Effect of Counterbody on Friction and Wear Properties of Copper-MgP-Graphite Composites Prepared by Powder Metallurgy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Samples
2.2. Physical Properties
2.3. Friction Coefficient and Wear Test
2.4. Evaluation Method of Worn Surface
3. Results and Discussion
3.1. Friction Coefficient and Wear Rate
3.2. The Morphology Analysis of Worn Surface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kestursatya, M.; Kim, J.; Rohatgi, P. Wear performance of copper–graphite composite and a leaded copper alloy. Mater. Sci. Eng. A 2003, 339, 150–158. [Google Scholar] [CrossRef]
- Kato, H.; Takama, M.; Iwai, Y.; Washida, K.; Sasaki, Y. Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide. Wear 2003, 255, 573–578. [Google Scholar] [CrossRef]
- Rohatgi, P.K.; Ray, S.; Liu, Y. Tribological properties of metal matrix-graphite particle composites. Int. Mater. Rev. 1992, 37, 129–152. [Google Scholar] [CrossRef]
- Kováčik, J.; Emmer, Š.; Bielek, J.; Keleši, L. Effect of composition on friction coefficient of Cu–graphite composites. Wear 2008, 265, 417–421. [Google Scholar] [CrossRef]
- Kumar, R.; Antonov, M. Self-lubricating materials for extreme temperature tribo-applications. Mater. Today Proc. 2021, 44, 4583–4589. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Liu, D.; Gu, Y.; Zhang, R.; Ma, R.; Li, S.; Wang, Y.; Shi, Y. The Tribological Performance of Metal-/Resin-Impregnated Graphite under Harsh Condition. Lubricants 2022, 10, 2. [Google Scholar] [CrossRef]
- Yasar, I.; Canakci, A.; Arslan, F. The effect of brush spring pressure on the wear behaviour of copper–graphite brushes with electrical current. Tribol. Int. 2007, 40, 1381–1386. [Google Scholar] [CrossRef]
- Mazloum, A.; Kováčik, J.; Zagrai, A.; Sevostianov, I. Copper-graphite composite: Shear modulus, electrical resistivity, and cross-property connections. Int. J. Eng. Sci. 2020, 149, 103232. [Google Scholar] [CrossRef]
- Sarmadi, H.; Kokabi, A.; Reihani, S.S. Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP). Wear 2013, 304, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Zhang, Z.; Yao, P.; Fan, K.; Zhou, H.; Gong, T.; Zhao, L.; Deng, M. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol. Int. 2018, 119, 585–592. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, G. The role of graphite particles in the high-temperature wear of copper hybrid composites against steel. Mater. Des. 2006, 27, 79–84. [Google Scholar] [CrossRef]
- Li, R.; Yamashita, S.; Kita, H. Investigating the chemical bonding state of graphite powder treated with magnesium(II) phosphate through EELS, TEM, and XPS analysis. Diam. Relat. Mater. 2021, 116, 108423. [Google Scholar] [CrossRef]
- Moustafa, S.; El-Badry, S.; Sanad, A.; Kieback, B. Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders. Wear 2002, 253, 699–710. [Google Scholar] [CrossRef]
- Xia, J.-T.; Hu, Z.-L.; Chen, Z.-H.; Ding, G.-Y. Preparation of carbon brushes with thermosetting resin binder. Trans. Nonferrous Met. Soc. China 2007, 17, 1379–1384. [Google Scholar] [CrossRef]
- Liu, J.; Sun, K.; Zeng, L.; Wang, J.; Xiao, X.; Liu, J.; Guo, C.; Ding, Y. Microstructure and Properties of Copper–Graphite Composites Fabricated by Spark Plasma Sintering Based on Two-Step Mixing. Metals 2020, 10, 1506. [Google Scholar] [CrossRef]
- Opálek, A.; Emmer, Š.; Čička, R.; Beronská, N.; Oslanec, P.; Kováčik, J. Structure and Thermal Expansion of Cu−90 vol. % Graphite Composites. Materials 2021, 14, 7089. [Google Scholar] [CrossRef]
