equation (14)) to describe the normal stressing energy based
on rotational speed n (in min−1) and media size dmedia (in mm).

Filling Ratio
ϕmedia/−

Coefficient
kt/−

Exponent of
Rotational Speed

at/−

Exponent of Media
Size bt/−

0.3 1.00 × 10−15 2.29 4.41
0.4 7.00 × 10−16 2.29 4.39

Table 8. Variables for model equation (Equation (15)) to describe the total stressing energy based on
rotational speed n (in min−1) and media size dmedia (in mm).

Filling Ratio
ϕmedia/−

Coefficient
kt/−

Exponent of
Rotational Speed

at/−

Exponent of Media
Size bt/−

0.3 6.90 × 10−15 2.37 3.76
0.4 4.90 × 10−15 2.32 3.91

The impact of media size on the normal stressing (Equation (14)) is larger than on the
total stressing energy (Equation (15)), which indicates the enhanced dissipation by means
of head-on collisions. The rotational speed influences the normal and the total stressing
energy to almost the same extent, so it can be stated that the higher speeds not only increase
the impact velocity but also affect the energy dissipation, due to sliding and friction, in the
same manner.

At a constant filling ratio, the use of coarser media consequently results in a smaller
number of media and, eventually, in smaller collision frequencies (Figure 6). The reduction
does not linearly decrease with media number but follows an exponential function that
can be expressed as a function of media number or media diameter. Due to the virtually
constant power input, the collision frequency is reduced almost to the same extent as the
stressing energy is increased (compare Equation (16) to Equation (15)).
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Higher rotational speeds induce higher collision frequencies, which can be attributed
to the shorter time interval between the collisions, due to the higher media velocities.
However, compared to the effect of media size, the rotational speed has a rather minor
influence (Table 9).

CF = kCF·naCF ·dmedia
−bCF (16)

Table 9. Variables for model equation (Equation (16)) to describe the collision frequency based on
rotational speed n (in min−1) and media size dmedia in mm).

Filling Ratio
ϕmedia/−

Coefficient
kCF/−

Exponent of Rotational
Speed aCF/−

Exponent of Media
Size bCF/−

0.3 1.28 × 107 0.51 3.84
0.4 2.59 × 107 0.53 3.99

In comparison to a simulative description of a planetary ball mill given by Burmeister
et al. [12] (also at a media filling ratio of 0.3, but in a 250 mL chamber), the influence of
the media size is in a very similar range: dmedia

4.33 and dmedia
3.85 in the planetary mill,

compared to dmedia
4.41 and dmedia

3.76 in the Emax for the normal and total stressing energy,
respectively. However, the exponent, and thus the effect of the rotational speed, is much
lower for the Emax, with exponents of n2.29 and n2.37 for normal and total stressing, while
the planetary mill reaches exponents of n2.68 and n2.67, respectively. For the description
of collision frequency, the exponents for both the Emax and the planetary mill lie in the
same range.

3.3. Effect of Media Filling Ratio

The media filling ratio affects the stressing energy and the collision frequency. As for a
specified size, a larger number of media leads to exponentially more contacts occurring,
however, often with lower stressing energy.

The collision frequency in Figure 7 rises with higher fillings, though the slope of the
curve decreases with the increase in the filling. Relative to the media number, it can be
seen that the specific frequency (per media) is still increased, and the number effect is
overproportioned, but not strongly. An exception is the very low filling ratio of 0.1, which
has comparatively high absolute and specific frequencies.
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(per media) values; dmedia = 10 mm.

The stressing energy, as shown in Figure 8, is connected to the collision frequency, as it
develops in the opposite direction, with decreasing stressing energy for increasing filling
ratio. When the media size and rotational speed are kept constant, the energy dissipation
is affected by the moving of the charge and the interaction of media. At larger collision
frequencies, the free moving path of the media or the time interval between the collisions is
shorter, and the energy dissipation is lower.
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Excluding the values at a filling of 0.1, model equations are derived to describe the
decrease in normal and total stressing energy and the increase in specific collision frequency
with the increase in filling ratio (Equations (17)–(19), Tables 10–12):

SEnormal = kfilling,n·ϕfn (17)

SEtotal = kfilling,t·ϕft (18)

CFspec = kfilling,CF·ϕfCF (19)

Table 10. Variables for model equation (Equation (17)) to describe the normal stressing energy based
on the filling ratio ϕmedia (−) for dmedia = 10 mm.

