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Abstract: The corner defects in the casting slab greatly influence the product quality. These defects
may extend during the heating and rolling process and even result in the discarding of the rolled
plate as scrap. A corner cleaning equipment based on the scarfing machine is proposed to eliminate
the defects in slab corners for producing high-quality steel. Unlike the flat surface scarfing process,
the flame jet and the shape of the molten pool have an essential impact on the effectiveness of the
flame cleaning in the corner of the casting slab. A three-dimensional fully coupled model for the
flame cleaning nozzle is developed to simulate the flow pattern of the flame jet, Oxygen concentration
distribution, and temperature field in the corner of the slab. The simulated flame jet flow field and
temperature results agreed well with the factory trial results. Additionally, a three-dimensional
thermal model for simulation of the molten pool formed by flame cleaning in the corner of the casting
slab has also been developed. For the sake of simplicity, the 2D elliptic and 3D Gauss heat source
models are used to simulate the flame heating on the upper and right surfaces of the slab corner and
the reaction heating between oxygen and heated iron along the corner, respectively. The simulation
results show that the length is 58.1 mm and 57.9 mm on both sides and the corner melting depth is
29.9 mm. The error is 7.04%. The numerical simulation results showed good agreement with the
factory trial results, indicating that the proposed models of the flame jet and the heat sources analysis
are feasible to study the flame cleaning process of the slab corner, it provides the scientific theoretical
basis for the design and practical application of corner scarfing machine.

Keywords: scarfing machine; corner cleaning; numerical simulation; corner molten pool

1. Introduction

As the surface quality of slab and hot-rolled strips can be considered one of the critical
quality parameters, special attention should be paid to producing advanced steel satisfying
the most striking quality demands. One main factor affecting the surface quality is the
corner defects commonly resulting from slab corners formed during continuous casting.
A quick solution to surface defects is auto surface cleaning or corner cleaning, namely
the scarfing process. It can improve cleaning quality and working efficiency and create
conditions for the slab’s hot delivery and hot charging process.

Scarfing is a complex thermochemical process in which the surface defects can be
burned out and removed from the casting slab. The principle of scarfing is based on a
chemical reaction of oxygen with the base metal at elevated temperatures. The steel in the
corner of the slab is heated locally via a high-temperature flame obtained from natural
gas and oxygen combustion. When reaching the ignition point, the steel is melted by a jet
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creating a continuous chemical reaction between the iron and the oxygen. The slag (iron
oxide) is blown away by the oxygen jet using a special cleaning nozzle.

In recent years, with the application of the scarfing machine, more and more scholars
have begun to study the scarfing process. Surface scarfing is a highly complex process in
which the multi-phase turbulent flow, flame jet, chemical reaction, heat transfer, melt, and
solidification can be completed in this process. Li et al. [1–5] conducted many studies on
optimizing the surface jet flame and the design of the scarfing machine. They simulated
and studied the distribution of pressure field and velocity field for the flame jet on the
slab surface, which was used to predict how the surface metal was removed and the
formation reason of surface grooves. Qi et al. [2] studied the phenomenon of jet flow
from packed holes. They found that the streams mixed under the Coanda effect, which
made the multi-jet flow gradually merge into a single jet, which provided a basis for
optimizing the nozzle. Chen et al. [3] found that the jet direction, the deflector angle,
and the nozzle height all affect the impinge grooves, and it is unrealistic to eliminate
them completely. There are also many scholars who study the basic theory of flame
cleaning. Egon et al. [6] developed a nozzle to reduce energy consumption during the
slab flame cleaning. Tomohide et al. [7] revealed the main factors causing the uneven
surfaces of flame cleaning and the method of obtaining reasonable preheating conditions
for the slab. Showalter et al. [8] described the basic concepts of the flame cleaning process,
including flow, heat transfer, and thermochemical processes. However, these studies were
focused on the industrial application and numerical simulation of the surface scarfing
of the casting slab. There are few reports on the numerical simulation of the transport
phenomena about the corner cleaning of the casting slab. The cleaning combustion of the
natural gas and oxygen from different pipes into the corner cleaning nozzle is a typical
non-premixed combustion process. Frank [9] studied the combustion characteristics of the
non-premixed turbulent jet. Paul [10] studied the flow and temperature field characteristics
of non-premixed combustion by using a large eddy simulation. Some scholars used the
eddy-dissipation model as a non-premixed combustion model [11,12], because in the case
that natural gas and oxygen are not pre-mixed, the mixing speed of natural gas and oxygen
in the jet region is much slower than the combustion reaction, and their rapid reaction
is complete. Therefore, the combustion process is considered to be controlled by the gas
mixing rate, and the chemical reaction rate is ignored. Some scholars have researched the
entrainment characteristics of jets, considering the interactions between jets [13–15]. In
recent years, the scarfing machine has been widely used in factories [6,16–19]. Several
steel companies in China have introduced scarfing machines and obtained great economic
benefits [20–22]. Baosteel added a corner scarfing machine to solve the corner problems of
casting slabs in 2020 [23].

