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Abstract: The purpose of this study was to investigate the influence of different counterbodies
against Cu/magnesium phosphate treated graphite (Cu-MgPG) composite materials to find the
best material combination in terms of friction coefficient and specific wear amount. A Cu matrix
composite reinforced with 10 vol% magnesium phosphate treated graphite and pure Cu powder
were prepared by powder metallurgy techniques under the same consolidation processing condition.
The friction and wear properties of the composites were investigated at 10 N using a pin-on-disc
tribometer on Al2O3, SiC and SUJ2 bearing steel counterbodies. The Cu-MgPG/Al2O3 pair showed
the lowest friction coefficient, but the specific wear rate tended to increase slightly when compared
with Cu/Al2O3 pair. On the other hands, the Cu-MgPG/SUJ2 pair showed about the same specific
wear rate as the Cu/SUJ2 pair, but the friction coefficient was significantly reduced. These phenomena
are thought to be due to the fact that the added graphite acts as a solid lubricant during sliding and
also suppresses the oxidation behavior of the sliding material.

Keywords: graphite; Magnesium Phosphate; sliding wear; copper-matrix composite; friction; wear;
counterbody

1. Introduction

Graphite as a common solid lubricant that is often added to metal materials to make
new materials with self-lubricating properties [1–6].

Copper-graphite composites possess both copper and graphite properties, including
excellent thermal and electrical conductivity, solid lubrication, low coefficient of thermal
expansion and so on, which makes these composite widely used as a brush and bearing
material in many applications [3,7]. In fact, components in this type of application are often
exposed to high friction, temperature rise and environmental erosion [8]. The good friction
properties of copper-graphite composites are often due to the fact that the graphite particles
exposed on the surface of the composites act as lubricants during the friction process [9–11].
Considering that graphite is prone to oxidation in high temperature environments, the
operating temperature range of ordinary copper-graphite composites is also limited.

In a previous work [12], it proposed a method to improve the oxidation resistance of
graphite while maintaining the lubricating properties of graphite. In this study, the mag-
nesium phosphate-treated graphite (MgPG) was used as a solid lubricating phase to mix
with copper powder, and used powder metallurgy technique to make copper/magnesium
phosphate-treated graphite composite materials (Cu-MgPG).

In the preparation of copper-graphite composite materials, many studies [9,13–16]
have investigated the effect of the content of graphite added on the properties of the final
composites. While this work aims to study the friction properties of composites made
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of 10 vol% magnesium phosphate treated graphite and copper. Research [14] has shown
that when the volume content of graphite is less than 50%, sintering temperature lies in
700 ◦C–950 ◦C to improve the metallurgy bonding between copper and copper in the
material. At the same time, the raw material with treated graphite [12] used in this study
was produced by sintered natural graphite with magnesium phosphate at 800 ◦C. Based on
the above data, the sintering temperature of the composite material selected in this study
was 800 ◦C.

Many scholars have studied the tribological properties of copper-graphite composite
materials under different conditions, and the results show that the tribological behavior of
copper-graphite composite materials is complex and dependent on external factors. These
important external factors include applied load, sliding velocity, ambient temperature,
humidity, and counterbody material. However, there are few studies on the effect of
counterbody materials on the friction properties of copper-graphite composite materials.

In this study, powder metallurgy technique was used to prepare Cu-MgPG composite
materials and a comparative sample of pure copper (Cu) materials prepared under the
same conditions. Then we compared the physical properties, friction properties and surface
microstructure of the pure copper materials and Cu-MgPG composites. In addition, in
order to find the optimum tribopair combination of Cu and Cu-MgPG with the counterbody
materials, the influence of the counterbody materials in terms of coefficient of friction and
wear was investigated.

2. Materials and Methods
2.1. Preparation of the Samples

The magnesium phosphate-treated graphite (MgPG) raw material used in this study
was prepared according to the method of previous study [12]. The arithmetic average
particle size of the magnesium phosphate-treated graphite (natural graphite powder,
D50 = 93.16 µm; Mg(H2PO4)2·4H2O, MW:290.34, JUNSEIKAGAKU) used in this work
was 131.70 µm.