Rotational Speed n
/min−1

Coefficient
kfilling,n/−

Exponent of Filling Ratio
fn/−

800 1.08 × 10−5 1.95
1200 3.16 × 10−5 1.84

Table 11. Variables for model equation (Equation (18)) to describe the total stressing energy based on
the filling ratio ϕmedia (−) for dmedia = 10 mm.

Rotational Speed n
/min−1

Coefficient
kfilling,t/−

Exponent of Filling Ratio
ft/−

800 3.08 × 10−4 1.00
1200 2.80 × 10−4 0.87

Table 12. Variables for model equation (Equation (19)) to describe specific collision frequency based
on media filling ratio ϕmedia (−) for dmedia = 10 mm.

Rotational Speed n
/min−1

Coefficient
kfilling,CF/−

Exponent of Filling Ratio
fCF/−

800 3.22 × 103 0.69
1200 3.68 × 103 0.59

However, the collision frequency is increased to a greater extent than the stressing
energy is reduced, resulting in an increase in absolute power input. Both the normal and
the total power input increase with higher fillings until a maximum is reached at a filling
ratio of 0.4.

The subsequent decrease is attributed to the hindered media motion: compared to
lower fillings, the media cannot move freely and the media velocity is reduced. However,
when conducting an experimental study in ball mills, mostly the ball-to-powder ratio
or powder filling ratio is kept constant, which means that with higher media filling the
amount of powder is also increased accordingly. To make a statement about the energy
available to the powder, we calculated the specific power as a ratio of absolute power to the
number of media. Higher specific powers indicate that, relatively speaking, more energy is
available to the powder at a constant powder filling ratio.

Considering the normal energy dissipation, the highest normal stressing energy in
Figure 8 is reached at a filling of 0.2, but the absolute normal power input in Figure 9 shows
its maximum at a filling of 0.3–0.4. The consideration of the specific energy dissipation
of head-on collisions shifts the maximum to a filling of 0.2, which corresponds with the
normal stressing energy maximum.



Processes 2022, 10, 692 15 of 20Processes 2022, 10, x FOR PEER REVIEW 16 of 21 
 

 

  
(a) (b) 

Figure 9. (a) Normal power and specific normal power (per media) in dependence on media filling 
ratio; (b) total power and specific total power (per media) in dependence on media filling ratio; d୫ୣୢ୧ୟ = 10 mm, Pୱ୮ୣୡ = ౣౚ. 

When the total power input is considered, the absolute maximum can be reached at 
fillings of 0.4, while relative to the media, the highest power corresponds to the highest 
specific collision frequency at the lowest media filling ratio of 0.1. Although low fillings 
appear beneficial due to the high stressing energies and high specific power values, the 
operation at the point of maximum absolute power should be considered: for the investi-
gation of a mechanochemical process, the adjustment of stressing energies should be done 
via media size rather than filling ratio. 

Additionally, it can be stated that the power input is subject to rather small changes 
when the filling ratio is changed. At low fillings, the relatively small number of media 
could lead to an insufficient mixing of educt material and an inhomogeneous stressing, 
while at the same time the amount of processed material is low, assuming a constant ball-
to-powder ratio. 

3.4. Discussion on Application of Mechanistic Model Equations 
The presented model equations describe the characteristic parameters mean stressing 

energy and collision frequency at typical parameter settings. According to the stressing 
model proposed by Kwade [13,33–35], the knowledge of these two parameters enables the 
interpretation and prediction of favorable process conditions. Moreover, this makes the 
dominating stressing mechanisms accessible. Different mechanisms can play a role, de-
pending on the process: Comminution processes with the aim of particle breakage exhibit 
an optimum of energy dissipation on the local level resulting in a minimum overall spe-
cific energy. If the collision frequency and, thus, the power input are maximized at this 
optimum stressing energy, the highest production capacity at minimum specific energy 
input can be achieved [12,13,34,35]. The energy needed for particle breakage is naturally 
dependent on the particle size and the particle strength, so the optimum is shifted to lower 
stressing energies for smaller sizes, but not linearly, as the particle strength increases [35].  