The flame cutting process is very similar to the flame cleaning process. Some scholars
study the basic theory of flame cutting. Jokiaho et al. [24,25] introduced the principle of
flame cutting and revealed the main reasons for the cracking of plates in flame cutting.
The study shows that flame cutting is most suitable for low carbon steel and low carbon
alloy steel use. In the flame cutting process of steel plates, 70% of the heat comes from
the reaction heat, and only 30% of the heat is provided by the preheating flame [26].
The flame cutting mechanism is complex and it is impractical to consider all aspects.
Therefore, it should be simplified for the key point of the study. Many scholars use the
heat source method in numerical simulation to study the flame cutting process [27–33].
Thiébaud et al. [27] established a 3D steady-state heat flow model to simulate the flame
cutting process. Considering two parameters of flame heat flow density and heat transfer
coefficient of air gap after cutting, this model can reasonably reproduce temperature field,
heat-affected zone, and expansion of fusion zone. Arenas et al. [28] used Thiébaud’s 3D
model and considered the formation of austenite and melting of materials on this basis. It is
worth noting that the thermal conductivity of the liquid phase region is reduced to simulate
the region that was cut during flame cutting, which is beneficial to obtain more accurate
values in the subsequent calculation. Zhang et al. [29] used a Gauss heat source model to
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simulate preheating flame, and a 3D heat source to simulate metal combustion. Meanwhile,
a 3D mathematical model of steel plate flame cutting was established to simulate the
temperature field distribution and change the rule of steel plates in gas cutting. Therefore,
Yu et al. [30] used a user-defined function (UDF) to define the heat source function of
the hydrogen absorption reaction and used DEFINE_SOURCE macro and C language to
program the energy source term, calculating the chemical reaction heat during the hydrogen
absorption process.

Although significant work has been done to model the flame cutting process, no
equivalent research on the effect of the flame cleaning jet and the formation of the molten
pool in the surface or corner scarfing process is investigated. In the present work, we aim
to study the complicated transport phenomena in the corner flame cleaning process using
numerical simulation based on the experiment results from the practical cleaning process.
For the sake of simplicity, we propose that the corner cleaning process can be divided into
two parts to simulate separately: (1) the zone of the cleaning flame jet effect and (2) the
zone of the formation of the molten pool. The first objective is to study the flow, flame
jet, Oxygen concentration distribution, and heat transfer characteristics near the corner of
the casting slab, which provides a reference for optimization and design of the cleaning
combustion nozzle and cleaning parameters in the factory production. The second objective
is to construct the corner molten pool and determine the accuracy of the heat source model.

2. Model Establishment and Results Analysis of Corner Flame Cleaning
2.1. Geometric Description and Meshing

The computation domain of corner cleaning consists of the cleaning nozzle, free
jet zone, and slab. Figure 1 shows the three-dimensional geometrical model and three-
dimensional grid model. The free jet region has a volume of 4500 mm × 5375 mm ×
1150 mm (i.e., length × width × height), and the casting slab has a volume of 4500 mm ×
2150 mm × 230 mm. The corner cleaning nozzle is at an angle of 13.5◦ from the casting slab.
The diameter of the natural gas nozzle is 1.5 mm, and the diameter of the oxygen nozzle is
30 mm. Natural gas and oxygen entered the free jet region for combustion separately. Fluent
Meshing was used to carry out polyhedral mesh division for the whole computational
domain. The grid encryption was carried out for the upper and right surfaces of the casting
slab and the corner cleaning nozzle to improve the calculation accuracy.
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2.2. Mathematical Model

In this chapter, the flow and heat transfer characteristics near the corner of the casting
slab are studied. The flow is mainly affected by gas dynamics rather than combustion
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dynamics [31–33]. Therefore, the influence of the slab melting process on the flow is not
considered, and the complex chemical reaction during the combustion process is simplified
into a single-step reaction. The corner cleaning process can be approximated as steady-
state, turbulent, and incompressible flow, which requires solving continuity equation and
momentum equation.

