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Abstract: Machine learning (ML) approaches have risen in popularity for use in many oil and gas
(O&G) applications. Time series-based predictive forecasting of hydrocarbon production using deep
learning ML strategies that can generalize temporal or sequence-based information within data is
fast gaining traction. The recent emphasis on hydrocarbon production provides opportunities to
explore the use of deep learning ML to other facets of O&G development where dynamic, temporal
dependencies exist and that also hold implications to production forecasting. This study proposes
a combination of supervised and unsupervised ML approaches as part of a framework for the
joint prediction of produced water and natural gas volumes associated with oil production from
unconventional reservoirs in a time series fashion. The study focuses on the pay zones within the
Spraberry and Wolfcamp Formations of the Midland Basin in the U.S. The joint prediction model is
based on a deep neural network architecture leveraging long short-term memory (LSTM) layers. Our
model has the capability to both reproduce and forecast produced water and natural gas volumes
for wells at monthly resolution and has demonstrated 91 percent joint prediction accuracy to held
out testing data with little disparity noted in prediction performance between the training and test
datasets. Additionally, model predictions replicate water and gas production profiles to wells in the
test dataset, even for circumstances that include irregularities in production trends. We apply the
model in tandem with an Arps decline model to generate cumulative first and five-year estimates for
oil, gas, and water production outlooks at the well and basin-levels. Production outlook totals are
influenced by well completion, decline curve, and spatial and reservoir attributes. These types of
model-derived outlooks can aid operators in formulating management or remedial solutions for the
volumes of fluids expected from unconventional O&G development.

Keywords: long short-term memory; Midland Basin; k-means clustering; associated gas; water
production; oil and gas

1. Introduction

The continued pursuit for reliable, affordable, and secure supplies of energy accentu-
ates the necessity for continued research into ways to economically and efficiently access
the vast amount of unconventional natural gas and oil resources that exist. Over the last
decade and a half, the application of horizontal drilling techniques coupled with advanced,
multi-stage hydraulic fracturing technologies has facilitated the widespread development
of unconventional oil and gas (O&G) reservoirs (such as shale and tight oil reserves) [1],
resulting in a revolution in the energy landscape [2–4], particularly in the United States
(U.S.).

Hydraulic fracturing methods make use of injected liquids under high pressure to
generate breakages in subsurface formations and are usually implemented where low
permeability conditions exist. The fracturing fluid is composed of a base fluid, typically
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water, constituting >98 percent of the total fluid volume [5] with the remaining contribution
coming from proppant and chemical additives. The goal of the hydraulic fracturing
process is to promote the generation of new fractures in the tight hydrocarbon-bearing
rock formations inherently low in both permeability and porosity while simultaneously
augmenting the size, magnitude, and connectivity of existing fractures to stimulate oil
and/or gas flow to wells [6–8]. Once the hydraulic fracturing process is completed, the
high in situ pressures within the reservoir as compared to the lower bottomhole pressure in
the wellbore (which can be managed via artificial lifting) prompts fluids to migrate towards
the well and be produced at the surface. The fluid that returns to the surface may contain a
combination of hydrocarbons (oil and/or gas) and water, in addition to injected chemical
additives from the hydraulic fracturing process, as well as naturally occurring materials
such as brines, metals, and radioactive materials [9]. Each constituent requires some form
of management, depending heavily on the intended endues of each, which may include
sale to market as a commodity, reuse as part of site operations, or treatment and disposal.

Horizontal wells drilled and completed in shale gas and tight oil formations make
up the preponderance of hydrocarbon production in the United States. Specifically, crude
oil production from tight formations alone reached 6.5 million barrels per day in the U.S.
through 2018, accounting for 61 percent of the total oil produced in the U.S. The U.S. Energy
Information Administration (EIA) indicates that use of horizontal wells accounted for
96 percent of the overall U.S. crude oil production from tight formations by the end of
2018 [10]. A recent surge in the development of tight oil reserves located in the Permian
Basin in western Texas and eastern New Mexico (41 percent of total tight oil production in
the U.S. in 2018) has led to considerable growth in overall U.S. crude oil production [11].

While unconventional oil (and gas) resources remain critically important in the pursuit
towards energy security, challenges persist in effectively forecasting their production
potential. For instance, productivity in unconventional reservoirs is known to be responsive
to the nature and effectiveness of the interactions between wellbore design, completion and
stimulation processes, and the inherent irregularities in reservoir conditions. As a result,
fluid production responses can be highly disparate across: (1) An entire O&G play [12];
(2) wells on a given pad targeting the same formation; or even (3) the different perforation
stages of single well’s lateral component [13]. Production forecasts hold implications
on the strategic decisions made by the O&G sector. For instance, resulting production
outlooks, depending on the long-term trajectories of fluid volumes produced, can prompt
macro-scale consequences such as potential fluctuations in oil and/or gas market prices
and associated impacts on the environment [14]. Additionally, forecasts can influence
micro-scale outcomes that ultimately shape a wide range of operating and maintenance
scenarios for field operators or even affect company profit margins. Reservoir modeling
and simulation are commonly used to inform decision makers regarding the potential
production response and long-term performance of hydraulically fractured horizontal
wells in unconventional reservoirs. These approaches can be costly in terms of the time and
computational resources needed to execute effectively [15,16]. Furthermore, difficulties
exist in attaining sufficient levels of geological data at the well level [17] to sufficiently
reflect the diversity in reservoir conditions needed to model fluid flow. This challenge
intensifies when the interest spans to multi-well performance evaluation at the field-scale
or larger.

Given the computational resources that are typically widely available and the emer-
gence of O&G digital datasets that include features associated with well completion, stim-
ulation, and production, many have taken to machine learning (ML) and data analytics
as a compliment to existing approaches for O&G production analysis [18–20]. ML-based
tactics can provide additional analytical functionality to traditional reservoir simulation
methods. They have proven effective in accurately and reliably modeling circumstances
involving highly complex systems where variable conditions are known to be prominent,
not uncommon to wellbore/reservoir relationship interactions in unconventional O&G
development. Additionally, they offer expeditious predictive capability, allowing practi-
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tioners to quickly generate multiple realizations thereby enabling greater insight into the
systems modeled [21].

A number of potential use cases exist where ML has been applied as part evaluating
the effects of hydraulic fracturing designs on hydrocarbon production in unconventional
reservoirs. As an example, several studies utilize static productivity indicators that reflects
cumulative production under a fixed time duration (i.e., six months or one year) as response
variables [22–26] to evaluate potential well response to various hydrofracking completion
designs. The use of static response variables enabled straightforward evaluation of input
feature impact rating and ranking, as well as sensitivity evaluation. The findings from
these studies have proven insightful in identifying key production drivers representative to
the study areas evaluated, as well as effective in approximating well productivity potential
given the associated completion design and placement choices. However, the findings are
not directly translatable to applications in the oil and gas space requiring more dynamic,
temporal-dependent considerations. Well history matching, hydrocarbon production
forecasting, and facilitating data-driven production outlook scenarios are examples that
come to mind [27–30].

Many studies are taking focus on using ML for dynamic reservoir analysis by evaluat-
ing time series-based topics, such as oil or gas production over the life of producing wells.
These studies are leveraging empirical data that includes daily or monthly cumulative
hydrocarbon production values over all or a portion of each well’s productive life. Many of
the relevant studies apply deep learning ML strategies in order to capture and generalize
the intrinsic temporal or time sequence-based properties within the data. Findings from
recent studies indicate that the deep learning approaches applied have been exceedingly
effective at predicting dynamic production trends accurately on holdout data. The results of
which suggests that these approaches hold substantial implications and potential viability
in production forecasting.

To gain further comprehension on O&G-related time series analysis using ML, we
provide a short review of relevant studies works that have focused on this topic. A study by
Jie et al. developed two deep learning models to predict daily gas production from a single
well completed in the Sichuan basin in China [31]. The researchers developed artificial
neural network- (ANN) based models using: (1) A fully-connected multilayer perceptron
(MLP)-based ANN with a single hidden layer and (2) a long-short term memory- (LSTM)
based ANN with stacked LSTM layer architecture. Empirical data for daily gas production
over a three-year period was used for analysis. The first 900 dataset observations were used
for model training and the last 100 observations were used for holdout model performance
testing. Input data included the data features (assumed at daily resolution) of oil pressure,
casing pressure, daily water production, cumulative gas production, cumulative water
production, and water-gas ratio. Results indicated prediction error of 1.56 percent for the
LSTM-based model and upwards of 9.66 percent for the MLP-ANN. Sagheer and Kotb
implemented deep LSTM architectures to estimate monthly oil production for two oil
fields; one was the Tarapur Block of Cambay Basin to the west of Cambay Gas Field in
India and the other in the Huabei oilfield in China [32]. They demonstrated the predictive
effectiveness in stacking LSTM layers as part of network architecture when long interval
temporal dependencies may exist as compared to model performance when shallow neural
network architectures are used. Additionally, the researchers noted that their LSTM-based
model outperformed counterpart formulations explored that were based on deep recurrent
neural networks (RNN) and Deep Gated Recurrent Unit models. The work performed by
Liu et al. included the development of an ensemble empirical mode decomposition (EEMD)
based LSTM learning network capable of time series forecasting of oil production. Case
studies were performed using empirical field data from the SL and JD oilfields, China [33].
Their proposed EEMD-LSTM configuration outperformed other model types developed
under ensembles between EEMD and MLP-based artificial neural networks and EEMD
with support vector machine.
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Collectively, these studies demonstrate the utility and capability of deep learning-
based ML (with noted effectiveness of LSTM) for time series hydrocarbon production
prediction. The knowledge gained through these works provides both a foundation as well
as an opportunity to extend these approaches to other aspects critical to O&G development
where: (1) Dynamic, temporal dependencies exist; (2) said aspects possess significant
connotations to production forecasting; and (3) that have not been extensively explored in
previous research. An obvious need that meets these criteria would be to possess the ability
for assessing the potential volumes of the associated water and natural gas produced in
tandem with crude oil. Many operators targeting oil-rich unconventional reservoirs are
faced with the challenge of managing large volumes of water and natural gas that are often
co-produced. Limited natural gas processing and pipeline takeaway capacity can force
operators to resort to venting or flaring produced natural gas.

Venting is the direct release of natural gas produced from O&G operations to the
atmosphere. Flaring involves the controlled combustion of produced natural gas at the
wellhead, converting methane to carbon dioxide and water vapor. From an environmental
standpoint, flaring is less detrimental than venting given that carbon dioxide is 25 to
28 times less potent as a greenhouse gas than methane over a 100-year period [34,35].
According to the EIA, the quantities of natural gas vented or flared from O&G wells in
the U.S. reached record levels in 2019 averaging 1.48 billion cubic feet per day (Bcf/day)
(1.3 percent of the total natural gas volume produced) [36]. Texas and North Dakota
contributed nearly 85% (1.3 Bcf/day) of all reported flaring and/or venting (only Texas
contributed to gas venting) of produced natural gas. Produced water is often managed via
disposal through deep well underground injection.

The injection of large volumes of waste water from O&G operations has been strongly
correlated to the increased frequency of occurrence of induced seismic events including
magnitude 2+ earthquakes, particularly in Oklahoma, Ohio, Arkansas, West Virginia, and
Texas [37]. Literature suggests that many are working to generate solutions and reuse
options for associated gas and water production [38–42]—but a need exists to be able to
effectively quantify and forecast produced volumes of both natural gas and water to best
inform the development of management or remedial solutions as well as grasp the potential
environmental implications for planned O&G development [43].

We propose a combination of supervised and unsupervised ML approaches as part
of a framework that can reliably estimate both produced water volumes and natural gas
associated with oil production in a time series fashion. This type of predictive modeling
capability is expected to be useful towards (1) informing well operators as part of devel-
oping strategies to ensure the effective management, treatment, or potential reuse based
on the volumes and quantities of produced fluids, and (2) supplementing hydrocarbon
production outlooks with additional fluid volumes in time series fashion. Additionally, this
work offers a novel complement to other noted O&G machine learning-based predictive
models from literature; largely achieved through its joint prediction functionality, capability
to either reproduce or forecast cumulative volumes of natural gas and water produced
alongside oil at the well level, and its applicability centered towards a major oil and gas
producing play. In addition, the ensemble of the supervised and unsupervised elements of
this work enables a means to rapidly forecast oil, water, and natural gas production at the
well level as influenced by operational development considerations.

The focus of this study is on the Permian Basin region of the U.S. The region holds
enormous consequence regarding domestic oil and gas production. According to a report
by the Texas Independent Producers & Royalty Owners Association, yearly crude oil
production in the Permian Basin has grown by 1.2 billion barrels since 2009, resulting
in a 371% increase in oil output over the last ten years [44]. This overall growth has
enabled the Permian to become the world’s top-producing oil field [45]. While the region
itself is a major producer of both oil and gas, the basin currently faces several challenges.
These include: (1) Steeper well decline rates and lower initial production (IP) values as
development is moving to non-core regions; (2) associated natural gas production has
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outpaced pipeline takeaway capacity, which has led to an increase in flaring and venting
practices; and (3) produced water volumes and associated management costs are both on
the rise [43,46,47]. Combined, these impacts threaten to potentially lower the Permian’s
overall production potential while consequently increasing the environmental burden
associated with O&G operations. Therefore, an opportunity exists to propose research
targeted towards these specific challenges and would provide beneficial outcomes to both
potentially improving recovery and estimation of the types and volumes of fluids produced
at the well level—each of which require specific management strategies and bear potential
environmental implications.

2. Data and Methods

The focus of this study is to generate a ML-based prediction model capable of time
series joint prediction of associated natural gas and water that are produced alongside oil
as part of unconventional hydrocarbon development (three-stream production example
presented in Figure 1). Secondarily, this study aims to demonstrate the utility of such a
model as a compliment to existing O&G operational management strategies.
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Figure 1. Example of oil, water, and natural gas production data for a horizontal well in northern
Reagan County, Texas producing from Wolfcamp A and placed at a total vertical depth of 7713 feet
below ground surface. Timeseries fluid data was acquired from vendor Drilling/Enverus [48].

The model is based on a deep neural network architecture leveraging LSTM layers in
order to accommodate time-dependent conditions in the data and be proficient towards
multi-output prediction. The model development workflow, described throughout the
following subsections, is interconnected with several data preprocessing steps that includes
data sub-division, engineering of new features, outlier removal, data standardization,
and feature selection. The model would have the functionality to not only replicate well
production history (the primary focus of many existing time series O&G analyses), but
also enable forward-based fluid production forecasts for existing wells throughout their
remaining productive lives, as well as be used to predict fluid volumes in time series fashion
at new (i.e., theoretical) well sites where no historic production data exists. Additionally,
the ML-based model proposed here is intended to be applicable across multiple producing
reservoirs, focusing on the “Wolfberry” pay zones (highlighted in Upper Spraberry through
Cisco/Cline [Wolfcamp D] reservoirs in Table 1). Such a model will help provide a data-
driven approach for a more holistic evaluation towards field development where multiple
producing reservoir options are co-located. The volatility that exists in oil and gas market
prices and supply and demand encourages operators to remain informed to the best extent
possible of potential risks and opportunities they may face over both the short and long
term [49]. The inherent challenges facing the Permian suggests that field development
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decision making is complex. Overall, this study proposes a modeling tool that works
towards helping inform complex field decision choices by scaling up model outputs via a
single predictive model.

2.1. Study Area

The study area for this work focuses on the Midland Basin, one of the major sub-basins
of the larger Permian Basin. The Permian Basin (Permian) is an extensive sedimentary
basin and major O&G-producing region geographically located in West Texas and the
neighboring areas of southeastern New Mexico. The Permian spans roughly 75,000 square
miles and comprises greater than 7000 fields in West Texas alone [50]. The Permian has
been important in the U.S. energy economy for nearly a century. According to the EIA,
the Permian has produced hydrocarbons for approximately 100 years and has supplied
more than 35.6 billion barrels of oil and roughly 125 trillion cubic feet of natural gas (data
as of January 2020). The Permian accounted for approximately 35 percent of the total U.S.
crude oil production and over 13% of the total U.S. natural gas production in 2019 [51]. It is
expected to remain one of the largest hydrocarbon-producing regions in the world with
remaining reserves on the order of 46 trillion cubic feet of natural gas and over 11 billion
barrels of oil [52]. The Permian contains several sub-basins and platforms that include
the westernmost Delaware Basin, Central Basin Platform, and the easternmost Midland
Basin [53]. The extent of the Central Platform and Midland sub-basins as well as the eastern
edge of the Delaware Basin is shown in Figure 2.