In contrast, in some mechanochemical processes, the power input connected with the 
resulting increase in temperature dominates the process and the effect of stressing energy 
on the production rate is extremely small [16]. In this case, the stressing energies and col-
lision frequencies resulting in the maximum power input are advantageous. However, in 
the mechanochemical synthesis of solid electrolytes, there are requirements for not only 
high yields of the conversion but also certain structural properties such as crystallinity 

Figure 9. (a) Normal power and specific normal power (per media) in dependence on media filling
ratio; (b) total power and specific total power (per media) in dependence on media filling ratio;
dmedia = 10 mm, Pspec =

P
Nmedia

.

When the total power input is considered, the absolute maximum can be reached at
fillings of 0.4, while relative to the media, the highest power corresponds to the highest
specific collision frequency at the lowest media filling ratio of 0.1. Although low fillings
appear beneficial due to the high stressing energies and high specific power values, the
operation at the point of maximum absolute power should be considered: for the investiga-
tion of a mechanochemical process, the adjustment of stressing energies should be done via
media size rather than filling ratio.

Additionally, it can be stated that the power input is subject to rather small changes
when the filling ratio is changed. At low fillings, the relatively small number of media
could lead to an insufficient mixing of educt material and an inhomogeneous stressing,
while at the same time the amount of processed material is low, assuming a constant
ball-to-powder ratio.

3.4. Discussion on Application of Mechanistic Model Equations

The presented model equations describe the characteristic parameters mean stressing
energy and collision frequency at typical parameter settings. According to the stressing
model proposed by Kwade [13,33–35], the knowledge of these two parameters enables
the interpretation and prediction of favorable process conditions. Moreover, this makes
the dominating stressing mechanisms accessible. Different mechanisms can play a role,
depending on the process: Comminution processes with the aim of particle breakage
exhibit an optimum of energy dissipation on the local level resulting in a minimum overall
specific energy. If the collision frequency and, thus, the power input are maximized at this
optimum stressing energy, the highest production capacity at minimum specific energy
input can be achieved [12,13,34,35]. The energy needed for particle breakage is naturally
dependent on the particle size and the particle strength, so the optimum is shifted to lower
stressing energies for smaller sizes, but not linearly, as the particle strength increases [35].

In contrast, in some mechanochemical processes, the power input connected with the
resulting increase in temperature dominates the process and the effect of stressing energy on
the production rate is extremely small [16]. In this case, the stressing energies and collision
frequencies resulting in the maximum power input are advantageous. However, in the
mechanochemical synthesis of solid electrolytes, there are requirements for not only high
yields of the conversion but also certain structural properties such as crystallinity and grain
size, which are affected by the stressing energy [1,36] and influence the exhibited conduction
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properties. Therefore, as the first experimental results show, power and temperature, as
well as the intensity of stressing, need to be considered.

The stressing conditions can be controlled and their effect can be viewed in a suitable
experimental setting: By increasing the rotational speed, stressing energy, collision fre-
quency and power input are increased at the same time. In contrast, increasing the media
size leads to higher stressing energies but lower collision frequencies and a nearly constant
power input. Thus, complementary experiments enable distinguishing between the effects
of each stressing condition, and the other way around; knowing the optimum stressing
energy, the collision frequency for the highest productivity can be calculated [1,12,13].

While experimental studies often refer to the duration of a process, energy-dependent
processes should be viewed in regard to the energy dissipation within the micro processes
of breakage and chemical conversion and the overall energy demand. As shown, com-
parable process parameters do not result in comparable stressing conditions for different
mills. Consequently, when processes are transferred from one mill to another, simulations
reveal the process parameters required to keep the stressing conditions constant during
the transfer.

3.5. Comparison to a Planetary Ball Mill

In order to evaluate the results, the mechanochemical synthesis of Li6PS5Br was
conducted for selected operation parameters in the Emax (125 mL per chamber), as well as
in a planetary ball mill (80 mL per chamber).