2.2.1. Governing Equations

Continuity equation:
∂ρ

∂t
+

∂

∂xj
(ρu j) = 0 (1)

Momentum conservation equation:

∂

∂t
(ρui) +

∂
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(
ρuiuj

)
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∂xi
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where i = 1, 2, 3; −ρu′iu
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j is the Reynolds stress,
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where ui is the turbulent viscosity, kg·s·m−2; κ is turbulent kinetic energy, m2/s2.
Energy equation:
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where E is the total energy and
(
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)

e f f is the deviatoric stress tensor defined as:
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2.2.2. Turbulence Model

The Realizable k-ε turbulence model is suitable for simulating jet flow problems. The
modeled transport equations for k and ε in the realizable k-ε model are:

∂

∂t
(ρk) +

∂

∂xj

(
ρkuj

)
=
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∂xj

[(
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µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε (6)

∂

∂t
(ρε) +

∂

∂xj

(
ρεuj

)
=

∂

∂xj

[(
µ +

µt
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)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√

vε
+ C1ε

ε

k
C3εGb (7)

Gk is the generation of turbulence kinetic energy due to the mean velocity gradients.
Gb is the generation of turbulence kinetic energy due to buoyancy. For the Realizable k-ε
model, the default energy turbulent Prandtl number Prt = 0.85. σk and σε are the turbulent
Prandtl numbers for k and ε, respectively. C1ε = 1.44, C2 = 1.9, σk = 1.0, σε = 1.2.

2.2.3. Combustion Model

For mixed-is-burned approximation, Fluent provides a turbulence–chemistry interac-
tion model, based on the work of Magnussen and Hjertager [11], called the eddy-dissipation
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model. With this model, the net rate of production of species i due to reaction r, Ri,r, is
given by the smaller (that is, limiting value) of the two expressions below:

Ri,r = v′i,r Mw,i Aρ
ε

k
minR

(
YR

v′R,r Mw,R

)
(8)

Ri,r = v′i,r Mw,i ABρ
ε

k
∑P YP

∑N
j v′′j,r Mw,j

(9)

where: YP is the mass fraction of any product species, P; YR is the mass fraction of a
particular reactant,R; A = 4.0, B = 0.5.

2.3. Boundary Conditions and Numerical Solution

The velocity inlet boundary conditions are adopted for natural gas and oxygen. The
pressure outlet boundary conditions are adopted for the air domain exits, the backflow gas
is air, the rest are the stationary walls, and the standard wall function is adopted for the
near-wall area. Four surfaces of the casting slab were selected for convection boundary
conditions, the upper and right surfaces’ heat transfer coefficient is 100 (W/m2·K), and the
under and left surfaces’ heat transfer coefficient is 10 (W/m2·K). A pressure-based solver is
adopted, and the SIMPLE algorithm is employed for pressure–velocity coupling. Under-
relaxation factors of density and momentum are appropriately adjusted. The convergence
criteria for energy and p-1 are 10−6, while the other convergence criteria are 10−4.

2.4. Flame Corner Cleaning Results and Discussion

Some sections are made in each direction of the computation domain to intuitively
display the flame jet, as shown in Figure 2. Along the Z-axis (the slab casting direction),
Section 1 (Z = 1.2 m) is the first plane, Section 11 (Z = 3.2 m) is the last plane, and the
space of each section is 0.2 m. There are nine sections between Section 1 and Section 11.
The blue sections are the upper and right surfaces of the casting slab, the black section
is the 45◦ section of the nozzle center, the red part is the cleaning nozzle, and the orange
dotted border is the computational domain. It is convenient to analyze the primary flame
jet distribution at the corner of the casting slab from these sections.
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2.4.1. Grid Independence Validation

In order to estimate the independence of the grid, three polyhedral grid schemes of
992441, 1202513, and 1333694 are selected for simulation. As shown in the three black
dotted lines in Figure 2, the velocity of three lines at Z = 1.2 m, 1.8 m, and 2.4 m on the
casting slab’s upper surface of three grids was extracted for comparison. As shown in
Figure 3, the calculation results show that the maximum speeds of the three grids are
91.78 m/s, 93.21 m/s, and 92.78 m/s, respectively. The velocity difference between the
three grids is very small and can be ignored, and the simulation results are independent of
the grid size. Thus, the scheme of 1202513 is applied in the present study. The calculation
process stability and results accuracy reached the requirements.
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2.4.2. Validation of Numerical Simulation

The predictions of the flame jet distribution are validated by comparing with the
practical factory tests, as shown in Figure 4. The red part is the cleaning nozzle, the zone
between Line 1 and Line 2 is the gas jet area, and the zone behind Line 2 is the gas dispersion
area. It can be clearly seen that the flame is divided into two streams after reaching the
corner of the casting slab and gradually spreads out.