The Midland Basin is the eastern subbasin of the larger Permian Basin and is bordered
by carbonate platforms such as the Central Basin Platform, Eastern shelf, and Northern
shelf. The basin is at its deepest on its western edge and shallows to the east. Towards
its southernmost portion, basin’s formations start to thin towards the Ozona Arch—an
extension of the Central Basin Platform [53]. The stratigraphy within the Midland Basin
is characterized as containing several stacked geologic sequences that offer hydrocarbon
producing potential. Two stratigraphic sections within portions of the Leonardian and
Wolfcampian epochs that have been a focus of substantial O&G development are the
Spraberry (along with the Dean) and the Wolfcamp formations; collectively referred as the
“Wolfberry” [54] (Table 1). The stratigraphic groupings that make up the Wolfberry series
of reservoirs serve as the primary producing pay zones of interest evaluated in this study.

Table 1. Stratigraphic description for a subset of the Midland Basin, Texas. The producing reservoirs
of interest to this study are highlighted (Spraberry in pink and Wolfcamp in yellow). This figure was
generated from collective content compiled from lithostratigraphic interpretations of the Permian
Basin from several literature sources [51,53,55–60].

Era Period Epoch Local
Series

Stratigraphic/Formation
Name

Reservoir Operational
Name

Paleozoic

Permian

Guadalupian Ward
San Andreas San Andreas

San Angelo/Glorieta San Angelo/
Glorieta

Leonardian

Clearfork Upper Leonard
Upper Spraberry
Lower SpraberryWichita

Dean

Spraberry

Lower Leonard Wolfcamp Wolfcamp A
Wolfcamp B

Wolfcampian Wolfcamp
Wolfcamp C

Pennsylvanian

Virgilian Cisco/Cline Wolfcamp D
Missourian Canyon Canyon

Des Moinesian Strawn Strawn
Atokan Atoka/Bend Atoka/Bend
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The Lower Permian aged (Leonardian epoch) Spraberry and Dean formations are
made up of interbedded turbidite sands, laminated siltstone, carbonate, and organic-rich
shales [57]. The Spraberry consists of upper- and lower-unit intervals [61,62] (certain inter-
pretations include a middle Sprayberry and Jo Mill as well [63,64])—the Dean formation
is located stratigraphically beneath the Lower Spraberry. Each stratigraphic unit is distin-
guished by its lithologic composition. For instance, each of the three formations consists
of thick sequences of fine-grained sandstones and siltstones that lie on top of an equally
thick lower unit made up of black shales and dark carbonates [65]. The formations are
known to be generally under-pressured (averaging 800–900 psi [5.4–6.1 MPa]) with matrix
porosity ranging from 6 to 15 percent, matrix permeability below 10 md, and are highly
naturally fractured [54,66,67]. The average true vertical depth to the top of the Upper
Spraberry unit is roughly 6800 feet across the Midland Basin. The complete section from
the top of the Upper Spraberry to the base of the Dean ranges in thickness between 1200
and 1870 feet [54]. Similar to other unconventional hydrocarbon plays, productivity in the
Spraberry fluctuates across the basin [68].

The early Permian aged (Wolfcampian-Leonardian epoch) Wolfcamp is described as
a mixed siliciclastic-carbonate succession with stacked stratigraphic units comprising of
cyclic gravity flow deposits—each separated by mudstone and siltstone [51]. The Wolfcamp
is described by Sutton [54] as a dual-lithology system consisting of organic-rich shale with
interbedded limestone. Lower reservoir quality portions of the Wolfcamp are associated
with the presence of grainy carbonate facies, whereas higher reservoir quality portions have
been tied to the occurrence of siliceous mudstones [69]. The entire section of the Wolfcamp
ranges in porosity between 2 and 12 percent with average permeability near 10 millidarcies
(mD) [51]. The formation varies substantially across the Midland Basin in terms of depth,
thickness, and lithologic composition. The Wolfcamp is at its deepest near the center of
the Midland Basin, measuring approximately 12,000 feet deep. It shallows substantially
towards the edges of the basin, varying in depth from 4000 to 7000 feet [54]. The thickness
of the entire section of the Wolfcamp averages around 1800 feet. The Wolfcamp is extensive
throughout the Permian Basin and is considered one of the most abundant unconventional
O&G plays worldwide. The Wolfcamp formation has been appealing to O&G operators
given its stacked configuration, in which multiple thick hydrocarbon-producing zones exist
in sequence [70]. The stacked intervals of the Wolfcamp formation are called benches—from
shallow to deep they are referred to as A, B, C, and D. Each bench has shown to be different
in terms of its overall lithology, fossil content, total organic carbon content, and thermal
maturity [71]. Saller et al. (1994), Blomquist (2016), and Peng et al. (2020) provide detail on
the geologic composition of the Wolfcamp and various benches within and therefore the
differentiation is not described at length here [72–74]. Recent development efforts in the
Midland Basin are preferentially targeting the more oil-rich Wolfcamp A and B (roughly
95 percent of total Wolfcamp production) opposed to the more gas-rich Wolfcamp benches
C and D [71,75].
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Figure 2. Map of the study area in the Midland Basin, Texas. Well data used for the study was
acquired from DrillingInfo/Enverus [76]. The geographic information system (GIS) layers applied to
support the generation of this figure were acquired from the University of Texas at Austin [77] and
United States Geological Survey [78].

The Permian region and associated sub-basins have been known to produce large
volumes of natural gas and water that are co-produced with oil. A study by Kondash
et al. has noted that Permian Basin wells have increased the water used per well as part of
hydraulic fracturing operations from 30,800 barrels per well in 2011 up to 267,325 barrels
per well in 2016—a 770 percent increase [79]. The flowback and produced water volumes
during that same timespan had increased over 400 percent; averaging 56,610 barrels per
well in 2011 to over 232,700 barrels per well in 2016. Specifically, in the Midland Basin,
waste water disposal volumes derived from O&G operations have steadily increased since
2011, reaching approximately 4.5 billion barrels per day in 2017 [80].

In 2017, flaring and venting of natural gas in the Permian basin in Texas and New
Mexico was estimated at nearly 300 million cubic feet per day (MMcfd), roughly 4.4 percent
of the total gas produced that year. In that same year, the Midland Basin produced
approximately 1019 billion cubic feet (Bcf) of natural gas, and flared 24 Bcf of that total
(2.35 percent of all gas produced) [81]. In 2019, flaring and venting of natural gas in
the Permian reached an all-time record high based on the year’s third quarter estimates,
averaging 752 MMcfd (275 Bcf total) [82]. The Midland Basin portion of 2019 flaring ranged
from approximately 150 to 290 MMcfd [83].

Well data leveraged for this study (described further in Section 2.2) are grouped based
on the associated targeted producing reservoirs listed in Table 1. Wells are tabbed as either
“Spraberry/Dean” or “Wolfcamp” dependent upon their associated Stratigraphic/Formation
Name. The wells used as part of this study are plotted in Figure 2; they are colored based on
their associated producing formation and sized based on each well’s initial oil production
(in barrels [bbls]/month).
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2.2. Study Data Overview and Data Processing

Much of the well completion and production-related data used for this study is
acquired from the O&G data vendor DrillingInfo/Enverus [76]. Other features were derived
through feature engineering to further supplement the available feature dataset. The dataset
contains features related to well production performance attributes, Arps decline curve
attributes [84], well completion attributes, and spatial and reservoir attributes—all specific
to horizontal production wells spanning the Spraberry/Dean and Wolfcamp producing
intervals (highlighted in Table 1) in the Midland Basin with drilling initiation dates within
the 1 January 2010 to 30 June 2020 timeframe. The dataset includes a combination of static
(well data that does not change over the well’s productive lifetime) and dynamic features
(well data with temporal dependencies—mostly three-stream production data) for the
wells meeting these screening criteria. This database query yields data for approximately
6480 wells in total in which each well has data reported for all features of interest (both static
and dynamic features) and duplicate entries are omitted. No attempts at data interpolation
with respect to missing values occurs in this study.

The distributions of the static study features of interest are evaluated to screen and
remove potential outlying well data and refine the overall dataset. Their distributions are
presented in Figure 3. Data outside of +/− 3 standard deviations from a given feature’s
mean value (grey margins within subplots in Figure 3) are considered outlying and possibly
highly influential on ML model response [85,86]; even if distributions are not explicitly
gaussian. All outlying data is removed from the static and dynamic contributions to the
dataset (approximately 270 wells had features meeting outlying criteria). The resulting
dataset consists of 6210 wells in total extending across 12 Texas counties, the extent of
which is plotted in Figure 2 and the descriptive statistics for features from these wells are
summarized in Table 2.
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Table 2. Statistical summary of the study dataset features evaluated.

Dataset Features Data Group Static Dynamic Mean Median Standard Deviation

Monthly Oil (bbls)

Well
Performance

Attributes

X 4863 2429 6448
Monthly Gas (Mcf) 1 X 12,500 7906 13,846
Monthly Water (bbls) X 8510 3572 13,496

Top 12 Months Gas (Mcf) X 251,286 207,532 182,648
Top 12 Months Oil (bbls) X 124,320 114,314 70,210

Top 12 Months Water (bbls) X 226,856 197,664 157,721
EUR Gas (MMcf) X 1,732,470 1,171,682 1,722,215

EUR Oil (bbls) X 449,302 380,333 326,663

Initial Oil Production (bbls) 2

Decline Curve
Attributes

X 20,807 19,675 11,593
Initial Decline (fraction/month) X 0.35 0.36 0.13

b-factor X 1.2 1.0 0.2
Timestep Cumulative (months) X 25.3 21 18.8

Perforation Length (foot)

Well
Completion
Attributes

X 8480 8302 1959
Proppant per foot (lbs) X 1732 1718 548
Water per foot (bbls) X 43 44 14

Additive per foot (bbls) X 2.9 2.4 2.4
Azimuth (degrees) 3 X 166 163 8

Nearest Well Distance (feet) X 438 231 838
Percent in Zone (percent) X 97 100 10

True Vertical Depth (feet)
Spatial and
Reservoir
Attributes

X 8571 8828 993
Thickness (feet) X 460 415 188

Surface Hole Latitude (degrees) X 31.8253 31.7971 0.4093
Surface Hole Longitude (degrees) X −101.7740 −101.8346 0.3204

1 Mcf = thousand cubic feet. 2 DrillingInfo/Enverus quantifies initial oil production as the cumulative production
volume observed during a given well’s first full month of production [48]. 3 All wellbore azimuth trajectories
based on true north = 0 degrees.

The features within each data group from Table 2 have a specific role as part of the
hydraulic fracturing and oil/gas production process. The breadth of data features available
within the study dataset affords the opportunity to explore a multitude of aspects related
to unconventional oil and gas production in the Midland Basin. Data groupings and their
associated features are briefly described next.

• Well Performance Attributes: These features relate to fluid production for wells in the
study dataset. The dynamic features within the data group represent summation of
the three-stream (oil, gas, and water) empirically-derived monthly values at the well
level provided by DrillingInfo/Enverus. Data for these dynamic features is available
for each month in a given well’s productive lifetime. Therefore, the volume of this data
varies across wells depending on when they began production and how long wells are
kept online. The “Top 12-months” static features for oil, gas, and water were derived
via summation of the 12 largest observed values for each well based on monthly
dynamic feature data. This approach has been implemented in our prior work [12,23]
and has proven to effectively represent productivity potential for unconventional wells
that may or may not have been subject to disruptions to their production time series
profiles. Both the Top 12-months Oil and Gas features correlate strongly to well level
estimated ultimate recover (EUR) as indicated in Figure 4. The static EUR features
represent an estimation of the technically recoverable reserves at the well level. They
are calculated by DrillingInfo/Enverus [87] using a combination of historic production
data and a combination of Arps decline curve models [84].

• Decline Curve Attributes: These features are inherent to decline curve analyses based
on the Arps decline curve model [84]. The Arps model can be used to evaluate
oil and/or gas declining production rates over time. Time-dependent reduction in
hydrocarbon production can be attributed to reduced reservoir pressure as well as
the relative change in the volumes of the produced fluids. The approach can also be
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used to forecast hydrocarbon production into the future. The Arps approach is based
on fitting a mathematical decline model (either exponential, hyperbolic, or harmonic)
to empirical observations of an asset’s (i.e., well) performance history [88]. Well
features related to initial (oil) production, the initial decline, and degree of curvature
(b-factor) are the parameters related to the Arps model. Values for these features for
each well in the study dataset have been determined by Drillinginfo/Enverus [87].
The DrillingInfo/Enverus approach solves for the most appropriate Arps model
parameters that minimize the sum of squared errors based on empirical production
values for a given well [87]. DrillingInfo/Enverus restricts b-factors between 0 and
2. The b-factor is typically greater than 1 in unconventional shale plays given the
inherent low permeability rock matrix and resulting extended duration of transient
flow [89]; potentially a derivative of the bulk of empirical observations with shorter
producing timeframes [90].

• Well Completion Attributes: These features pertain to each well’s design and comple-
tion attributes as it relates to well placement, orientation, and hydraulic fracturing
design. The major hydraulic fracturing design features include the length of the perfo-
rated interval contacting the reservoir and the volume of proppant, water, and additive
used for hydraulic fracturing normalized to a per foot of perforated interval basis.
Proppant includes solids that may vary in size, shape or material type. They typically
consist of sand or engineered materials (i.e., resin-coated sand or high-strength ce-
ramic materials such as sintered bauxite) and are used to keep reservoir fractures open
and conductive following hydraulic fracturing [91]. Additives may serve a variety
of functions, with examples including the assurance of effective transport of water
and proppant downhole and throughout the reservoir, as well as to ensure sustained
hydrocarbon recovery after hydraulic fracturing. Specific components can tend to
vary from one well to another and from operator to operator. However, example con-
stituents include acids, friction reducers, biocides, pH adjusters, scale inhibitors, iron
stabilizers, corrosion reducers, gelling agents, and cross-linking agents [92,93]. Other
important well design characteristics captured in the dataset relate to the wellbore
lateral orientation, spacing distance to nearby wells, and the portion of the horizon-
tal perforated length within the targeted producing reservoir zone of interest. The
directional alignment (reflected by azimuth) is often a design choice by field operators;
one that is driven by the natural orientation of in situ stresses in targeted reservoir
producing zones. Horizontal segments of wells that are drilled along the minimum
horizontal stress often produce transverse fractures following horizontal fracturing.
This form of fracturing may improve drainage efficiency. As a result, well laterals
oriented properly on azimuth given natural in situ stress regimes may experience
higher productivity [5,92]. Well azimuth was approximated based on the geographic
orientation between each well’s surface hole latitude and longitude and lateral toe
latitude and longitude. Well spacing may provide insight into the field operator’s antic-
ipated drainage area based on the applied water and proppant intensity. Additionally,
spacing-related data can be helpful in determining if closely-spaced wells suffer from
possible interference from hydraulic fracturing operations (i.e., frack hits) or effects
from parent/child well interactions [94,95] from nearby wells. We approximated the
nearest well distance for each well in the dataset using the haversine formula and
bottom hole latitude and longitude coordinates to its closest well neighbor prior to
any dataset reduction. Percentage in zone is a metric which provides an indication
of the wellbore geo-steering efficiency of the horizontal lateral component. Drilling-
Info/Enverus provides this data readily for each well. Wells with a high portion of
their perforated segment in the targeted producing zone are more likely to be better
producers than those wells expected to deviate substantially off target. Each feature
in this data group is treated as static. In actuality, many of these features, such as
proppant, water, and additive per foot, could essentially vary over the life of any given
well due to refracturing campaigns.
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• Spatial and Reservoir Attributes: The features included attempt to best approximate
the variability that may exist in the geologic conditions which influence hydrocarbon
prominence and producibility that span the reservoirs of interest across the study
domain. True vertical depth and thickness (i.e., reservoir thickness) are provided from
DillingInfo/Enverus for each well. However, other relevant geologic characteristics
that are known to influence hydrocarbon production, such as total organic carbon,
porosity, hydrocarbon and/or water saturation, thermal maturity, reservoir pressure,
existence of fracture networks, and capacity of the reservoir(s) to be hydraulically
fractured [96–99], are not directly or readily available in bulk. Additionally, many of
these features are dynamic in nature and change over the duration of hydrocarbon pro-
duction (such as fluid saturation and pressure in the reservoir), while others essentially
remain static (such as porosity and thermal maturity) [100]. Each well’s locational
data (surface latitude and longitude) is used as a contingency means to approximate
geologic conditional variability known to vary spatially across the study area—an
approach widely used in other ML-based model development efforts occurring over
large spatial horizons [22,26,27,101].