The composites were fabricated by powder metallurgy technique. 10 vol% MgPG
powder and copper powder (Nilaco, Ginza, Tokyo, Japan) were dry-mixed with a bench
kneader machine (Irie Shokai Co., Ltd., Tokyo, Japan) for 3 h. After mixing, the powder
mixture was first cold pressed at 30 MPa in 35 mm × 35 mm square mold, and then hot-
pressing in nitrogen flow (2 L/min) at 800 ◦C for 3 h with a uniaxial pressure of 40 kN. For
comparison, parallel compacts made from pure copper powders were consolidated under
the same conditions applied for the preparation of Cu-MgPG composites. All specimens
were polished to get a mirror-effect and cleaned with acetone before every experiment. The
polished surfaces were then observed by SEM (JEOL Ltd., JSM-7500F, Tokyo Japan). The
typical SEM micrograph of the polished surface of Cu-MgPG composites and copper are
shown in Figure 1. The magnesium phosphate-treated graphite particles dispersed in the
copper matrix can be observed in Figure 1A.
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2.2. Physical Properties

The densities of the sintered copper/MgP-graphite composite and copper block were
measured by Archimedes’ method. The theoretical density was calculated by dividing
the bulk density of the sintered composite by the theoretical density calculated from the
rule of mixtures using 8.95 g/cm3, and 2.25 g/cm3 as densities for copper and magnesium
phosphate, respectively. The hardness was investigated using a Micro Vickers hardness
tester (HMV-G, SHIMADZU Corp., Kyoto, Japan) under a load of 0.5 kg with a dwell time
of 10 s. Each sample was measured five times, and the data obtained were the average
value. The physical properties of the sintered composites are shown in Table 1.

Table 1. Physical properties of the copper and the sintered composite blocks.

Copper Block Cu-MgPG Composite Block

Bulk density (g/cm3) 8.89 Bulk density (g/cm3) 8.27

Theoretical density (g/cm3) 8.95 Theoretical density (g/cm3) 8.36

Relative density (%) 99.3 Relative density (%) 98.9

Vickers hardness (Hv) 40.73 Vickers hardness (Hv) 54.83

The density of sintered samples reached 99% of the theoretical density, which demon-
strated the efficiency of the powder metallurgy technology in producing high-density
materials. From Table 1, it can also be noted that the addition of graphite increased the
hardness of copper materials but decreased the apparent density of the sintered composites.

2.3. Friction Coefficient and Wear Test

The friction coefficient and wear sliding tests was carried out in a pin-on-disc tribome-
ter (T-18-0162, NANOVEA Corp., Irvine, CA, USA) in ambient conditions (20 ± 0.5 ◦C
and 45 ± 5% RH). The tribological properties of the prepared composite materials were
investigated in a dry sliding test. Counterbodies used in the sliding test are 8 mm diameter
polished balls (the average surface roughness is less than 0.01 µm) made from commercially
available balls-SiC, Al2O3, SUJ2 bearing steel (Sato Tekkou Corp., Oita, Japan). The hard-
ness values of SiC, Al2O3, and SUJ2 balls are 2400 HV, 1600 HV, and 770 HV, respectively,
which are obtained from the supplier. Before test, both the composite materials and the
counterbody were ultrasonically cleaned in an acetone bath for 10 min. Sliding friction
and wear tests were performed with a circular sliding under a load of 10 N and the sliding
velocity was 0.1 m/s, the wear track radius was 5 mm, and the total sliding distance was
2000 m. There are no other lubricants added in each sliding test. Figure 2 shows the
schematic illustration of the sliding tester. Three tests were performed for each counterbody.
The friction coefficients were continuously recorded and the wear volume on each sample
disc and counterbody was calculated from the surface profile traces across the wear track
using a surface profilometer (Mitutoyo Corp., 178-570-01, Kawasaki, Japan).