The key to corner flame cleaning is the nozzle. The flame shape and temperature
distribution at the nozzle outlet are important indexes to measure the simulation results. It
can be seen from Figure 5a that the flame color at the nozzle outlet is white-blue, and the
temperature of the white-blue flame is generally above 1500 ◦C. The oxygen concentration
is 99.6%, and the fuel is natural gas, in which the methane concentration is 95%. Under this
condition, the highest combustion temperature of natural gas can reach 3400 ◦C, which
fully satisfies the cutting standard of industrial gas. Numerical simulation results show
that the temperature at the nozzle outlet is above 1500 ◦C, and the highest temperature is
2924 ◦C. As shown in Figure 5b, the flame jet is all concentrated together and converges at
the corner part of the casting slab. The corner cleaning is realized, and the cleaning quality
is stable. The factory results agreed well with the simulation results.
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During the actual production process, oxygen concentration, pressure, and velocity
distribution are most noteworthy. As shown in Figure 6a, when the oxygen jet impinges
on the casting slab corner, uniformly separates into two jet streams, and along the surface
of the casting slab spreading, concentration gradually reduces. The oxygen concentration
at the impinge region is above 90%, higher than in other areas, which is helpful for the
iron oxide reaction. As shown in Figure 6b, at the impinge region of the gas stream, the
velocity exceeded 90 m/s. When the gas reached the free flow space, the velocity decreased
to 10 m/s around, and the flow entered a full development state. High-speed gas flow
can continuously push the molten pool forward to ensure the reaction stability and blow
away the slag to avoid the slag accumulation in the corner and affect the cleaning effect.
Figure 6c shows the contour map of pressure on the casting slab’s upper and right surfaces.
It can be seen that the main action range of the gas jet is conical. After the gas reached
the corner impinge region, the gas gradually diffused, and the action range gradually
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increased, conducive to the corner cleaning of the casting slab. The pressure is large in the
main jet area of the high-speed gas, and the flow rate is fast, which conforms to production
expectations in Figure 6d. Due to the special design of the nozzle, oxygen is restricted
without divergence. High-concentration oxygen impinges on the casting slab corner are
presented in Figure 6e, which is conducive to iron oxidation reaction. As shown in Figure 6f,
the velocity at the oxygen outlet exceeds 120 m/s, and the highest speed is 148 m/s. The
constraint of the gas flow is good, and oxygen is not extensive diffusion to ensure the
molten pool push force.
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2.4.3. Effect of Different Oxygen Flow Rates on Velocity and Oxygen
Concentration Distribution

In the actual working process of the factory, the oxygen flow rate range is 400–800 m3/h.
The range is determined according to the combustion reaction rate and the amount of metal
removal. Too low a flow rate leads to insufficient oxygen involved in the chemical reaction,
and too high a flow rate leads to waste of oxygen. Figure 7 shows the velocity distribution
at the edge of the slab under five oxygen flow rates, and the edge is the red line segment
shown in Figure 2. With the oxygen flow rate decreasing from 800 m3/h to 400 m3/h, the
velocity at the edge decreases. At the same time, the force pushing the molten pool forward
also decreases. It can be seen from the X-coordinate direction that the range of the main
action of the gas is roughly from 1.08 m to 1.80 m. The maximum velocity corresponding to
the five flow rates has been marked in the figure, and the impact point is at 1.19 m.