In a first step, the same parameter setting was chosen for both mills, and the results
show larger power densities, as well as higher stressing energies and collision frequencies,
within the 80 mL planetary chamber (Figures 10 and 11), which consequently result in a
better outcome, represented by larger conductivities (Figure 12).
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A comparable power input within the Emax and the planetary ball mill is reached
when the Emax is operated at higher rotational speeds of 1200 min−1 (Figure 10). Here, the
planetary ball mill again exhibits slightly higher material conductivities; thus, the reaction
is expected to be faster, and the planetary mill is beneficial to the process. The main reason
should be the much higher collision number, as the stressing energy in the planetary mill
is lower at a similar energy and power input. Thus, altogether almost the same amount
of energy is dissipated, but the product is stressed more often. Additionally, it has to
be taken into account that the planetary ball mill is not equipped with a cooling system,
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and temperature control is only based on cooling breaks, resulting in a relatively high
temperature. Consequently, the most probably higher temperature of the planetary ball
mill should enhance the reaction and thus enhance the ionic conductivity of the resulting
product, as was reported for other mechanochemical reactions [16,37,38]. A closer look at
the effect of reaction conditions will be part of further studies focusing on the experimental
part of the mechanochemical treatment of ball mills.

Although the planetary mill can be seen as favorable in comparison to the Emax high
energy mill at the chosen parameter setting, the Emax has advantages, especially regarding
temperature control. It features larger chambers, as well as an internal cooling system, so
without needing extra time for cooling breaks, the absolute processing time is shortened
significantly, which is particularly relevant at large processing time (here 10 h). Although
larger temperatures might be advantageous with regard to the reaction, cooling is always
required at long processing times to prevent the milling equipment from being damaged.

4. Conclusions

This study focused on a simulation-based description of the stressing conditions in
the Emax high energy ball mill. Due to high stresses, in combination with the possibility
of cooling, the mill is particularly suitable for mechanochemical syntheses, which offer
great potential in the large-scale mechanochemical production of solid electrolytes, so the
solid LPS electrolyte (Li6PS5Br) was chosen as the model material. The simulation takes
the effect of the powder into account using the model parameters of friction and restitution,
which were calibrated based on experiments using powder-covered grinding media. The
simulation was successfully validated by the comparison of simulated power and the
power calculated from the heat dissipation of the mill.

Based on the simulations, mechanistic model equations were derived to describe the re-
lation of stressing conditions and operation parameters, such as rotational speed, media size
and media filling ratio. These model equations enable the estimation of the stressing condi-
tions for sulfide solid electrolytes, thus enabling the identification of favorable conditions.

At constant media filling, the collision frequency decreases significantly with increas-
ing media size, due to the lower number of media. At the same time, the coarser and, thus,
heavier media dissipate much higher stressing energies. This results in a power input that
is only slightly affected by the media size. A large effect on the power input is gained by
the rotational speed, as both stressing energy and collision frequency increase with higher
rotational speeds.

The media filling ratio also affects the stressing conditions, albeit to a lesser extent:
higher fillings, and thereby a higher mass of filling, can dissipate more energy. At the same
time, higher fillings limit the pathways of the media, which collide in shorter intervals,
resulting in increasing collision frequencies but decreasing stressing energies. Above a
media filling ratio of 0.4, the effect of stressing energy diminution dominates, resulting in
an absolute power maximum at a media filling of 0.4. However, the specific power values
that consider the energy dissipation per media reach a maximum at low fillings due to the
high stressing energies.

However, the operation at the point of maximum absolute power should be considered:
for a mechanochemical process, the variation of stressing energies is recommended based
on the investigation of the effect of different media sizes.

For a selected parameter setting the mechanochemical synthesis of LPS electrolyte was
conducted in the Emax, as well as in a planetary ball mill with similarly sized chambers.
Although operated with the same specific power input, the solid electrolyte processed
in the planetary mill exhibited higher ionic conductivities, which can be attributed to
higher collision frequencies, as well as higher temperatures, which might both be beneficial
to the product properties. However, a more detailed view of the complex effect of the
stressing conditions will be given in future studies, which will correlate the experimental
results with the applied stressing conditions. The aim is to identify which conditions
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are advantageous to reach high yields and at the same time favor structural properties
exhibiting high ionic conductivities.
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