A correlation matrix using Pearson’s Product-Moment Correlation is presented in
Figure 4 which provides quantitative indication of the linear relationship between each of
the various static features of interest. The analysis represented in Figure 4 is informative
specifically due to the fact that: (1) it suggests how attributes correspond to other attributes,
as well as with potential model outputs; and (2) it serves as a diagnostic check on data
quality to ensure data features are related in a fashion that is intuitive and confirmatory
based on heuristic understanding of the Midland Basin.
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The Pearson correlations alone highlight a number of noteworthy trends. For instance,
Figure 4 shows several positive relationships between many of the well performance at-
tributes representing fluid production with well completion attributes specific to hydraulic
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fracturing design. The attributes of top 12-month oil, water, and gas, as well as the esti-
mated EUR per well for both oil and gas are all positively correlated with increasing values
of perforation length, proppant, and water per foot. These relationships suggest greater
production results from well completion and hydraulic fracturing design upscaling; a
concept noted by others [22–24]. Additionally, the decline curve attributes show correlation
to both the well performance and well completion attribute features. Initial oil production
is mostly positively correlated to these attributes, while initial decline (for oil), as expected
is negatively correlated. The b-factor component is mostly uncorrelated to all features in the
dataset with the exception of a positive correlation to oil EUR, and therefore holds influence
over a well’s longer-term productive profile. Finally, worth noting are the correlations
associated with reservoir thickness and true vertical depth based on well location in the
basin. Moving west to east in the basin (based on surface hole latitude), Figure 4 suggests
the reservoirs become both shallower and thinner. In contrast, reservoirs trend thicker and
deeper when moving south to north (based on surface hole longitude). These correlations
are as expected based on interpretations of Midland Basin reservoir depth and thickness
isopaches and interpretations generated by the EIA [53,102], Hamlin and Baumgardner [61],
and Blomquist [74]. Based on this analysis, the dataset following outliers removed appears
representative and suitable for use in ML model development.

2.3. Data Preprocessing Prior to Model Training and Testing

An important data preprocessing step is applied that scales attribute data to consistent
ranges in order to (1) afford equal consideration to all attributes, (2) improve training
efficiency and, (3) increase numerical stability of the resulting models [103]. The data
scaling approach was implemented to both the static and time series parameters prior
to use in the following feature selection and ML model development steps (described in
Sections 2.4 and 2.5). For the feature selection and clustering, input and response features
were standardized to Z-values (Z) per Equation (1). For model training regarding the time
series joint associated fluid production model, all features were scaled (i.e., normalized in
this case) between 0 and 1 using linear mapping via Equation (2):

Z =
x− µ

σ
(1)

xnormalized =
x−minx

maxx −minx
(2)

where x represents feature values, µ is the feature mean value, σ is the feature standard
deviation, and minx and maxx represent the respective minimum and maximum values for
each dataset feature. The Z-score standardization step in Equation (1) rescales data for each
parameter to a standard normal distribution with a mean of 0 and a standard deviation
of 1. The data transformation from Equation (2) is used as a variant to the zero mean,
unit variance standardization from Equation (1). The authors have gleaned from recent
experience the effectiveness of 0 to 1 scaling in deep learning ML applications [104–107]
and are therefore applied it here. Predictions using finalized ML models are rescaled to
their normal unit ranges.

Following data standardization and/or normalization, project dataset features were
apportioned and merged into distinct dataset aggregates for use dependent upon the
machine learning model workflow they would be applied against. The workflows include
feature selection (Section 2.4), clustering (Section 2.5.1), or joint time series prediction
(Section 2.5.2). Each workflow utilized a distinct aggregate of the full project dataset.
However, the data features that were carried forward to each framework were largely
dependent on the results from the feature selection, described in Section 2.4.

2.4. Feature Selection Approach

Features (i.e., variables) that are strongly correlated are therefore linearly dependent
and may have almost correspondingly similar (if positively correlated) or opposing (if
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negatively correlated) effects on dependent variables of interest. The Pearson correlation
metric (presented in Figure 4) is limited to assessing linear relationships concerning two
features. However, important functional relationships between two or more features may
exist which may not be linear in nature. This can be true even if Pearson correlation
coefficients are close or equal to 0 [108].

Feature selection involves a systematic process to down-select a subset of the most
relevant features within the study dataset that strongly contribute to the ML model pre-
diction response. Utilizing fewer features (and eliminating redundant or non-informative
features) enables ML algorithms to train faster and more efficiently as well as decreases
the likelihood of ML algorithms overfitting to irrelevant input features [109]. This study
utilized recursive feature elimination with cross validation (RFECV) as a feature selection
approach. The objective was to establish a final set of input features from the variety avail-
able per Table 2 that would be commonly applied as part of both the clustering evaluation
and the development of the time series joint associated fluid production model.

The feature elimination component of the RFECV process searches for a subset of
features by starting with all features in the training dataset and fitting a ML algorithm
which is used as the estimator [109,110]. The estimator is trained on the original set of
features considered. A total of 14 input features (i.e., x data) are included in this study
which comprise variables associated with the “Well Completion Attributes”, the “Spatial
and Reservoir Attributes”, and the Top 12-months Oil listed in Table 2, as well as two
categorical variables that label the production wells evaluated based on their producing
reservoir group—either the Wolfcamp or Spraberry/Dean formations. Two features were
used as responses (i.e., y data) which comprise of the Top 12-month Water and Top 12-
Month Gas. Static data (e.g., Top 12-month Water or Gas) was used exclusively as part of
the RFECV instead of dynamic time series data (e.g., Monthly Water) in order to enable
more efficient training of the estimator model. The importance of each feature is acquired
following model training. The feature(s) with the lowest importance are then pruned from
original set of features [111,112]. The procedure is recursively repeated on the pruned set
and resulting model accuracy is calculated for each iteration—the process continues until a
single feature remains. The desired number of features can then be established [112,113];
typically set at the number of features that maximizes model performance, or where the
inclusion of additional features does not substantially improve model performance.

Random forest (RF) was used as the estimator in the RFECV process for this study.
RF-based models are considered advantageous in RFECV [114], most notably since they
possess the ability to measure the importance of each feature [115] based on mean decrease
impurity (described effectively by Hur et al. [116]). Prior to use in RFECV, the RF estimator’s
hyperparameters were tuned via k-fold cross-validation using five folds. In this process,
four folds of the training dataset are amassed to train models, and the remaining fifth fold
was used to test (i.e., validate) the performance of resulting prediction models. The step
was repeated so that each fold was ultimately used once for model validation while the
other k − 1 folds constitute the training set [117]. An exhaustive grid search occurs as part
of the cross-validation loop to tune hyperparameters. The RF estimator formulated on all
14 input data features is built on four folds training data for distinctive hyperparameter
combinations evaluated [118] as part of the grid search. Trained models were then used to
make predictions against held out fifth fold validation data. The process is repeated for
each combination of hyperparameters evaluated. The RF-specific hyperparameters tuned
as part of cross-validation includes (1) the number of trees in each forest ensemble and
(2) the minimum number of samples needed to split an internal node. The maximum depth
corresponding to each tree (i.e., limits the number of nodes in each tree) was unbounded.
The RF hyperparameter combination that provided for the best prediction accuracy while
avoiding over or underfitting was used for RFECV.

The RFECV process also involved k-fold cross-validation using five folds. For each
of the five RFECV fold iterations, 14 RF models were generated with the feature subset
size decreasing from 14 to 1. Resulting prediction model performance was evaluated
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by explained variance per Equation (3) which can effectively evaluate the multi-output
response nature of the RF estimator.

explained_variance(y, ŷ) = 1− Var{y− ŷ}
Var{y} (3)

where ŷ is the predicted value, y is the observed value, and Var is the variance (or square of
the standard deviation). The selected feature set from this process was then utilized as the
input features for performing the clustering analysis as well as for the time series-based
joint associated fluid production model. The results from RFECV is then used to inform
the feature sets used for both the clustering and time series machine learning steps of this
study (described in Sections 2.5.1 and 2.5.2 respectively).

2.5. Machine Learning Model Development and Evaluation

This section describes the various ML approaches implemented as part of this study,
the contribution of each towards the study objectives, and how their performance accuracy
was quantified. The ML approaches utilized included both supervised and unsupervised
methods, as well as the use of deep learning. Static data features that remained following
RFECV step were incorporated in ML-based workflows. Python (version 3) and packages
within the scikit-learn library [119] and Keras [120] were leveraged as part of the ML
workflow implementation.

2.5.1. Clustering Evaluation

The majority of the static features within the study dataset underwent evaluation via
k-means clustering [121], an unsupervised ML approach, prior to the development of the
joint associated fluid production model. This step was intended to identify congregations
of closely related wells based on their well completion, decline, well performance, and
spatial and reservoir attributes (Table 2). The goal of this step was to be able to harvest Arps
Decline properties (b-factor, initial production, and initial decline discussed previously)
and well completion attributes representative of given clusters; from which oil production
forecasts can be generated at the well level.

The k-means clustering process determines an optimal number of clusters based on
the input dataset features incorporated. Assuming dataset A of V-dimensional entities
ai ∈ A, for i = 1, 2, . . . , N, with N being the number of data entities in the dataset, k-
means creates K number non-empty separate clusters S = {S1, S2, . . . , SK} proximal to
centroids C = {c1, c2, . . . , cK}, by iteratively minimizing the sum of the within-cluster sum
of squared distances (WK, show in Equation (4)) between each centroid and the data entities
associated [122].

WK = W(S, C) =
K

∑
k=1

∑
i∈Sk

d(ai, ck) (4)

The term d(ai, ck) in (4) is the distance between data entity ai and the associated centroid
location ck. In this study, k-means analysis was performed over a wide arbitrary range
of values set to K = 1 through 30 to ensure sufficient volumes of clusters are evaluated to
determine an optimal.

Two heuristic algorithms were applied to determine the optimal number of clusters—
the Elbow method [123] and Hartigan’s Rule [124]. The Elbow method can be used to
visually evaluate Wk as a function of the number of clusters. The optimal number of
clusters occurs at the point in which adding another cluster does not result in a substantial
improvement to Wk. However, determining the optimal number of clusters through a
visual determination approach such as the Elbow Method can be highly subjective to the
evaluator’s judgement. Hartigan’s Rule provides an alternative cluster determination
approach and is based on comparing the resulting Hartigan’s Index, which is a ratio
between the Euclidean within-cluster sum of squared error based on k number of clusters
(i.e., Wk) to that based on k + 1 clusters (Wk+1). The rule utilizes the notion that when
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clusters are effectively separated, Hartigan’s Index (H(K)) becomes ≤10 and is taken as k to
be the optimal number of clusters.

The optimal number of clusters was determined based on the resulting H(K) for each
K = 1 through 30 evaluated. The Elbow Method was applied in tandem to provide a visual
heuristic complement to the resulting optimal K derived from Hartigan’s Rule.

2.5.2. Time Series Joint Associated Fluid Production Model

For forecasting under time series circumstances, a deep learning neural network based
on Long Short-Term Memory was developed for the joint prediction of associated water
and natural gas production as part of oil production operations (referred to as the joint
associated fluid production model [model]). The model objective is to provide the capability
to reproduce as well as forecast water and natural gas volumes produced at a given well
at monthly resolution based on the well’s: (1) Monthly oil production volume; (2) explicit
spatial and reservoir attributes (limited to the Spraberry/Dean and Wolfcamp Formations)
in the Midland Basin; (3) specific well completion attributes; (4) producing month number
(i.e., Timestep Cumulative data per Table 2), and (5) prior three-stream (oil, gas, and water)
production volumes relative to current time (t) = montht−1, montht−2, montht−3, and
montht−4.

LSTM are variants of Recurrent Neural Networks (RNN) which include memory func-
tions that enable networks to learn long-term dependencies. The conceptual basis behind
RNN is to utilize information where sequential dependencies exist so that output response
is influenced by prior, yet relevant elements in sequence. The inherent RNN “memory”
feedback component provides differentiation from “feedforward” neural networks (e.g.,
multilayer perceptron) where input data are independent from one another and strictly
flow from input to output [125]. As a result, RNNs are effective in evaluating sequences of
data, but are subject to gradient vanishing and struggle to handle longer-term sequential
dependencies [126]. LSTM is a choice RNN-based architecture for dealing with noted short-
comings under circumstances where temporal dependencies exist that span over several
time steps. Additionally, LSTMs have been shown to outperform and be advantageous to
traditional-based algorithms for time series forecasting such as autoregressive integrated
moving average (ARIMA) models [127,128].

The LSTM concept was first introduced by Hochreiter and Schmidhuber in 1997 [129]
and subsequently expanded and adapted by other since. LSTMs utilize a memory cell
structure (Figure 5) to handle both shorter and long-term dependencies in time series
datasets [130]. Short-term memory is captured as input from previous timestep cell output
(ht−1). The long-term memory component is reflected in the cell state (Ct−1). LSTM memory
cells have the ability to add or omit information to the cell state (i.e., Ct−1 → Ct), but only
does so through carefully regulated structures called gates. Network gates consist of either
sigmoid or hyperbolic tangent (tanh) activation coupled with pointwise multiplication
operations.
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Given the input data vector at time step t (Xt) and the previous time step LSTM cell
output (ht−1) instituted, the hidden state output for current LSTM cell (ht) is calculated per
the sequence discussed in the following bullets [129,134]:

• First, the forget game (ft) is utilized to determine information that becomes omitted
away from the cell state. New information introduced to the LSTM memory cell via
ht−1 and Xt undergoes sigmoid transformation, the result of which is output between
0 (becomes fully omitted) and 1 (becomes fully included) for each number in the cell
state Ct−1 per Equation (5).

ft = σ(U f Xt + W f ht−1 + b f

)
(5)

• The second step involves determining new information to be stored in the cell state;
this step occurs through two separate parts. The input gate (it) applies sigmoid
activation to ht−1 and Xt and is used to inform values that will be updated in the
cell state per Equation (6). Additionally, tanh activation generates a vector of new
candidate values (Zt), which could be included in the cell state per Equation (7).

it = σ(UiXt + Wiht−1 + bi) (6)

Zt = tanh(UzXt + Wzht−1 + bz) (7)

• The prior cell state Ct−1 is updated with new information to a new cell state Ct, via
Equation (8):

Ct = ftCt−1 + itZt (8)

• The final step generates output (ht) that leverages memory from the cell. The output is
a function of the new cell state Ct that undergoes some filtering via tanh activation as
well as from output from the output gate (ot). The mathematical expressions for these
steps are presented in Equations (9) and (10).

ot = σ(UoXt + Woht−1 + bo) (9)

ht = ot × tan h (Ct) (10)

The equation variables pertaining to U and W include, respectively, the weights to the
input data (Xt) and recurrent (ht−1) vectors. The b term is the bias for each gate.