During the process of corner flame cleaning, a large amount of high-purity oxygen is
needed. The higher the oxygen concentration, the more conducive to iron oxide reaction,
removing corner defects. As shown in Figure 8, when the oxygen flow rate is 400 m3/h,
oxygen concentration over 90% of areas is roughly distributed in a rectangle with a length
of 219.0 mm and width of 31.4 mm. With the increase in oxygen flow rate, the area of
high oxygen concentration gradually decreases. If iron is not completely oxidized and
slag is formed to stick to the corner of the casting slab, the cleaning effect will be affected.
Therefore, it is of great significance to find the appropriate oxygen flow rate according to
the actual production.
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2.4.4. Effect of Different Nozzle Angles

Figure 9 shows the relative position of the nozzle and the corner edge. With the angle
between the nozzle and the slab corner changing, the gas’s action range and impact velocity
also changed. The greater the angle between the nozzle and the corner edge, the smaller the
action range of the gas, and the greater the impact velocity. As shown in Figure 10, when
the angle is 12◦, 13.5◦, and 15◦, respectively, the maximum speeds are 88.03 m/s, 93.54 m/s,
and 94.20 m/s, respectively. With the increase in angle, the action areas of velocity greater
than 10 m/s become smaller, which are 0.86 m, 0.72 m, and 0.64 m, respectively. The angle
range is considered the actual equipment production, and installation process, facilitating
the mutual cooperation between the various components.
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The nozzle angle will affect the corner cleaning depth. Figure 9 shows the distribution
of oxygen concentration in the corner. It can be seen that the change of angle has a significant
influence on the distribution of oxygen concentration. At 15◦, oxygen concentration over
90% of areas is roughly distributed in a rectangle with a length of 86.9 mm and width of
9.2 mm, when at 13.5◦, they are 64.9 mm and 6.4 mm, no more than 90% of the region at
12◦. Therefore, when the scarfing machine works, it is necessary to consider the flow rate
and angle to cooperate with each other and save resources under the premise of ensuring
the production quality.

3. Model Establishment and Results Analysis of Corner Molten Pool

The steel in the corner of the slab is heated locally via a high-temperature flame
obtained from natural gas and oxygen combustion. When reaching the ignition point, the
steel is melted by a jet creating a continuous chemical reaction between the iron and the
oxygen. The slag is blown away by the gas jet. The flame cleaning process reaction is
complex, and it is difficult to simulate the formation and blown away of slag. The suitable
method is to set a total heat source, which can effectively simulate the temperature field of
the slab, although it cannot simulate the actual slag situation [27,34,35]. When simulating
the formation of the molten pool in flame cleaning, the fluid flow is generally ignored and
only considers the effect of flame and iron oxidation reaction heat on the molten pool. It is
important to point out that to simulate the phenomenon of slag blown away after cleaning
the corner, the thermal conductivity of the part blown away changed to air and removed
the heat amount of slag blown away. Another advantage of this method is that the liquid
zone can avoid acting as an additional heat source to heat the casting slab.

3.1. Mathematical Model and Numerical Solution

Based on the above research and assumptions, as shown in Figure 11, the 2D elliptic
heat source model is used to simulate the jet flame heating of the casting slab. The 3D
Gauss heat source model of revolution is used to simulate the exothermic heat of the iron
oxide reaction.
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The 2D elliptic heat source model distribution function is:

q(x, y) =
3Q
πab
− exp

(
−3x2

a2 −
3y2

b2

)
(10)

where: x and y are the center of the heat source horizontal and vertical coordinates, re-
spectively; Q is heat input rate, w; a is the elliptical short axis, m; b is the elliptical long
axis, m.

The 3D Gauss heat source model of the revolution distribution function is:

q(x, y, z) =
3CsQ

πH
(

1− 1
e3

) exp

 −3Cs

log
(

H
z

)(x2 + y2
) (11)

Cs =
3

R2
0

(12)

where: H is heat source height, m; Q is heat input rate, w; R0 is heat source radius, m; Cs is
coefficient of heat concentration, 1/m2.

For solidification/melting problems, the energy equation is written as

∂

∂t
(ρH) +∇ ·

(
ρ
→
v H
)
= ∇ · (k∇T) + S (13)

where: H is enthalpy, J/kg; ρ is density, kg/m3;
→
v is the fluid velocity, m/s; S is the source

term, W/m3.
The calculation domain is 4500 mm × 2150 mm × 230 mm. The grid encryption area

is the main UDF function area. The size of encryption is 3 mm to improve the calculation
accuracy. The number of mesh is about 1.73 million. In the cleaning process of the slab
corner, as shown in Figure 12, the flame cleaning process can be divided into three parts:
the yellow part has been cleaned, the green part is being cleaned, and the blue part will
be cleaned. During the cleaning process, the heat sources consist of flame heating on the
upper and right surfaces of the slab and iron oxidation reaction heating on the molten pool.

The material used in this paper is low carbon steel, and thermal physical properties
are shown in Table 1.
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Table 1. Thermal physical properties of low carbon steel.