- Zhang, W.; Yamashita, S.; Kita, H. Effect of counterbody on tribological properties of B4C–SiC composite ceramics. Wear 2020, 458–459, 203418. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Z.; Wang, K.; Lu, K. Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 2006, 260, 942–948. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Y.; Song, J.; Hu, L. Tribological behavior and lubrication mechanism of self-lubricating ceramic/metal composites: The effect of matrix type on the friction and wear properties. Wear 2017, 372–373, 130–138. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Park, H.-H.; Chun, J.S.; Lee, W.-J. Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition. Thin Solid Film. 1994, 237, 57–65. [Google Scholar] [CrossRef]
- Rueda, F.; Mendialdua, J.; Rodriguez, A.; Casanova, R.; Barbaux, Y.; Gengembre, L.; Jalowiecki, L. Characterization of Venezuelan laterites by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1996, 82, 135–143. [Google Scholar] [CrossRef]
- Zhdan, P.; Shepelin, A.; Osipova, Z.; Sokolovskii, V. The extent of charge localization on oxygen ions and catalytic activity on solid state oxides in allylic oxidation of propylene. J. Catal. 1979, 58, 8–14. [Google Scholar] [CrossRef]
- Klein, J.C.; Li, C.P.; Hercules, D.M.; Black, J.F. Decomposition of Copper Compounds in X-ray Photoelectron Spectrometers. Appl. Spectrosc. 1984, 38, 729–734. [Google Scholar] [CrossRef]
- Dubé, C.E.; Workie, B.; Kounaves, S.P.; Robbat, A., Jr.; Aksub, M.L.; Davies, G. Electrodeposition of Metal Alloy and Mixed Oxide Films Using a Single-Precursor Tetranuclear Copper-Nickel Complex. J. Electrochem. Soc. 1995, 142, 3375. [Google Scholar] [CrossRef] [Green Version]
- Dua, A.; George, V.; Agarwala, R. Characterization and microhardness measurement of electron-beam-evaporated alumina coatings. Thin Solid Film. 1988, 165, 163–172. [Google Scholar] [CrossRef]
- Lau, W.M.; Huang, L.J.; Bello, I.; Yiu, Y.M.; Lee, S. Modification of surface band bending of diamond by low energy argon and carbon ion bombardment. J. Appl. Phys. 1994, 75, 3385. [Google Scholar] [CrossRef]
- Schmieg, S.J.; Belton, D.N. Polycrystalline Diamond Film on Si(100) by XPS. Surf. Sci. Spectra 1992, 1, 329. [Google Scholar] [CrossRef]
- Hrbek, J. Carbonaceous overlayers on Ru(001). J. Vac. Sci. Technol. A 1986, 4, 86. [Google Scholar] [CrossRef]
- Tan, B.J.; Klabunde, K.J.; Sherwood, P.M.A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 1991, 113, 855–861. [Google Scholar] [CrossRef]
- Jenks, C.J.; Chang, S.-L.; Anderegg, J.W.; Thiel, P.A.; Lynch, D.W. Photoelectron spectra of anAl70Pd21Mn9quasicrystal and the cubic alloyAl60Pd25Mn15. Phys. Rev. B 1996, 54, 6301–6306. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Helfand, M.; Clayton, C. Evaluation of the effect of surface roughness on thin film thickness measurements using variable angle XPS. Appl. Surf. Sci. 1989, 37, 395–405. [Google Scholar] [CrossRef]
Copper Block | Cu-MgPG Composite Block | ||
---|---|---|---|
Bulk density (g/cm3) | 8.89 | Bulk density (g/cm3) | 8.27 |
Theoretical density (g/cm3) | 8.95 | Theoretical density (g/cm3) | 8.36 |
Relative density (%) | 99.3 | Relative density (%) | 98.9 |
Vickers hardness (Hv) | 40.73 | Vickers hardness (Hv) | 54.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Yamashita, S.; Yoshida, K.; Kita, H. Effect of Counterbody on Friction and Wear Properties of Copper-MgP-Graphite Composites Prepared by Powder Metallurgy. Processes 2022, 10, 804. https://doi.org/10.3390/pr10050804
Li R, Yamashita S, Yoshida K, Kita H. Effect of Counterbody on Friction and Wear Properties of Copper-MgP-Graphite Composites Prepared by Powder Metallurgy. Processes. 2022; 10(5):804. https://doi.org/10.3390/pr10050804
Chicago/Turabian StyleLi, Ruoxuan, Seiji Yamashita, Katsumi Yoshida, and Hideki Kita. 2022. "Effect of Counterbody on Friction and Wear Properties of Copper-MgP-Graphite Composites Prepared by Powder Metallurgy" Processes 10, no. 5: 804. https://doi.org/10.3390/pr10050804
APA StyleLi, R., Yamashita, S., Yoshida, K., & Kita, H. (2022). Effect of Counterbody on Friction and Wear Properties of Copper-MgP-Graphite Composites Prepared by Powder Metallurgy. Processes, 10(5), 804. https://doi.org/10.3390/pr10050804