Model architecture (Table 3) and hyperparameter settings were ultimately determined
via trial and error opposed to a more systematic approach such as cross-validation (CV)
with grid-search. The deep learning-based model requires a fairly extensive training
duration (trained on a personal computer requiring approximately five seconds to train per
epoch), therefore a holistic grid-search approach with CV to refine hyperparameter settings
was not considered practical. Ultimately, the model network consists of four hidden units
comprised of two stacked LSTM layers in a recurrent network fashion and two dense layers.
All hidden layers utilize sigmoid activation. The stacked LSTM architecture was used
given the noted successes demonstrated from comparable studies such as Sagheer and
Kotb, Utgoff and Stracuzzi, and Jie et al. that found improved modeling generalization
with deep, stacked structures over shallower architectures [31,32,135]. The hidden layer
sizes were set to vary as a function of the input size (input shape = 24 features) by 2×,
4×, 4×, and 2× accordingly. A masking layer was used as the network input layer. The
masking layer facilitates the omission of timesteps as part of sequence processing where
input data are noted as missing. Prior to model training, well-level input data time series
sequences are encoded via zero padding (post) into consistent sequence lengths [136].
Setting consistent sequence lengths for each well enables contiguous batch sizes as part of
model training and resetting of LSTM cell states following each batch. The masking layer
informs the network to skip timesteps where all input data = 0. The output layer enables
regression-based prediction and is a dense layer with linear activation consisting of two
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neurons; one handling the predicted response for natural gas production and the other
handling the predicted response for water production. All neurons are fully connected (no
dropout applied) between model layers.

Table 3. Summary of network architecture for the joint associated fluid production model.

Layer Type Activation Output Shape Trainable Parameters

Masking Not Applicable (None, 1, 24) 0
LSTM Sigmoid (None, 1, 48) 14,016
LSTM Sigmoid (None, 1, 96) 55,680
Dense Sigmoid (None, 1, 96) 9312
Dense Sigmoid (None, 1, 48) 4656
Dense Linear (None, 1, 2) 194

The inclusion of the dynamic well performance attributes of monthly oil, gas, and
water production results in a dataset size with 561,661 observations (224,421 of which are
not subject to zero padding) spanning 5561 wells at monthly resolution. Wells with less
than 12 months of production data were omitted from model training. The portion of the
project dataset used as part of the joint associated fluid production model development was
randomly segmented into training, validation, and testing datasets through an 80/10/10
percentage-based split. This approach implements a training, validation, and testing split
that maintains the temporal order of observations from the project dataset by keeping the
entire productive timeframe for a given well intact. For instance, 10 percent of the dataset
wells (based on American Petroleum Institute well ID number) were selected at random
to isolate a test dataset. All associated static and dynamic data was appropriately cross-
referenced to each well for use in model development. The same process was conducted
on the remainder of the dataset to isolate an additional 10 percent to serve as a validation
dataset. The data from the remaining 80 percent of the wells was used for training as part
of model training.

Early stopping was applied as an additional regularization step to combat overfitting.
This approach monitors the predictive performance of the model for every epoch during
training against predictions on the held-out validation set (56,156 observations; 21,732 of
which are not subject to zero padding) as a proxy for generalizing error. Model training
was discontinued when validation error was minimized conditional to the use of a patience
tolerance of 25 epochs. Model weight optimization was determined under mini-batch
gradient descent using the “Adam” adaptive learning rate optimization algorithm [137],
a batch size = 101 which is equal to the sequence length for each well with zero padding
applied, and epochs = 1000. The learning rate was set at 0.0001. Keras default settings for
first and second-momentum estimate decay rates as well as epsilon were used as part of
Adam implementation. Once trained, model performance accuracy was evaluated on the
10 percent subset holdout test data (56,156 observations; 23,044 of which are not subject to
zero masking). This step also provided additional confirmation that models were not over
or underfit. The performance metrics used as part of model training, early stopping, and
testing evaluation are discussed in Section 2.5.3.

The model is easily employed to replicate a given well’s historic water and gas pro-
duction with the use of required input data for the given month of interest. To generate
prediction forecasts for future time instances, we employed a recursive prediction approach
as explained by Ji et al. [138]. This strategy involves implementing the model in a t + 1 one
step ahead prediction functionality under multiple iterations through the desired prediction
horizon (t + h); where the prediction for the prior month (t) is used as an input for making
a prediction for the following month (t + 1). Assuming well completion attributes do not
change over time, these input features can be simply carried forward for all timesteps
predicted. However, oil production is a dynamic, time-dependent input and required
for forecasting water and gas volumes. Therefore, oil production forecasts that serve as
inputs to the model must be derived from another means; potentially reservoir simulation
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output, a separate ML oil production predictive model, or even though analytical methods
proposed by the likes of Fetkovich [88] and Arps [84].

2.5.3. Model Performance Evaluation

Our model performance was evaluated for the supervised learning-based joint associ-
ated fluid production model in two specific instances; (1) during model training against
both the training and validation data sets and (2) through analysis of goodness-of-fit for
simulated predictions against the test dataset. During model training, mean squared error
(MSE) is used as the loss function. Performance of the model is quantified by MSE at
each epoch against both the training and validation datasets; the latter provides an overall
generalization error estimate as well as an indication to potential overfitting if training and
validation MSEs begin to diverge substantially [139]. MSE is mathematically represented
in Equation (11):

MSE = N−1
N

∑
i=1

(yi − ŷi)
2 (11)

where N represents the length of the dataset, yi is the observed value, and ŷi is the simulated
or predicted response value.

The finalized joint associated fluid production model prediction performance was
evaluated by making predictions against the test dataset. A combination of MSE, root mean
squared error (RMSE), and R2 are used to evaluate model performance accuracy. RMSE
corresponds to the mean error between predicted and observed values and reflects the
variance of errors independent of sample size. As with MSE, smaller RMSE values are
associated with reduced mean error between predicted and ground-truth data compared to
model predictions where higher RMSE values occur [115]. RMSE provides a compliment to
MSE and R2, one expressed in the units of the response variable(s) of interest. The R2 metric
signifies the degree of correlation between simulated and observed values and is defined
as the regression sum of squares (SSRegression) divided by the total sum of squares (SSTotal).
R2 values are proportional to the data being evaluated and range between 0 and 1—higher
values represent smaller variations between the ground truth data and predicted values
and lower values may suggest little to no correlation exists. RMSE and R2 are described
mathematically in Equation (12) and Equation (13) respectively:

RMSE =

√√√√N−1
N

∑
i=1

(yi − ŷi)
2 (12)

R2 =
SSRegression

SSTotal
= 1− ∑N−1

i=0 (yi − ŷi)
2

∑N−1
i=0 (yi − y)2 (13)

The overbar above variables per Equation (13) indicates the mean value for the com-
plete dataset of ground truth observations considered.

2.6. Oil Forecasting

Monthly oil production estimates are needed in order to predict the associated gas and
water production for wells in the study area using the LSTM-based deep learning time series
joint associated fluid production model. We utilized the Arps decline curve model [84]
to enable oil forecasts, either for (1) new (theoretical) wells where no historic production
exists or (2) to extend historical production for existing wells. The Arps hyperbolic decline
model, common for lower permeability shale production [140], is applied per Equation (14)
to forecast oil production at the well level:

q =
qi

(1 + bDit)
1
b

(14)
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where q is the monthly oil production (bbls/month), qi is the initial oil flow rate (bbls/month),
b is the decline component which is dimensionless, Di is the initial decline constant (frac-
tion/month), and t is the production month (month). The Arps models have shown to
provide for reliable hydrocarbon history matches (even in cases with b > 1) and affords
simplicity in their use [141]. However, the hyperbolic model can tend to over approximate
reserves when extrapolated without constraints to long-term transient flow considera-
tions [140,142]. Therefore, in this study, Equation (14) is only applied to forecast oil in short
durations (limited to 60 months).

3. Results and Discussion

The following subsections outline key results as part of model development, evalu-
ation, and application associated with the various machine learning workflows applied
throughout the study to enable joint associated fluid production time series prediction
capability.

3.1. Feature Selection Results

The feature selection step using RFECV and feature importance evaluation helps estab-
lish final sets of input features that can be applied as part of both the clustering evaluation
and the development of the time series joint associated fluid production model. Results
from this analytical step are described here, but can be found in detail in Appendix A.
Informed from the findings from RFECV and importance evaluation, two distinct dataset
aggregates (in addition to the set used for feature selection) are created; one for clustering
and another for the time series-based joint associated fluid production model training and
testing (Table 4).

Table 4. Summary of feature inclusion for the various dataset aggregates. Each feature is demarcated
for inclusion into the associated dataset aggregates as an input feature (x) or a response feature (y).

Dataset Features Data Group Feature Selection Clustering Joint
Time Series Prediction

Monthly Oil (bbls) (t through t − 4)

Well Performance
Attributes

x
Monthly Gas (Mcf) (t through t − 4) y

Monthly Water (bbls) (t through t − 4) y
Top 12 Months Gas (Mcf) y x
Top 12 Months Oil (bbls) x x

Top 12 Months Water (bbls) y x
EUR Gas (MMcf)

EUR Oil (bbls)

Initial Oil Production (bbls)
Decline Curve

Attributes

x
Initial Decline (fraction/month) x

b-factor x
Timestep Cumulative (months) x

Perforation Length (foot)

Well Completion
Attributes

x x x
Proppant per foot (lbs) x x x
Water per foot (bbls) x x x

Additive per foot (bbls) x x x
Azimuth (degrees) x x x

Nearest Well Distance (feet) x x x
Percent in Zone (percent) x

True Vertical Depth (feet)

Spatial and Reservoir
Attributes

x x x
Thickness (feet) x x x

Surface Hole Latitude (degrees) x x x
Surface Hole Longitude (degrees) x x x

Wolfcamp (yes/no) x
Spraberry/Dean (yes/no) x
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Table 4 highlights the specific dataset features that make up each dataset aggregate.
Based on findings from RFECV, 11 static features were selected and three omitted from the
feature selection dataset for consideration in analysis moving forward. The down-selection
includes omission of the features with the three lowest values of feature importance; which
include percent in zone and the two categorical variables demarcating wells completed in
either the “Spraberry/Dean” or “Wolfcamp” formations. The remaining data features are
used for each of the following associated subsequent project tasks described in Section 3.2
(clustering) and Section 3.3 (the joint time series associated fluid production model).

3.2. Cluster Analysis

The results from the k-means clustering analysis are exhibited in Figure 6. Clustering
results are presented in the context of both the Elbow method and Hartigan’s rule; both
of which are used in tandem to select a representative number of well clusters from the
study dataset where adding another cluster does not result in any substantial improvement
to within-cluster sum of squared error. The visual heuristic results for the Elbow method
suggest an appropriate cluster count falls somewhere between roughly 17 and 21 clusters
(Figure 6A). The Hartigan Solution in Figure 6B explicitly identifies 18 clusters as optimal,
and that adding the 19th cluster (where 19 is the k + 1 cluster where the Hartigan Index
ratio between k and k + 1 is ≤10) results in negligible reductions to within-cluster sum of
squared error.

Wells within the study dataset were mapped to their corresponding cluster and then
plotted to inspect clustering distribution across the study area (Figure 7). An initial obser-
vation is that the resulting distribution of well clusters appears influenced by more so than
just three-dimensional placement characteristics. For instance, clusters five and 14 (dark
green and dark purple respectively) span a large area and occur over a variety of burial
depths. Although the specific reasoning for cluster assignment is not analyzed in detail
as part of this study, it is likely that non-spatial features related to well completion design,
well performance, and reservoir thickness were influential for the commonalities of wells
in these clusters. However, in certain cases, wells within certain clusters are in close spatial
proximity. This seems true for cluster eight (red) in the southern portion of the basin as
well as cluster 15 (light yellow) in the northeast portion of the basin. Table A2, presented in
Appendix C in this study, provides a summary of descriptive statistics for wells making up
each cluster.
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Arps decline properties can be extracted that are representative of the wells common
to each cluster. These properties can then be used to forecast oil production at the well
level using the Arps model per Equation (14). Figure 8 shows the distribution of the Arps
decline properties for each cluster. Based on the distribution of these properties across
clusters, oil production trends, and therefore associated gas and water, are expected to vary
across clusters as well.
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Figure 8. Box-and-whisker plots of Arps decline curve attributes calculated for wells within each
cluster; including (A) initial oil production, (B) initial decline, and (C) b-factor. Boxes extends from
the 25th to 75th quantile values of the data. A line occurs at the median (50th quantile). Green
triangles occur at the mean value. Whiskers extend to the minimum and maximum values of the
data absent outliers.

Multiple one-way Analysis of Variance (ANOVA) were conducted to evaluate the
similarity or disparity of the Arps decline properties within and across each cluster as
a way to statistically infer and differentiate variability in oil production trends across
clusters. ANOVA is a parametric statistical technique used to compare different datasets—
specifically equality associated with their means and the relative variance between
them [143–145]. In this case, the independent variable evaluated was the cluster num-
ber, which included 18 levels [0 through 17]. The dependent variables included initial
oil production, initial decline, and b-factor. Null hypotheses are rejected at a significance
level of α = 0.05. ANOVA can provide insights into the overall significance of the well
clusters and corresponding Arps decline properties, but the test cannot inform exactly
where differences lie. Following ANOVA, Tukey’s Test [143,146] are used post-hoc to
compare pairs of means for Arps decline attributes for which null hypotheses are rejected
across each of 18 well clusters. The overall significance level is assumed α = 0.05 for testing
pairwise mean comparisons. ANOVA results yielded significant variation for all Arps
attributes among well cluster as a condition, p < 0.05. No Arps attribute was determined to
be insignificant based on well cluster groupings. Therefore, a Tukey’s test was performed
for each of the three Arps attributes across the 18 well clusters. The post hoc Tukey’s test
(Table A1—shown in Appenix B) highlights which clusters, and therefore Arps decline
attributes, differed significantly from cluster to cluster at α = 0.05. Clusters in Table A1
(shown in Appendix B) that do not share a Tukey’s Group are considered significantly
different from each other. The Tukey’s Group lettering [A through L] are order based
on the cluster with the highest mean value for the given attribute of interest relative to
the other Tukey’s Groups. Tukey’s test results indicate that out of 18 different clusters,
there are 12 statistically different cluster given initial oil production groupings (A–L), only
eight statistically different cluster exist regarding initial decline (A–H), and 10 statistically
different clusters in regard to b-factor (A–J). From an Arps model perspective, higher oil
productivity is tied to larger values of initial oil production and b-factor and smaller values
of initial decline. The analysis of variance and Tukey’s pairwise comparison tests are
performed using Minitab 18 Statistical Software.

3.3. Joint Associated Fluid Production Model Training and Performance

The predictive performance of the model as a function of training epoch is presented
in Figure 9. The figure depicts the associated model loss (as MSE where model predictions,
training data, and validation data values are in normalized form between 0 and 1) following
the update of network weights prompted by new estimates of the error gradient following
each training epoch. Given the consistency of the trends in validation and training loss, the
model appears to demonstrate a suitable fit to the training data with no suggestion of over
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or underfitting, indicating the model’s overall effectiveness at generalizing associated fluid
production. The application of early stopping ended model training after 918 epochs, re-
sulting in a minimal generalization gap between training (1.16 × 10−4 MSE) and validation
(1.15 × 10−4 MSE) performance.
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The model’s predictive performance summary against both the training and test
dataset set is compared in Table 5. Performance metrics presented in Table 5 are based on
the response data transformed from normalized states per Equation (2) back into original
units (Mcf and bbls) relative to each fluid stream. Overall, there is little disparity for model
performance between the training and held-out test data, as well as marginal difference in
the model’s ability to predict either water or gas.

Table 5. Model results for prediction on the training and test dataset.

Predicted Value
Training Data Test Data

R2 MSE RMSE R2 MSE RMSE

Monthly Gas (Mcf) 0.930 7.63 × 106 2762 0.931 7.54 × 106 2746
Monthly Water (bbls) 0.914 6.72 × 106 2593 0.899 7.35 × 106 2710

Joint Prediction (Monthly Water and Gas) 0.922 7.17 × 106 2679 0.915 7.44 × 106 2728

The prediction performance is visually compared with observed data from the test
dataset in Figure 10. The parity plots (Figure 10A,C) provide a visual depiction of the
model’s prediction to actual observed water or gas production on a monthly basis. The R2

metric (listed in Table 5) is used to quantify the correlation of actual to predicted monthly
production data as part of the comparison in Figure 10. Model performance that would
perfectly generalize production trends would have an R2 of one, and all data would fall
exactly along the black dotted lines (i.e., 1-to-1 match) provided for reference. The model’s
joint predictive capability is fairly strong overall; however, the model is slightly more
accurate at predicting monthly gas on holdout data compared to water. Data is color coded
by producing formation and sized by the production month to provide visual indicators
for potential glaring trends in residual patterns. Fortunately, none seem to exist given that
no irregularities in model residuals for either formation occur based upon visual inspection
of the Figure 10 parity plots.
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Figure 10. Parity plots of model performance comparing predicted values for monthly gas (A) or
water (C) against actual values (i.e., observations) for wells in the test dataset. Additionally, the
density of data within plot area pixels is provided for gas (B) and water (D). Density plots zoom to
focus on the 0 to 80,000 bbls or Mcf fluid volume range where the majority of test data occurs.