Type of Steel Low Carbon Steel

Liquidus temperature/(K) 1797
Solidus temperature/(K) 1768

Latent heat/(J/kg) 270,000
Specific heat/(J/(kg·K) 680

Solidus density/(kg/m3) 7200
Solidus viscosity/(Pa·s) 6.2

Solidus thermal conductivity/(W/(m·K)) 28.4

In the 3D model of the casting slab, the radiative and convective boundary conditions
were selected for the upper and right surfaces, and the 2D elliptic heat source model
was loaded on both sides, a combined heat transfer coefficient was calculated from the
relationship [38]: H = 24.1 × 10−4 × ε × T1.61. Where ε is the emissivity or degree of
blackness of the surface of the body. ε is assumed to be equal to 0.9. The other four surfaces
of the casting slab were selected for convection boundary conditions, and the heat transfer
coefficient is 10 (W/m2·K). The 3D gauss heat source model of revolution is added to the
energy source term in the computational domain. A pressure-based solver and the SIMPLE
algorithm are employed for pressure-velocity coupling. The constant time step size is 0.01 s.
The convergence criteria for energy and p-1 are 10−6, while the other convergence criteria
are 10−3.

3.2. Results of Molten Pool Formation and Discussion

As shown in Figure 13, the red part exceeding 1797 K is mainly due to the iron
oxidation reaction simulated by the 3D gauss heat source model. The front two elliptic
parts are due to the effect of the flame heating on the upper and right surfaces of the slab
simulated by the 2D elliptic heat source model. The cleaned slab moves forward at the
speed of 0.05 m/s, and the corner molten pool forms and becomes larger and larger. At
10 s and 20 s, it can be seen that the temperature of the molten pool is higher than the tail
part because the corner slag formed by the iron oxidation reaction is blown away by the
high rate flame jet, and a large amount of heat is taken away.
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The shape of the corner molten pool can be better understood by observing the front
of the flame jet impinging zone. Figure 14 presents the three-dimensional views of the
molten pool front part at the 20 s, that is, the area where the iron oxide reaction occurs.
In the front view, the red area is the part that exceeds the melting point of low carbon
steel, the length of the black lines are 58.1 mm and 57.9 mm on both sides, and the corner
melting depth is 29.9 mm. Figure 15 is the corner depth diagram after corner cleaning in
the factory. The factory results are 58.0 mm and 56.9 mm on both sides, and the corner
melting depth is 21.4 mm, the error is 7.04%. The molten pool shape is observed from four
perspectives for easy understanding, as shown in Figure 16. From the global view, it can
be seen that the overall shape of the molten pool, the head is relatively sharp, and then it
transitions smoothly and gradually widens. From the front view, it can be seen that the
casting slab corner molten pool is smooth and circular. The shape of the top view is the
same as the right view. The simulation results agreed well with the factory results. Thus, it
is demonstrated that these two heat source models are suitable for simulating and studying
the formation of the molten pool during the corner flame cleaning process. It is helpful for
reducing the number of trial-and-error experiments.
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4. Conclusions

1. The complicated transport characteristics in the corner flame cleaning process are
investigated using a numerical simulation method based on the experiment from the
practical process. For simplicity, the cleaning process can be divided into two parts
(cleaning flame jet zone and molten pool zone) to simulate separately. These results
are helpful for clearly understanding the actual cleaning process and improving the
process parameters;

2. A three-dimensional fully coupled model for the flame cleaning nozzle is developed
to simulate the flow pattern of the flame jet, Oxygen concentration distribution, and
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temperature field in the corner of the slab. The simulated flame jet flow field and
temperature results agreed well with the factory trial results;

3. With the increase in oxygen flow rate, the velocity at the corner also increases, and the
area of high oxygen concentration gradually decreases. The corner cleaning depth
can be controlled by the oxygen flow rate to improve the slab quality and improve the
metal recovery rate. The greater the angle of nozzle and slab, the smaller the action
range of the gas, and the greater the impact velocity. With the increase in the angle,
the area of high oxygen concentration gradually increases. Therefore, choosing the
suitable flow rate and the angle parameters is necessary to save resources and ensure
product quality;

4. A three-dimensional thermal model for simulation of the molten pool formed by
flame cleaning in the corner of the casting slab has also been developed. The predicted
results of the molten pool shape agreed well with the results from the industry trials.
The present study has demonstrated that these two heat source models are suitable
for simulating and studying the formation of the molten pool during the corner flame
cleaning process.
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