Figure 10B,D also features visual depictions of the density of data within each pixel
of the x and y plotting area. Pixel coloration is based on the amount of data at a given
x and y pixel. Viewed in isolation, the parity plots can be a bit challenging to assess the
distribution of data around the 1-to-1 line given the large volume of data presented within
and the spread throughout the plotting space. The density plots emphasize where higher
aggregations of data fall and where model residual (variation from the 1-to-1 line) are
most prominent. The majority of monthly gas and water predictions compared to test
data actuals fall along the 1-to-1 line and residuals appear evenly distributed at all fluid
production volumes. Density plots are zoomed in to focus on the 0 to 80,000 bbls or Mcf
fluid volume range where the majority of test data occurs.

Figure 11 shows replication of the production history for water and gas for four
different randomly selected wells within the test dataset. Predictions using the joint
associated fluid production model stop when known production observations end. Solid
lines in Figure 11 depict actual production data for oil (green), water (blue), and gas (red)
from each of the four wells. Red and blue dots indicate prediction responses for LSTM-
based joint associated fluid production model. For reference, a brief review of each well
evaluated in Figure 11 is provided in the bullets below:

• Well 1: Located in central Martin County producing from the Lower Spraberry with
an 8409-foot perforated length, and placed at a total vertical depth of 9334 feet below
ground surface.
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• Well 2: Located in northern central Midland County producing from the Wolfcamp
B with a 7142-foot perforated length, and placed at a total vertical depth of 9673 feet
below ground surface.

• Well 3: Located in southeastern Midland County producing from the Wolfcamp B
with a 6722-foot perforated length, and placed at a total vertical depth of 9383 feet
below ground surface.

• Well 4: Located in western Martin County producing from the Wolfcamp C with a
4855-foot perforated length, and placed at a total vertical depth of 10,031 feet below
ground surface.
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Figure 11. Replication of production history using the joint associated fluid production model for
four test dataset wells.

Prediction results in Figure 11 are encouraging given the favorable replications of water
and gas production profiles, even under circumstances that include irregular production
trends. Worth noting is that the actual production trends for oil, water, and gas for each of
the four wells evaluated are dissimilar in nature, yet the model is effective in replicating
production profiles. Noted discrepancies in predictions to actual monthly flows seem to
most commonly occur when highly transient (i.e., spikes or rapid falloffs) events transpire.
However, given that the model input features are heavily dependent on prior timestep
flows for oil, water, and gas, the model appears to adjust to transient events in making next
timestep predictions.

Results to this point have been based on comparison of model prediction to replicate
known production flows from wells within the test dataset. However, one of the func-
tionalities of a time series-based model lies in the ability to forecast into the future where
no observations exist. We implement the model under a recursive multi-step forecasting
strategy as a way to predict gas and water production trends past existing wells’ known
producing timeframes, as well as for generating production outlooks for new, theoretical
well sites. Under this strategy, the model is used to make a prediction at time t, then the
predicted values are appended to the input dataset to serve as prior month flow input data
for predicting at time t + 1. Oil predictions via the Arps model are incorporated as part
of the input dataset to enable prediction at time t, t + 1, through t + h where h = the total
producing months prediction horizon. This process is repeated in a recursive manner until
the t + h is reached. A simple exponential forecast smoothing function [147] is applied at
t > 24 months where the t + 1 prediction is a sum of model’s t + 1 estimate plus the prior
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t value in a weighted 90/10 percentage contribution. Past the t > 24 months producing
timeframe, observed monthly water and gas values for wells in the study dataset are
frequently at the scale (or lower) of the model prediction error (roughly 2500 to 2600 RMSE
in Mcf or bbls per month as per Table 5). The smoothing approach ensures stability in the
forward predictions as part of the recursive implementation of forecasts.

Since the joint associated fluid production model is a purely data driven model, it
may be limited at making sound predictions for: (1) circumstances where low quantities
of data to train models exists; and (2) timeframes that extend far beyond the extent of the
production durations for wells in the training data. Over 80 percent of the wells in the study
dataset have well production timeframes less than 60 months (Figure 12). After 60 months,
the volume of well data becomes sparse, especially for Spraberry/Dean wells. Additionally,
as discussed in Section 2.6, the application of the Arps model over the long-term with high
b-factors using the hyperbolic model may overestimate hydrocarbon production. Plus,
the recursive prediction strategy can suffer from error accumulation and propagation,
particularly when the forecasting horizons increase [148,149]. These potential limitations
serve as the basis for setting our constraint to limit forecasts to shorter-term predictions.

Results in Figure 13 show forecasted production for oil, water, and gas for four
different wells; three of which (Wells A, B, and C) are existing wells selected from the
test dataset and the fourth (Well D) is a theoretical well based on the dataset mean values
for input features common to Cluster 13 (see Table A2 in Appendix C). Cluster 13 was
selected as an example for analysis here since it contains a realitvely large mean initial
oil production and encompases a substantial portion of the well count from the study
dataset; the majority of which are Wolfcamp wells. Forecasts using the joint associated
fluid production model intentionally stop at 50 months under all cases regardless of well
production history. Solid lines in Figure 13 depict actual production data for oil (green),
water (blue), and gas (red). Red, green, and blue dots represent the montly forecasts for the
Arps (oil) and joint associated fluid production model (water and gas).

Processes 2022, 10, x FOR PEER REVIEW 28 of 44 
 

 

at t > 24 months where the t + 1 prediction is a sum of model’s t + 1 estimate plus the prior 
t value in a weighted 90/10 percentage contribution. Past the t > 24 months producing 
timeframe, observed monthly water and gas values for wells in the study dataset are fre-
quently at the scale (or lower) of the model prediction error (roughly 2500 to 2600 RMSE 
in Mcf or bbls per month as per Table 5). The smoothing approach ensures stability in the 
forward predictions as part of the recursive implementation of forecasts. 

Since the joint associated fluid production model is a purely data driven model, it 
may be limited at making sound predictions for: (1) circumstances where low quantities 
of data to train models exists; and (2) timeframes that extend far beyond the extent of the 
production durations for wells in the training data. Over 80 percent of the wells in the 
study dataset have well production timeframes less than 60 months (Figure 12). After 60 
months, the volume of well data becomes sparse, especially for Spraberry/Dean wells. 
Additionally, as discussed in Section 2.6, the application of the Arps model over the long-
term with high b-factors using the hyperbolic model may overestimate hydrocarbon pro-
duction. Plus, the recursive prediction strategy can suffer from error accumulation and 
propagation, particularly when the forecasting horizons increase [148,149]. These poten-
tial limitations serve as the basis for setting our constraint to limit forecasts to shorter-term 
predictions. 

 
Figure 12. Stacked (left y-axis) and cumulative (right y-axis) histograms of well counts within the 
study dataset based on the production timeframe for each well. 

Results in Figure 13 show forecasted production for oil, water, and gas for four 
different wells; three of which (Wells A, B, and C) are existing wells selected from the test 
dataset and the fourth (Well D) is a theoretical well based on the dataset mean values for 
input features common to Cluster 13 (see Table A2 in Appendix C). Cluster 13 was 
selected as an example for analysis here since it contains a realitvely large mean initial oil 
production and encompases a substantial portion of the well count from the study dataset; 
the majority of which are Wolfcamp wells. Forecasts using the joint associated fluid 
production model intentionally stop at 50 months under all cases regardless of well 
production history. Solid lines in Figure 13 depict actual production data for oil (green), 
water (blue), and gas (red). Red, green, and blue dots represent the montly forecasts for 
the Arps (oil) and joint associated fluid production model (water and gas). 

Figure 12. Stacked (left y-axis) and cumulative (right y-axis) histograms of well counts within the
study dataset based on the production timeframe for each well.



Processes 2022, 10, 740 28 of 43Processes 2022, 10, x FOR PEER REVIEW 29 of 44 
 

 

 
Figure 13. Gas and water prediction forecast using the joint associated fluid production model lev-
eraging oil forecast outlooks generated from the Arps model. 

For reference, a brief review of each well evaluated in Figure 13 is provided in the 
bullets below: 
• Well A: Located in northern Upton County producing from the Wolfcamp A with a 

7745-foot perforated length, and placed at a total vertical depth of 9476 feet below 
ground surface. 

• Well B: Located in western Irion County producing from the Wolfcamp B with a 
10,114-foot perforated length, and placed at a total vertical depth of 6709 feet below 
ground surface. 

• Well C: Located in southern Glasscock County producing from the Wolfcamp A with 
a 10,261-foot perforated length, and placed at a total vertical depth of 7976 feet below 
ground surface. 

• Well D: Theoretical well representative of Cluster 13 (see Table A2 in Appendix C 
for specifics) based on a 9870-foot perforated length, an initial monthly oil production 
of 26,324 bbls, and placed at a total vertical depth of 9128 feet below ground surface. 

4. Oil, Gas, and Water Production Outlook 
The joint associated fluid production model has been applied in combination with 

the Arps model to generate oil, gas, and water production outlooks for each of the 18 
clusters identified in Section 3.2 (Table 6). The outlooks were generated at the well level 
for a single hypothetical well representing each cluster. The hypothetical wells that repre-
sent each cluster are attributed well completion, decline curve, and spatial and reservoir 
attributes set to the cluster’s mean value for each. Outlooks include the cumulative first 
and five-year estimates for production totals (Table 7). The suite of data presented in Table 
A2 in the Appendix C is a digest of attribute statistics (most notably mean, standard de-
viation, and interquartile range [IQR]) as well as cumulative production outlook estimates 
from the combination of the Arps and joint associated fluid production models for each 
cluster. Additionally, this collection of data is intended to serve as a guiding resource for 
assessing the potential volumes of produced fluids associated with oil production in the 
Midland Basin based on well completion design considerations and placement within the 
basin. 

Figure 13. Gas and water prediction forecast using the joint associated fluid production model
leveraging oil forecast outlooks generated from the Arps model.

For reference, a brief review of each well evaluated in Figure 13 is provided in the
bullets below:

• Well A: Located in northern Upton County producing from the Wolfcamp A with a
7745-foot perforated length, and placed at a total vertical depth of 9476 feet below
ground surface.

• Well B: Located in western Irion County producing from the Wolfcamp B with a
10,114-foot perforated length, and placed at a total vertical depth of 6709 feet below
ground surface.

• Well C: Located in southern Glasscock County producing from the Wolfcamp A with
a 10,261-foot perforated length, and placed at a total vertical depth of 7976 feet below
ground surface.

• Well D: Theoretical well representative of Cluster 13 (see Table A2 in Appendix C for
specifics) based on a 9870-foot perforated length, an initial monthly oil production of
26,324 bbls, and placed at a total vertical depth of 9128 feet below ground surface.

4. Oil, Gas, and Water Production Outlook

The joint associated fluid production model has been applied in combination with the
Arps model to generate oil, gas, and water production outlooks for each of the 18 clusters
identified in Section 3.2 (Table 6). The outlooks were generated at the well level for a single
hypothetical well representing each cluster. The hypothetical wells that represent each
cluster are attributed well completion, decline curve, and spatial and reservoir attributes
set to the cluster’s mean value for each. Outlooks include the cumulative first and five-year
estimates for production totals (Table 7). The suite of data presented in Table A2 in the
Appendix C is a digest of attribute statistics (most notably mean, standard deviation, and
interquartile range [IQR]) as well as cumulative production outlook estimates from the
combination of the Arps and joint associated fluid production models for each cluster.
Additionally, this collection of data is intended to serve as a guiding resource for assessing
the potential volumes of produced fluids associated with oil production in the Midland
Basin based on well completion design considerations and placement within the basin.
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Table 6. Inventory of first year and cumulative five-year production estimates for a hypothetical
representative well within each Midland Basin Well Cluster.

Response Feature Outlook Year
Midland Basin Well Cluster Number: 0 through 8

0 1 2 3 4 5 6 7 8

Cumulative Oil (Mbbls)
1st year 77 111 147 100 38 181 86 82 73
5-years 154 282 275 183 74 346 156 169 145

Cumulative Gas (Bcf)
1st year 0.16 0.20 0.25 0.15 0.12 0.27 0.25 0.13 0.22
5-years 0.29 0.58 0.62 0.23 0.23 0.60 0.76 0.21 0.79

Cumulative Water (Mbbls)
1st year 154 230 268 181 102 304 200 162 182
5-years 289 587 545 347 175 659 358 324 328

Response Feature Outlook Year
Midland Basin Well Cluster Number: 9 through 17

9 10 11 12 13 14 15 16 17

Cumulative Oil (Mbbls)
1st year 141 89 80 87 160 135 129 237 50
5-years 281 173 168 167 328 265 279 465 91

Cumulative Gas (Bcf)
1st year 0.26 0.14 0.12 0.15 0.31 0.22 0.22 0.34 0.12
5-years 0.57 0.19 0.16 0.27 0.91 0.50 0.45 0.85 0.27

Cumulative Water (Mbbls)
1st year 271 185 170 171 306 249 265 373 111
5-years 574 364 287 332 684 515 621 879 178

Table 7. Summary of the highest and lowest predicted production totals and associated cluster
groups.

Metric
Oil Production Natural Gas

Production Water Production Gas-to-Oil Water-to-Oil

Mbbls Cluster Bcf Cluster Mbbls Cluster Bcf/Mbbl Cluster Mbbl/Mbbl Cluster

Highest 1st year 237 16 0.34 16 377 16 0.0014 16 1.59 16
Highest 5 years 465 16 0.91 13 879 16 0.0020 11 1.89 11
Lowest 1st year 38 4 0.12 4 and 11 102 4 0.0032 4 2.68 4
Lowest 5 years 74 4 0.16 11 175 4 0.0022 8 2.36 4

The predictions for each cluster appear aligned to typical volumes of in-field produc-
tion trends for wells in the Midland Basin. For instance, our predicted production totals
in Table 7 when compared in the context of water-to-oil and gas-to-oil ratios appear in
range with those reported in literature [49,150–152]. For instance, the ratios from estimated
production throughout the first producing year from Table 7 values range from approxi-
mately 1.57 to 2.68 bbls/bbls for water-to-oil across clusters (with a mean of 2.03]) and 1.43
to 3.15 thousand cubic feet (Mcf)/bbl for gas-to-oil across clusters (with a mean of 1.94).
Cumulative produced water and gas (to-oil) estimates after 5-years or production are in
the ranges reported by Rassenfross [49] and Kondash et al. [79] respectively. Additionally,
the predictions capture increasing gas-to-oil ratio trends as wells becomes older [153];
not uncommon to unconventional plays, particularly when production causes reservoir
pressures to fall below the bubble-point [154].

Table 7 highlights several major takeaways from the digest presented in Table 7;
particularly the cluster groups estimated to have the highest or lowest totals for (1) oil, gas,
and water production per well, as well as (2) associated fluids normalized to a barrel of oil
produced. The results indicate that Cluster 16 is the best oil producer for the first producing
year and through five years of production. Cluster 16 also is noted to be comparatively
efficient versus other clusters based on the ratio of associated fluids volumes produced with
oil; particularly for the first year of production. Cluster 4 is the lowest oil producing cluster
and highly inefficient regarding the associated fluids volumes produced with oil. Cluster 1
produces some of the largest volumes of associated water and gas, but only produces oil
near the average for all clusters. As a result, Cluster 1 is one of the most inefficient clusters
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in terms of oil to gas and oil to water production ratios in addition to Cluster 4. Clusters
3, 5, 11, and 16 are noted as relatively more “efficient” clusters than others based on their
higher oil to gas and oil to water producing ratios for both the first producing year and
through 5 years. Overall, clusters 1, 4, 6, 8, and 17 appear to be the least efficient regarding
associated fluid production normalized to oil.

We performed one last analytical case study using the data in Table 7 to generate
production volume outlooks in regards to associated fluid production in the Midland
Basin. Specifically, first and five-year production outlooks are generated at the basin-level
under three development scenarios that comprise of a new fleet of wells built on different
contributions of wells common to certain cluster groups. The scenarios include:

• Scenario 1: high efficiency development—25 percent contribution of wells from clus-
ters 3, 5, 11, and 16

• Scenario 2: low efficiency development—20 percent contribution of wells from clusters
1, 4, 6, 8, and 17

• Scenario 3: diversified development—contribution of wells from each cluster ran-
domly assigned under equal probability per cluster

An average of 1842 wells have been spud per year in Spraberry/Dean and Wolfcamp
formations in the Midland Basin from 2017 to 2019 based on the study dataset. The
generated outlooks under each of the three scenarios evaluated are therefore based on a
theoretical new well fleet of 1842 wells in each scenario. Production outlooks for oil, water,
and gas volumes produced from the new well fleet in the first year and through five years
of production are shown in Figure 14.
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Figure 14. Oil, water, and gas production volumes under three different development scenarios for
the Midland Basin. Each scenario assumes 1842 new wells drilled and completed.

First year production volumes range from approximately 132,000 to 275,000 Mbbls
oil, 304,000 to 473,000 Mbbls water, and 335 to 405 Bcf of gas across the three scenarios
constructed. Production volumes through five years extend from 276,000 to 535,000 Mbbls
oil, 599,000 to 1,000,000 Mbbls of water, and 847 to 969 Bcf of gas. Results emphasize
the notion that development choices regarding well design and placement (varied here
by clusters implemented) have considerable implications on resulting fluid production
outlooks. Worth noting is that under Scenario 1, where well deployment is limited to the
clusters with the highest oil to associated fluid efficiencies, the largest volumes of associated
water are produced compared to other scenarios. Associated gas, however, is the lowest out
of all three scenarios. On the other hand, well development under Scenario 2 results in the
lowest comparative volume of oil produced, but also generates the highest 5-year volumes
of associated gas compared to other scenarios. Additionally, produced fluid volumes are
likely to scale accordingly based on the number of wells that come online. Additional
deployment scenario analyses could be explored using data in Table A2 to evaluate the
influence of coupled well design, placement, and volume on produced fluid outlooks.
Based on the approximate percentage of gas flared to gas produced in the Midland Basin
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per Leyden (2.35 percent of total), roughly 20 to 23 Bcf of gas would be flared over the
five-years of production based on the results presented in Figure 14.

While this is a relatively straightforward example, it is nonetheless effective for quan-
tifying produced volumes of both natural gas and water based on potential O&G devel-
opment considerations. The outlooks can aid operators when formulating management
or remedial solutions for the volumes of fluids expected. However, this analysis only
includes production outlooks for the new wells considered and does not incorporate legacy
production from wells producing prior to the installation of the new well fleet or those
wells that come online afterwards. Production outlooks for natural gas or oil are highly
dependent on a multitude of factors, including the typical production profiles of individual
wells over time, the cost of drilling and operating those wells, the prospective economic
return generated by those wells, the prevailing economic conditions related to O&G supply
and demand, the intensity in which new wells are drilled, completed, and turned online,
and the available prospective area remaining for a given play [29,155–157]. Forecasting
associated water and gas would also be subject to similar factors. Therefore, alternative
scenario formulations could be used to reflect different basin development outlooks than
the one’s analyzed here.

5. Conclusions

In this paper, we have introduced a data-driven modeling framework that combines
supervised and unsupervised ML approaches. The findings from this study suggest that the
approach and combination of machine learning strategies provides for a capable time series
predictive model that can be used to either reproduce or forecast cumulative volumes of
natural gas and water produced alongside oil at the well level. The intent of the supervised
learning component was to produce a deep learning-based model with the capability to
generate reliable estimates of produced water and natural gas in a time series manner
based on well completion and placement decisions. The unsupervised learning aspect
established groupings of related wells, enabling a straightforward method to deduce Arps
Decline, well completion, and reservoir and spatial attributes characteristic of each cluster
group. The ensemble of the supervised and unsupervised elements of this work facilitates
a means to forecast oil, water, and natural gas production at the well level as influenced by
specific development considerations. Well level three-stream production volumes can be
used to scale up outlooks at the pad, field, or basin-level (as demonstrated in Section 4).
The framework has been applied to the producing extent of the “Wolfberry” within the
Midland Basin. However, since the overall analytical approach is based on readily available
datasets common to public sources, it could be easily modified for use in other mature
unconventional O&G producing regions.

Major environmental concerns regarding shale O&G development are associated to
water usage, induced seismicity via wastewater disposal, and flaring (and possible venting)
of produced natural gas. The framework presented in this study can be leveraged to
help support the formulation of management and/or remedial strategies based on the
volumes of fluids expected from unconventional O&G development operational conditions.
Study results have highlighted the variability in noted water and gas volumes produced
depending on wellbore design and placement considerations—a finding which suggests
that forecasting is a nontrivial task. Table 6, Table 7, and Table A2 provide quantitative
insight that can reduce the burden in estimating associated fluid production for future wells.
Data compiled in Table A2 summarizes the potential volumes of produced fluids associated
with oil production across the study area given well completion design considerations
and placement within the basin. These data can be used to build out three-stream fluid
production outlooks for the Midland Basin. Forward-looking production outlooks for oil,
water, and natural gas as highlighted in Figure 14 are highly dependent on the nature
of well design and placement considerations of the subsequent fleet of wells (as well as
legacy production from existing wells). However, many of these design choices that would
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determine the composition of the out-year fleet of wells can be strongly influenced by
external economic or market-driven factors.

Potential follow-on work could be beneficial in addressing possible limitations and
imposed constraints in the research presented here; as well as build off of the opportunities
this study creates. For instance, the within-cluster variation in decline curve, well com-
pletion, and spatial and reservoir attribute data noted in Table A2 affords the opportunity
towards a more stochastic analytic approach as a complement to the deterministic strategy
using mean values presented in this study. A potential area for improvement to the study
in regards to the model development pertains to limited access to geologic data which
could be used as inputs. Readily available geologic data at the well level in large volumes
is uncommon. Nevertheless, the inclusion of additional geologic characteristics that are
known controlling factors to unconventional oil and gas recovery [158] may provide added
utility in data-driven ML modeling. Additionally, our study was without access to key
time series data pertaining to how wells were operated (i.e., choke, bottom-hole pressure,
lift type), the result of which presents a challenge in integrating the human element as
part of the forecasting component. In regards to forecasting oil production, gradual or
abrupt changes in the producing rate of a well due to reservoir depletion, fluctuation in
bottom-hole producing pressure, and changes in conditions in or immediately adjacent to
the wellbore are not directly considered when using the Arps models alone. Lastly, poten-
tial model performance improvement gains might be realized thorough the development
of separate models for predicting monthly water and gas individually instead of in joint
fashion.
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Appendix A. Feature Selection Results Overview

The hyperparameter combination selected via grid search cross-validation for the RF
estimator used as part of RFECV included a formulation of 5050 trees and a minimum of
two samples to split an internal node.

Figure A1 depicts the predictive performance of the RF estimator based on the num-
ber of features employed as part of training and cross-validation testing. For this study,
explained variance for each model iteration across the range of features selected are normal-
ized relative to the number of features included resulting in the highest explained variance.
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As a result, the number of features resulting in the estimator with the highest explained
variance has value equal to 1, and all others less than 1. Once the number of features is
reduced below six, the estimator’s predictive performance begins to diminish as more
features are omitted as part of estimator training. In contrast, estimator performance gains
are marginal at best when the number of features included in training are greater than six;
with an optimal range between six and eleven features.
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The ranking importance of each feature based on the estimator formulation with all
14 features included as part of training is presented in Figure A2. The ranking is based on
the “relative” importance of each feature to that of the feature with the highest importance.
The values for importance for each feature are normalized relative to the most import
feature then scaled by 100. As a result, the feature with the highest importance has a value
equal to 100, and all others less than 100. Examination of the feature importance ranking
and magnitude indicates that oil production (reflected as Top 12 Months Oil) is the most
important estimator feature for joint prediction of Top 12 Months Water and Top 12 Months
Gas (static proxies for Monthly Gas and Monthly Water dynamic data features). The Top
12 Months Oil static data feature serves as a proxy for Monthly Oil, which is a dynamic
feature that changes with time. The following three features (latitude, longitude, and true
vertical depth) specify the three-dimensional coordinates for well horizontal placement
within the basin. This finding suggests that the associated geological characteristics of the
producing reservoirs which vary spatially and with burial depth are important contributors
to the associated fluid response. Feature ranks five through seven (perforation length,
water per foot, and proppant per foot) are notable well completion design attributes.



Processes 2022, 10, 740 34 of 43

Processes 2022, 10, x FOR PEER REVIEW 35 of 44 
 

 

acteristics of the producing reservoirs which vary spatially and with burial depth are im-
portant contributors to the associated fluid response. Feature ranks five through seven 
(perforation length, water per foot, and proppant per foot) are notable well completion 
design attributes. 

 
Figure A2. Summary of feature importance for the RF estimator used as part of RFECV. 

The feature importance values in Figure A2 are used in concert with RFECV results 
from Figure A1 to inform the feature selection process. As a result, 11 static features are 
selected and three omitted from feature selection dataset for consideration in the cluster-
ing and time series analysis. This down-selection includes omission of the features with 
the three lowest values of importance; which include percent in zone and the two categor-
ical variables demarcating wells completed in either the “Spraberry/Dean” or 
“Wolfcamp” formations. The removal of three features and inclusion of the remaining 11 
coincide with the RFECV upper bound feature range count presented in Figure A1 where 
explained variance remains high. 

As mentioned in Section 3.1, the feature selection step helps to systematically finalize 
sets of input features that can be applied as part of both the clustering evaluation (Section 
3.2) and the development of the time series joint associated fluid production model (Sec-
tion 3.3). 

Appendix B. Tukey’s Test Results on Arps Attributes by Cluster 
The results from the Tukey’s test performed one each of the three Arps attributes 

across the 18 well clusters is presented in Table A1. The post hoc Tukey’s test highlights 
which clusters, and therefore Arps decline attributes, differed significantly from cluster to 
cluster at α = 0.05. 

  

Figure A2. Summary of feature importance for the RF estimator used as part of RFECV.

The feature importance values in Figure A2 are used in concert with RFECV results
from Figure A1 to inform the feature selection process. As a result, 11 static features are
selected and three omitted from feature selection dataset for consideration in the clustering
and time series analysis. This down-selection includes omission of the features with the
three lowest values of importance; which include percent in zone and the two categorical
variables demarcating wells completed in either the “Spraberry/Dean” or “Wolfcamp”
formations. The removal of three features and inclusion of the remaining 11 coincide with
the RFECV upper bound feature range count presented in Figure A1 where explained
variance remains high.

As mentioned in Section 3.1, the feature selection step helps to systematically final-
ize sets of input features that can be applied as part of both the clustering evaluation
(Section 3.2) and the development of the time series joint associated fluid production model
(Section 3.3).

Appendix B. Tukey’s Test Results on Arps Attributes by Cluster

The results from the Tukey’s test performed one each of the three Arps attributes
across the 18 well clusters is presented in Table A1. The post hoc Tukey’s test highlights
which clusters, and therefore Arps decline attributes, differed significantly from cluster to
cluster at α = 0.05.
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Table A1. Descriptive statistics and results from Tukey’s test on decline curve attributes across well
clusters.

Cluster
Number

Initial Oil Production (bbls) Initial Decline
(Fraction/Month) b-Factor

Count Mean Stdev. Tukey’s
Group Mean Stdev. Tukey’s

Group Mean Stdev. Tukey’s
Group

0 84 14,816 7459 H, I, J, K 0.40 0.12 A, B, C, D 1.25 0.24 B, C, D, E
1 259 15,364 7653 J, K 0.18 0.09 H 1.55 0.08 A
2 246 28,382 7826 C 0.36 0.12 D, E 1.07 0.14 I, J
3 594 20,148 7935 G 0.40 0.11 B 1.07 0.13 I, J
4 460 7481 4835 M 0.41 0.12 A, B 1.21 0.22 C, D, E, F
5 574 35,577 10,694 B 0.39 0.11 B, C, D 1.14 0.20 G, H
6 328 17,625 7588 H, I 0.41 0.10 A, B 1.06 0.13 I, J
7 609 14,442 7392 K 0.32 0.14 F 1.24 0.25 B, C
8 230 13,408 7594 K 0.34 0.12 E, F 1.17 0.22 D, E, F, G
9 173 25,506 8124 D, E 0.32 0.13 F 1.15 0.23 F, G, H

10 515 17,353 8606 H, I, J 0.40 0.11 B 1.19 0.23 E, F
11 101 14,630 8813 I, J, K 0.35 0.13 C, D, E, F 1.29 0.24 B
12 485 17,666 6449 H 0.43 0.08 A 1.18 0.18 F, G
13 304 26,324 6777 C, D 0.25 0.11 G 1.11 0.18 H, I
14 554 23,346 7579 E, F 0.27 0.13 G 1.04 0.09 J
15 160 20,971 8156 F, G 0.26 0.12 G 1.26 0.25 B, C
16 346 40,342 8293 A 0.26 0.10 G 1.03 0.08 J
17 188 9959 5386 L 0.39 0.11 B, C, D 1.06 0.11 I, J

Appendix C. Well Cluster Statics and Production Outlooks

Table A2. Inventory of descriptive statics, 1st year, and cumulative 5-year production estimates for a
hypothetical representative well within each Midland Basin Well Cluster.

Data
Group Dataset Feature Statistic

Midland Basin Well Cluster Number: 0 through 8

0 1 2 3 4 5 6 7 8

Well Com-
pletion

Attributes

Perforation
Length (foot)

Mean 6782 8791 9593 7928 7719 10,061 9177 7139 9663

Stdev. 1990 1770 1319 1665 1563 1502 1856 1565 1763

IQR 2985 2704 1132 2378 1065 756 2581 1545 1756

Proppant per
foot (lbs)

Mean 1818 1698 1764 1659 1303 1845 1938 1477 2283

Stdev. 570 391 331 349 413 389 428 395 394

IQR 487 468 319 430 495 367 459 517 546

Water per foot
(bbls)

Mean 46.8 45.6 50.7 40.6 28.2 47.8 49.6 37.2 51.4

Stdev. 15.3 10.3 9.0 12.2 8.3 10.1 10.9 10.6 9.3

IQR 9.8 12.4 11.6 15.5 9.1 13.0 13.1 13.2 8.7

Additive per
foot (bbls)

Mean 12.1 2.8 2.9 4.1 1.8 2.6 3.5 3.2 2.1

Stdev. 3.9 1.8 1.5 3.1 1.3 1.6 3.3 1.8 1.2

IQR 3.9 2.5 2.0 4.9 2.1 2.3 2.5 2.6 1.3

Azimuth
(degrees)

Mean 165.1 162.4 162.6 162.6 180.3 162.6 178.9 162.6 180.8

Stdev. 7.0 3.7 3.7 3.6 3.4 3.3 5.9 3.3 3.1

IQR 3.2 4.2 3.4 4.1 4.3 4.0 5.1 2.3 4.1

Nearest Well
Distance (feet)

Mean 844 288 254 261 550 259 523 382 388

Stdev. 1013 384 307 324 473 269 441 556 428

IQR 1185 307 277 267 519 295 413 390 453
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Table A2. Cont.

Data
Group Dataset Feature Statistic

Midland Basin Well Cluster Number: 0 through 8

0 1 2 3 4 5 6 7 8

Decline
Curve

Attributes

Initial Oil
Production
(bbls)

Mean 14,816 15,364 28,382 20,148 7481 35,577 17,625 14,442 13,408

Stdev. 7459 7653 7826 7935 4835 10,694 7588 7392 7594

IQR 10,635 11,155 10,173 10,197 5895 13,455 10,748 9233 9916

Initial Decline
(frac-
tion/month)

Mean 0.40 0.18 0.36 0.40 0.41 0.39 0.41 0.32 0.34

Stdev. 0.12 0.09 0.12 0.11 0.12 0.11 0.10 0.14 0.12

IQR 0.20 0.15 0.22 0.17 0.18 0.19 0.17 0.26 0.22

b-factor

Mean 1.25 1.55 1.07 1.07 1.21 1.14 1.06 1.24 1.17

Stdev. 0.24 0.08 0.14 0.13 0.22 0.20 0.13 0.25 0.22

IQR 0.50 0.08 0.08 0.11 0.40 0.26 0.04 0.50 0.39

Spatial and
Reservoir
Attributes

True Vertical
Depth (feet)

Mean 8924 8964 8947 9310 7112 8811 7150 9020 7460

Stdev. 752 630 626 470 741 785 620 771 577

IQR 798 848 884 563 963 1296 1018 1174 686

Thickness (feet)

Mean 443 398 471 320 774 375 633 374 553

Stdev. 157 137 115 96 146 108 207 134 191

IQR 209 148 137 148 59 136 338 185 361

Surface Hole
Latitude
(degrees)

Mean 31.64 31.92 31.70 32.08 31.15 32.08 31.38 31.98 31.32

Stdev. 0.32 0.28 0.17 0.26 0.12 0.28 0.23 0.29 0.14

IQR 0.44 0.45 0.19 0.47 0.19 0.47 0.38 0.56 0.19

Surface Hole
Longitude
(degrees)

Mean −101.93 −101.93 −101.81 −102.08 −101.33 −101.87 −101.26 −101.90 −101.58

Stdev. 0.28 0.19 0.22 0.14 0.23 0.24 0.18 0.29 0.16

IQR 0.32 0.29 0.32 0.21 0.26 0.42 0.30 0.53 0.15

Wolfcamp Count 68 168 223 315 456 419 326 445 230

S.berry/Dean Count 16 91 23 280 4 155 2 164 0

Production
Forecast
per Well

Cumulative Oil
(Mbbls)

1st year 77 111 147 100 38 181 86 82 73

5-years 154 282 275 183 74 346 156 169 145

Cumulative Gas
(Bcf)

1st year 0.16 0.20 0.25 0.15 0.12 0.27 0.25 0.13 0.22

5-years 0.29 0.58 0.62 0.23 0.23 0.60 0.76 0.21 0.79

Cumulative
Water (Mbbls)

1st year 154 230 268 181 102 304 200 162 182

5-years 289 587 545 347 175 659 358 324 328

Data
Group Dataset Feature Statistic

Midland Basin Well Cluster Number: 9 through 17

9 10 11 12 13 14 15 16 17

Well Com-
pletion

Attributes

Perforation
Length (foot)

Mean 8307 7677 7253 7225 9870 8762 9448 9972 7417

Stdev. 1814 1970 2103 1794 1155 1469 1892 1333 1605

IQR 2711 2933 4212 2361 563 2313 2612 740 1549

Proppant per
foot (lbs)

Mean 3281 1728 1609 1441 1752 1812 1787 1828 1342

Stdev. 775 464 535 547 336 359 412 490 394

IQR 872 677 759 687 305 413 507 407 532

Water per foot
(bbls)

Mean 71.4 39.4 40.6 36.6 49.4 48.8 44.9 48.0 32.8

Stdev. 19.7 11.2 14.9 14.0 8.0 10.7 12.5 10.2 8.6

IQR 23.2 13.8 17.3 18.9 8.7 9.6 15.5 10.6 7.8

Additive per
foot (bbls)

Mean 4.9 2.1 4.2 2.1 2.2 2.3 2.1 2.9 1.9

Stdev. 2.9 1.5 3.4 1.3 1.4 1.5 1.5 1.7 1.2

IQR 3.0 1.8 3.8 1.6 2.0 2.3 2.0 1.9 2.0
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Table A2. Cont.

Data
Group Dataset Feature Statistic

Midland Basin Well Cluster Number: 0 through 8

0 1 2 3 4 5 6 7 8

Azimuth
(degrees)

Mean 163.2 162.6 168.0 162.2 162.9 162.4 163.3 162.8 180.8

Stdev. 5.5 2.9 8.8 3.3 3.7 3.4 3.3 3.6 2.1

IQR 4.6 2.5 17.6 3.6 3.5 3.8 3.2 4.4 2.2

Nearest Well
Distance (feet)

Mean 395 392 5658 303 328 243 486 278 343

Stdev. 542 473 1942 354 308 306 764 270 438

IQR 419 404 2770 285 386 259 511 316 438

Decline
Curve

Attributes

Initial Oil
Production
(bbls)

Mean 25,506 17,353 14,630 17,666 26,324 23,346 20,971 40,342 9959

Stdev. 8124 8606 8813 6449 6777 7579 8156 8293 5386

IQR 11,762 12,799 13,555 9324 9246 9785 10,744 11,795 6533

Initial Decline
(frac-
tion/month)

Mean 0.32 0.40 0.35 0.43 0.25 0.27 0.26 0.26 0.39

Stdev. 0.13 0.11 0.13 0.08 0.11 0.13 0.12 0.10 0.11

IQR 0.21 0.18 0.25 0.13 0.15 0.18 0.17 0.11 0.21

b-factor

Mean 1.15 1.19 1.29 1.18 1.11 1.04 1.26 1.03 1.06

Stdev. 0.23 0.23 0.24 0.18 0.18 0.09 0.25 0.08 0.11

IQR 0.26 0.39 0.54 0.31 0.17 0.02 0.59 0.02 0.09

Spatial and
Reservoir
Attributes

True Vertical
Depth (feet)

Mean 9078 7883 8340 9238 9128 9123 7751 8963 7523

Stdev. 609 568 1101 465 424 511 727 587 723

IQR 784 527 1950 555 540 673 956 962 961

Thickness (feet)

Mean 503 384 463 541 653 380 369 356 477

Stdev. 209 103 183 145 176 103 111 86 151

IQR 244 132 224 168 289 119 110 115 254

Surface Hole
Latitude
(degrees)

Mean 31.83 32.23 31.80 31.68 31.60 31.91 32.33 32.09 31.39

Stdev. 0.33 0.30 0.48 0.16 0.16 0.27 0.24 0.24 0.18

IQR 0.56 0.47 0.87 0.24 0.26 0.43 0.21 0.39 0.27

Surface Hole
Longitude
(degrees)

Mean −101.90 −101.58 −101.70 −101.89 −101.82 −102.01 −101.62 −101.94 −101.38

Stdev. 0.20 0.14 0.32 0.15 0.12 0.16 0.22 0.19 0.17

IQR 0.25 0.12 0.56 0.18 0.15 0.19 0.27 0.37 0.17

Wolfcamp Count 137 356 89 459 301 321 88 227 188

S.berry/Dean Count 36 159 12 26 3 223 72 119 0

Production
Forecast
per Well

Cumulative Oil
(Mbbls)

1st year 141 89 80 87 160 135 129 237 50

5-years 281 173 168 167 328 265 279 465 91

Cumulative Gas
(Bcf)

1st year 0.26 0.14 0.12 0.15 0.31 0.22 0.22 0.34 0.12

5-years 0.57 0.19 0.16 0.27 0.91 0.50 0.45 0.85 0.27

Cumulative
Water (Mbbls)

1st year 271 185 170 171 306 249 265 373 111

5-years 574 364 287 332 684 515 621 879 178
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63. Hunter, G.; Šegvić, B.; Zanoni, G.; Omodeo-Salé, S.; Adatte, T. Evaluation of Shale Source Rocks and Clay Mineral Diagenesis in

the Permian Basin, USA: Inferences on Basin Thermal Maturity and Source Rock Potential. Geosciences 2020, 10, 381.
64. James, A. Evaluating and Hy-Grading Wolfcamp Shale Opportunities in the Midland Basin. AAPG Search and Discovery Article

#110213. In Proceedings of the AAPG DPA Forum Midland Playmaker, Midland, TX, USA, 14 January 2015.
65. Handford, C. Sedimentology and Genetic Stratigraphy of Dean and Spraberry Formations (Permian), Midland Basin, Texas.

AAPG Bull. 1981, 65, 1602–1616.
66. Lorenz, J.; Sterling, J.; Schechter, D.; Whigham, C.; Jensen, J. Natural fractures in the Spraberry Formation, Midland basin, Texas:

The effects of mechanical stratigraphy on fracture variability and reservoir behavior. AAPG Bull. 2002, 86, 505–524.
67. Marshall, J. Spraberry Reservoir of West Texas1: GEOLOGICAL NOTES. AAPG Bull. 1952, 36, 2189–2191.
68. Shattuck, B. Spraberry Fields Forever. Forbes, 8 September 2017. Available online: https://www.forbes.com/sites/

woodmackenzie/2017/09/08/spraberry-fields-forever/?sh=245b4309655a (accessed on 26 November 2020).
69. Murphy, R. Depositional Systems Interpretation of Early Permian mixed Siliciclastics and Carbonates, Midland Basin, Texas.

Master’s Thesis, University of Indiana, Bloomington, Indiana, 2015.
70. Gaswirth, S. Assessment of Undiscovered Continuous Oil and Gas Resources in the Wolfcamp Shale of the Midland Basin, West

Texas. In Proceedings of the AAPG Annual Convention and Exhibition, Houston, TX, USA, 2–5 April 2017.
71. U.S. Energy Information Administration. EIA Updates Geological Maps of Midland Basin’s Wolfcamp Formation; U.S. Department of

Energy: Washington, DC, USA, 24 November 2020. Available online: https://www.eia.gov/todayinenergy/detail.php?id=46016
(accessed on 25 November 2020).

72. Saller, A.; Dickson, A.; Boyd, S. Cycle Stratigraphy and Porosity in Pennsylvanian and Lower Permian Shelf Limestones, Easten
Central Basin Platform, Texas. AAPG Bull. 1994, 78, 1820–1842.

73. Peng, J.; Milliken, K.; Fu, Q.; Janson, X.; Hamlin, S. Grain assemblages and diagenesis in organic-rich mudrocks, Upper
Pennsylvanian Cline shale (Wolfcamp D), Midland Basin, Texas. AAPG Bull. 2020, 104, 1593–1624. [CrossRef]

74. Blomquist, P. Wolfcamp Horizontal Play Midland Basin, West Texas; IHS Markit, IHS Geoscience Webinar Series; HIS: London, UK,
2016.

75. U.S. Energy Information Administration. The Wolfcamp Play Has Been Key to Permian Basin Oil and Natural Gas Production Growth;
U.S. Department of Energy: Washington, DC, USA, 16 November 2018. Available online: https://www.eia.gov/todayinenergy/
detail.php?id=37532 (accessed on 25 November 2020).

76. Enverus. DrillingInfo Web A2020. Available online: https://www.enverus.com/products/di-web-app/ (accessed on 1 November
2020).

77. University of Texas at Austin—Bureau of Economic Geology. Integrated Synthesis of the Permian Basin: Data and Models for
Recovering Existing and Undiscovered Oil Resources from the Largest OIl-Bearing Basin in the U.S. Jackson School of Geosciences.
2008. Available online: http://www.beg.utexas.edu/resprog/permianbasin/gis.htm (accessed on 9 September 2020).

78. United States Geological Survery. How to Use the National Map Services—Large Scale Base Map Dynamic Services. Available
online: https://viewer.nationalmap.gov/help/HowTo.htm (accessed on 2 September 2020).

79. Kondash, A.; Lauer, N.; Vengosh, A. The intensification of the water footprint of hydraulic fracturing. Sci. Adv. 2018, 4, eaar5982.
[CrossRef]

80. Bruant, R. Permian Water Outlook. B3 Insight. 26 February 2019. Available online: http://www.gwpc.org/sites/default/files/
event-sessions/Produced%20Water%20-%20Rob%20Bruant_0.pdf (accessed on 12 December 2020).

81. Leyden, C. Satellite Data Confirms Permian Gas Flaring Is Double What Companies Report. Environmental Defense Fund, 24
January 2019. Available online: http://blogs.edf.org/energyexchange/2019/01/24/satellite-data-confirms-permian-gas-flaring-
is-double-what-companies-report/ (accessed on 13 December 2020).

82. Abramov, A.; Bertelsen, M. Permian Gas Flaring Reaches yet Another High. Rystad Energy, 5 November 2019. Available online:
https://www.rystadenergy.com/newsevents/news/press-releases/permian-gas-flaring-reaches-yet-another-high/ (accessed
on 24 December 2020).

83. Agerton, M.; Gilbert, B.; Upton, G. The Economics of Natural Gas Flaring in U.S. Shale: An Agenda for Research and Policy; Rice
University’s Baker Institute for Public Policy: Houston, TX, USA, 2020.

84. Arps, J. Analysis of Decline Curves. Trans. AIME 1945, 160, 228–247. [CrossRef]
85. Miller, J. Short Report: Reaction Time Analysis with Outlier Exclusion: Bias Varies with Sample Size. Q. J. Exp. Psychol. Sect. A

1991, 43, 907–912. [CrossRef]

https://rkingco.com/wp-content/uploads/2014/12/PermianBasinStratChart.jpg
https://rkingco.com/wp-content/uploads/2014/12/PermianBasinStratChart.jpg
http://doi.org/10.1016/j.ptlrs.2021.09.004
https://www.forbes.com/sites/woodmackenzie/2017/09/08/spraberry-fields-forever/?sh=245b4309655a
https://www.forbes.com/sites/woodmackenzie/2017/09/08/spraberry-fields-forever/?sh=245b4309655a
https://www.eia.gov/todayinenergy/detail.php?id=46016
http://doi.org/10.1306/03022018240
https://www.eia.gov/todayinenergy/detail.php?id=37532
https://www.eia.gov/todayinenergy/detail.php?id=37532
https://www.enverus.com/products/di-web-app/
http://www.beg.utexas.edu/resprog/permianbasin/gis.htm
https://viewer.nationalmap.gov/help/HowTo.htm
http://doi.org/10.1126/sciadv.aar5982
http://www.gwpc.org/sites/default/files/event-sessions/Produced%20Water%20-%20Rob%20Bruant_0.pdf
http://www.gwpc.org/sites/default/files/event-sessions/Produced%20Water%20-%20Rob%20Bruant_0.pdf
http://blogs.edf.org/energyexchange/2019/01/24/satellite-data-confirms-permian-gas-flaring-is-double-what-companies-report/
http://blogs.edf.org/energyexchange/2019/01/24/satellite-data-confirms-permian-gas-flaring-is-double-what-companies-report/
https://www.rystadenergy.com/newsevents/news/press-releases/permian-gas-flaring-reaches-yet-another-high/
http://doi.org/10.2118/945228-G
http://doi.org/10.1080/14640749108400962


Processes 2022, 10, 740 41 of 43

86. Ilyas, I.; Chu, X. Data Cleaning; Association for Computing Machinery: New York, NY, USA, 2019.
87. DrillingInfo. Pre-Calculated, Proprietary EUR Database from DrillingInfo—White Paper. May 2016. Available online: https:

//www.enverus.com/wp-content/uploads/2017/11/WP_EUR_Customer-print.pdf (accessed on 22 November 2020).
88. Fetkovich, M.; Fetkovich, E.; Fetkovich, M. Useful Concepts for Decline Curve Forecasting, Reserve Estimation, and Analysis.

SPE Reserv. Eng. 1996, 11, 13–22. [CrossRef]
89. Martin, E. Behaviour of Arps Equation in Shale Plays. LinkedIn, 29 March 2015. Available online: https://www.linkedin.com/

pulse/behavior-arps-Equation-shale-plays-emanuel-mart%C3%ADn/ (accessed on 22 November 2020).
90. Jimenez, R. Using Decline Curve Analysis, Volumetric Analysis, and Baysian Methodology to Quantify Uncertainty in Shale Gas

Reserves Estimates. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2012.
91. U.S. Environmental Protection Agency. Analysis of Hydraulic Fracturing Fluid Data from the FracFocus Chemical Disclosure Registry

1.0; U.S. EPA Office of Research and Development: Washington, DC, USA, 2015.
92. Arthur, J.; Bohm, B.; Coughlin, B.; Layne, M. Evaluating Implications of Hydraulic Fracturing in Shale Gas Reservoirs. In

Proceedings of the 2009 SPE Americas E&P Environmental & Safety Conference, San Antonio, TX, USA, 23–25 March 2009.
93. Saba, T.; Mohsen, F.; Garry, M.; Murphy, B.; Hilbert, B. White Paper Methanol Use in Hydraulic Fracturing; Exponent: Maynard, MA,

USA, 2012.
94. Manchanda, R.; Bhardwaj, P.; Hwang, J.; Sharma, M. Parent-Child Fracture Interference: Explanation and Mitigation of Child

Well Underperformance. In Proceedings of the Society of Petroleum Engineering Hydraulic Fracturing Technology Conference
and Exhibition, The Woodlands, TX, USA, 23–25 January 2018.

95. Kumar, A.; Shrivastava, K.; Elliott, B.; Sharma, M. Effect of Parent Well Production on Child Well Stimulation and Productivity. In
Proceedings of the Society of Petroleum Engineers Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands,
TX, USA, 27–29 October 2020.

96. Wang, H. What Factors Control Shale-Gas Production and Production-Decline Trend in Fractured Systems: A Comprehensive
Analysis and Investigation (SPE-179967-PA). SPE J. 2017, 22, 562–581. [CrossRef]

97. Kurison, C.; Kuleli, H.S.; Mubarak, M. Unlocking well productivity drivers in Eagle Ford and Utica unconventional resources
through data analytics. J. Nat. Gas Sci. Eng. 2019, 71, 102976. [CrossRef]

98. Zobak, M.; Arent, D. Shale Gas: Development Opportunities. Bridge Emerg. Issues Earth Resour. Eng. 2014, 44, 16–23.
99. Liu, W.; Zhang, G.; Cao, J.; Zhang, J.; Yu, G. Combined petrophysics and 3D seismic attributes to predict shale reservoirs favorable

areas. J. Geophys. Eng. 2019, 16, 974–991. [CrossRef]
100. Chakra, N.C.; Song, K.; Gupta, M.; Saraf, D. An innovative neural forecast of cumulative oil production from a petroleum

reservoir employing higher-order neural networks (HONNs). J. Pet. Sci. Eng. 2013, 106, 18–33. [CrossRef]
101. Schuetter, J.; Mishra, S.; Zhong, M.; LaFollette, R. Data Analytics for Production Optimization in Unconventional Reservoirs. In

Proceedings of the Unconventional Resources Technology Conference, San Antonio, TX, USA, 20–22 July 2015.
102. U.S. Energy Information Administration. Maps: Oil and Gas Exploration, Resources, and Production; U.S. Department of Energy:

Washington, DC, USA, 23 April 2020. Available online: https://www.eia.gov/maps/maps.htm#permian (accessed on 25
November 2020).

103. Shanker, M.; Hu, M.; Hung, M. Effect of data standardization on neural network training. Omega 1996, 24, 385–397. [CrossRef]
104. Kumar, Y.; Bello, K.; Sharma, S.; Vikara, D.; Remson, D.; Morgan, D.; Cunha, L. Neural Network-Based Surrogate Models for Joint

Prediction of Reservoir Pressure and CO2 Saturation. In Proceedings of the 2020 SMART Annual Review Meeting—Virtual Poster
Sessions, Pittsburgh, PA, USA, 27–31 March 2020.

105. Bacon, D. Fast Forward Model Development Using Image-to-Image Translation. In Proceedings of the 2020 SMART Annual
Review Meeting—Virtual Poster Sessions, Pittsburgh, PA, USA, 27–31 March 2020.

106. Cao, X.H.; Stojkovic, I.; Obradovic, Z. A robust data scaling algorithm to improve classification accuracies in biomedical data.
BCM Bioinform. 2016, 17, 359. [CrossRef]

107. Liu, J. Potential for Evaluation of Interwell Connectivity under the Effect of Intraformational Bed in Reservoirs Utilizing Machine
Learning Methods. Geofluids 2020, 2020, 1651549. [CrossRef]

108. Aggarwal, R. Ranganathan, Common pitfalls in statistical analysis: The use of correlation techniques. Perspect Clin. Res. 2016, 7,
187–190.

109. Brownlee, J. Recursive Feature Elimination (RFE) for Feature Selection in Python. Machine Learning Mastery, 25 May 2020.
Available online: https://machinelearningmastery.com/rfe-feature-selection-in-python/ (accessed on 9 October 2020).

110. Darst, B.; Malecki, K.; Engelman, C. Using recursive feature elimination in random forest to account for correlated variables in
high dimensional data. BMC Genet. 2018, 19, 65. [CrossRef] [PubMed]

111. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification Using Support Vector Machines. Mach.
Learn. 2002, 46, 389–422. [CrossRef]

112. Kuhn, M.; Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models; CRC Press, Taylor & Francis
Group: Boca Raton, FL, USA, 2020.

113. Scikit Learn. sklearn.feature_selection_RFE. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.
feature_selection.RFE.html (accessed on 9 October 2020).

114. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, C.; Sheridan, R.; Feuston, B. Random Forest: A Classification and Regression Tool for
Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [CrossRef] [PubMed]

https://www.enverus.com/wp-content/uploads/2017/11/WP_EUR_Customer-print.pdf
https://www.enverus.com/wp-content/uploads/2017/11/WP_EUR_Customer-print.pdf
http://doi.org/10.2118/28628-PA
https://www.linkedin.com/pulse/behavior-arps-Equation-shale-plays-emanuel-mart%C3%ADn/
https://www.linkedin.com/pulse/behavior-arps-Equation-shale-plays-emanuel-mart%C3%ADn/
http://doi.org/10.2118/179967-PA
http://doi.org/10.1016/j.jngse.2019.102976
http://doi.org/10.1093/jge/gxz060
http://doi.org/10.1016/j.petrol.2013.03.004
https://www.eia.gov/maps/maps.htm#permian
http://doi.org/10.1016/0305-0483(96)00010-2
http://doi.org/10.1186/s12859-016-1236-x
http://doi.org/10.1155/2020/1651549
https://machinelearningmastery.com/rfe-feature-selection-in-python/
http://doi.org/10.1186/s12863-018-0633-8
http://www.ncbi.nlm.nih.gov/pubmed/30255764
http://doi.org/10.1023/A:1012487302797
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
http://doi.org/10.1021/ci034160g
http://www.ncbi.nlm.nih.gov/pubmed/14632445


Processes 2022, 10, 740 42 of 43

115. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
116. Hur, J.; Ihm, S.; Park, Y. A Variable Impacts Measurement in Random Forest for Mobile Cloud Computing. Wirel. Commun. Mob.

Comput. 2017, 2017, 6817627. [CrossRef]
117. Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston,

MA, USA, 2009.
118. Hutter, F.; Hoos, H.; Leyton-Brown, K. An Efficient Approach for Assessing Hyperparameter Importance. In Proceedings of the

31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014.
119. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
120. Chollet, F.; Keras. 2015. Available online: https://github.com//fchollet/keras (accessed on 15 January 2021).
121. MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, no., Berkeley, CA, USA, 1 January 1967; University of
California Press: Berkeley, CA, USA, 1967; pp. 281–297.

122. de Amorim, R.; Henning, C. Recovering the number of clusters in data sets with noise features using feature rescaling. Inf. Sci.
2015, 324, 126–145. [CrossRef]

123. Bholowalia, P.; Kumar, A. EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. Int. J. Comput.
Appl. 2014, 105, 17–24.

124. Hartigan, J. Clustering Algorithms; J. Wiley & Sons: New York, NY, USA, 1975.
125. Dematos, G.; Boyd, M.; Kermanshahi, B.; Kohzadi, N.; Kaastra, I. Feedforward versus recurrent neural networks for forecasting

monthly japanese yen exchange rates. Financ. Eng. Jpn. Mark. 1996, 3, 59–75. [CrossRef]
126. Hochreiter, S. The Vanishing Gradient Problem during Learning Recurrent Neural Nets and Problem Solutions. Int. J. Uncertain.

Fuzziness Knowl. Based Syst. 1998, 6, 107–116. [CrossRef]
127. Siami-Namini, S.; Tavakoli, N.; Namin, A. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Proceedings of the

2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December
2018; pp. 1394–1401.

128. Elsaraiti, M.; Merabet, A. A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for
Predicting Wind Speed. Energies 2021, 14, 6782. [CrossRef]

129. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
130. Greff, K.; Srivastava, R.; Koutnik, J.; Steunebrink, B.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw.

Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]
131. Kwak, H.; Hui, P. Deep Health: Deep Learning for Heath Informatics reviews, challenges, and opportunities on medical imaging,

electronic health records, genomics, sensing, and online communication health. arXiv 2019, arXiv:1909.00384.
132. Olah, C. Understanding LSTM Networks. Colah’s Blog. 27 August 2015. Available online: http://colah.github.io/posts/2015-08-

Understanding-LSTMs/ (accessed on 6 December 2020).
133. Poornima, S.; Pushpalatha, M. Prediction of Rainfall Using Intensified LSTM Based Recurrent Neural Network with Weighted

Linear Units. Atmosphere 2019, 10, 668. [CrossRef]
134. Gers, F.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 1999, 12, 2451–2471.

[CrossRef]
135. Utgoff, P.; Stracuzzi, D. Many-Layered Learning. Neural Comput. 2002, 14, 2497–2529. [CrossRef]
136. Rio, A.L.; Nonell-Canals, A.; Vidal, D.; Perera-Lluna, A. Evaluation of Cross-Validation Strategies in Sequence-Based Binding

Prediction Using Deep Learning. J. Chem. Inf. Modeling 2019, 59, 1645–1657.
137. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning

Representations, San Diego, CA, USA, 12 November 2014.
138. Ji, Y.; Hao, J.; Reyhani, N.; Lendasse, A. Direct and Recursive Prediction of Time Series Using Mutual Information Selection; IWANN

2005, LNCS 3512; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1010–1017.
139. Carney, J. Cunningham, The Epoch Interpretation of Learning. IEEE Trans. Neural Netw. 1998, 8, 111–116.
140. Manda, P.; Nkazi, D.B. The Evaluation and Sensitivity of Decline Curve Modeling. Energies 2020, 13, 2765. [CrossRef]
141. Paryani, M.; Ahmadi, M.; Awoleke, O.; Hanks, L. Decline Curve Analysis: A Comparative Study of Proposed Models Using

Improved Residual Functions. J. Pet. Environ. Biotechnol. 2018, 9, 1–8.
142. Okouma, V.; Symmons, D. Practical Considerations for Decline Curve Analysis in Unconventional Reservoirs—Application of

Recently Developed Time-Rate Relations. In Proceedings of the Society of Petroleum Engineers Hydrocarbon, Economics, and
Evaluation Symposium, Calgary, AB, Canada, 9–24 September 2012.

143. Montgomery, D. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017.
144. Armstrong, R.; Eperjesi, F.; Gilmartin, B. The application of analysis of variance (ANOVA) to different experimental designs in

optometry. Ophathalmic Physiol. Opt. 2002, 22, 248–256. [CrossRef] [PubMed]
145. Sawyer, S. Analysis of Variance: The Fundamental Concepts. J. Man. Manip. Ther. 2009, 17, 27E–38E. [CrossRef]
146. Tukey, J. The Collected Works of John W. Tukey Volume III; Multiple Compairsons: 1948–1983; Chapman and Hall: New York, NY,

USA, 1983.
147. Brown, R. Exponential Smoothing for Predicting Demand; Arthur D. Little Inc.: Cambridge, MA, USA, 1956.

http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1155/2017/6817627
https://github.com//fchollet/keras
http://doi.org/10.1016/j.ins.2015.06.039
http://doi.org/10.1007/BF00868008
http://doi.org/10.1142/S0218488598000094
http://doi.org/10.3390/en14206782
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://doi.org/10.3390/atmos10110668
http://doi.org/10.1162/089976600300015015
http://doi.org/10.1162/08997660260293319
http://doi.org/10.3390/en13112765
http://doi.org/10.1046/j.1475-1313.2002.00020.x
http://www.ncbi.nlm.nih.gov/pubmed/12090640
http://doi.org/10.1179/jmt.2009.17.2.27E


Processes 2022, 10, 740 43 of 43

148. Taieb, S.B.; Bontempi, G. Recursive Multi-step Time Series Forecasting by Perturbing Data. In Proceedings of the 11th IEEE
International Conference on Data Mining, Vancouver, BC, Canada, 11–14 December 2011.

149. Fox, I.; Ang, L.; Jaiswal, M.; Pop-Busui, R.; Wiens, J. Deep Multi-Output Forecasting: Learning to Accurately Predict Blood
Glucose Trajectories. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
London, UK, 19–23 August 2018; pp. 1387–1395.

150. Scanlon, B.; Reedy, R.; Male, F.; Walsh, M. Water Issues Related to Transitioning from Conventional to Unconventional Oil
Production in the Permian Basin. Environ. Sci. Technol. 2017, 51, 10903–10912. [CrossRef] [PubMed]

151. Laurentian Research. Understanding GOR in Unconventional Play: Permian and Beyond. Seeking Alpha, 9 August 2017.
Available online: https://seekingalpha.com/article/4096835-understanding-gor-in-unconventional-play-permian-and-beyond
(accessed on 26 December 2020).

152. Flumerfelt, R. The Wolfcamp Shale: Technical Learnings to Date and Challenges Going Forward. In Proceedings of the 10th
Annual Ryder Scott Reserves Conference, Houston, TX, USA, 17 September 2014.

153. Shale Newsletter. Is the Permian Getting Gassier? Not Necessarily in 2020. Rystad Energy: Oslo, Norway, February 2020. Available
online: https://www.rystadenergy.com/newsevents/news/newsletters/UsArchive/shale-newsletter-feb-2020/ (accessed on 26
December 2020).

154. Lee, J. Death by Bubble Point: Fact or Fantasy? In Proceedings of the 2018 Ryder Scott Reserves Conference, Calgary, AB, Canada,
1 July 2018.

155. U.S. Energy Information Administration. Assumptions to AEO2020; U.S. Department of Energy: Washington, DC, USA, 29 January
2020. Available online: https://www.eia.gov/outlooks/aeo/assumptions/ (accessed on 27 December 2020).

156. Persaud, A.J.; Kumar, U. An eclectic approach in energy forecasting: A case of Natural Resources Canada’s (NRCan’s) oil and gas
outlook. Energy Policy 2001, 29, 303–313. [CrossRef]

157. Browning, J.; Ikonnikova, S.; Male, F.; Gulen, G.; Smye, K.; Horvath, S.; Grote, C.; Patzek, T.; Potter, E.; Tinker, S. Study forecasts
gradual Haynesville production recovery before final decline. Oil Gas J. 2015, 113, 64–71.

158. Qian, K.; He, Z.; Liu, X.; Chen, Y. Intelligent prediction and integral analysis of shale oil and gas sweet spots. Pet. Sci. 2018, 15,
744–755. [CrossRef]

http://doi.org/10.1021/acs.est.7b02185
http://www.ncbi.nlm.nih.gov/pubmed/28876906
https://seekingalpha.com/article/4096835-understanding-gor-in-unconventional-play-permian-and-beyond
https://www.rystadenergy.com/newsevents/news/newsletters/UsArchive/shale-newsletter-feb-2020/
https://www.eia.gov/outlooks/aeo/assumptions/
http://doi.org/10.1016/S0301-4215(00)00119-1
http://doi.org/10.1007/s12182-018-0261-y

	Introduction 
	Data and Methods 
	Study Area 
	Study Data Overview and Data Processing 
	Data Preprocessing Prior to Model Training and Testing 
	Feature Selection Approach 
	Machine Learning Model Development and Evaluation 
	Clustering Evaluation 
	Time Series Joint Associated Fluid Production Model 
	Model Performance Evaluation 

	Oil Forecasting 

	Results and Discussion 
	Feature Selection Results 
	Cluster Analysis 
	Joint Associated Fluid Production Model Training and Performance 

	Oil, Gas, and Water Production Outlook 
	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