The worn volume of the disc (Vd, mm3) was calculated according to the following
equation [17]:

Vd = 2πr(
S1 + S2 + S3 + S4

4
)

where S (mm2) and r (mm) are the cross-sectional areas of the wear track, each at 90◦ with
respect to the previous one, and sliding radius, respectively.

The worn volume of the ball (Vb, mm3) was calculated according to the following
equations [17]:

Vb = πh2(R − h
3
)

h = R −
√

R2 − r2
ω
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where h (mm) is the height of the removed material, R (mm) is original radius of the ball,
and rω(mm) is the radius of wear scar on the ball.

The specific wear rate (WR, mm3/N·m) was further calculated according to the
following equation [17]:

WR =
V

L·S
where V (mm3) is the wear volume of the disc (Vd) or ball (Vb), L (N) is the normal load,
and S (m) is the total sliding distance.

The worn surfaces of sample disc after sliding test were studied by SEM and EDS to
identify wear mechanisms.
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Figure 2. Schematic illustration of the pin on disc tester.

2.4. Evaluation Method of Worn Surface

The surface morphology and elemental distribution of the samples were character-
ized using a scanning electron microscope (SEM, JSM-7500F, JEOL Corp., Tokyo, Japan)
equipped with energy dispersive X-ray detector (EDS, JEOL Corp., Tokyo, Japan). Worn
surfaces of the samples were also investigated by an X-ray photoelectron spectroscope
(XPS) to understand wear-induced surface chemistry modification.

3. Results and Discussion
3.1. Friction Coefficient and Wear Rate

Typical evolution of the friction coefficients of copper block sliding against SiC, Al2O3,
and SUJ2 counterbodies at 10 N are shown in Figure 3. All of the friction coefficient
diagrams contain two stages such as Figure 3, named the (1) run-in and (2) steady state
stage. In the run-in stage, the friction coefficient shows a large and irregular increase and
decrease for a period of time; in the steady-state stage, the friction coefficient oscillates
continuously within a certain range. The formation of the run-in state stage may be related
to the increase of the contact area, the work hardening effect of wear and the accumulation
of debris at the pin-disk interface, and the change of the wear mechanism from two-body
wear to three-body wear [18]. The reported friction coefficient in this study is the average
of these data in the steady stage.

An initial run-in period followed by a steady-state period was observed in all of
the tribopairs, while in the run-in stage, the friction coefficient of copper block fluctuates
within certain range in a fluctuating manner against SiC, SuJ2, and Al2O3. The friction
coefficient of copper block changed in the range of 0.65–0.85 against SiC, Al2O3, and SUJ2
counterbodies. When sliding against different counterbodies, the Cu/Al2O3 tribopair has
the lowest coefficient of friction. Cu/SiC tribopair showed the highest friction coefficient in
the steady-state period.
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Typical evolution of the friction coefficients of Cu-MgPG composites sliding against
SiC, Al2O3, and SUJ2 counterbodies at 10 N are shown in Figure 4. The average friction
coefficients of all of the tribopairs in steady-state period are summarized in Figure 5.
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The friction coefficient detected with the tribopairs of Cu-MgPG composite material
is significantly lower than that of the pure copper material. The friction coefficient of
Cu-MgPG composites changed in the range of 0.15–0.35 against SiC, Al2O3, and SUJ2
counterbodies. Similar to the results of copper tribopair, Cu-MgPG/Al2O3 tribopair has the
lowest coefficient of friction. However, the Cu-MgPG/SUJ2 tribopair showed the highest
friction coefficient in the steady-state period.

From Figure 5, it can be noted that the addition of magnesium phosphate treated
graphite decreased the friction coefficient of the sintered composites against each counterbody.

The specific wear rate (WR) of the sintered disc is displayed in Figure 6, and the
results showed WR of sintered copper discs changed in the range of 3.13 × 10−6–6.27
× 10−6 mm3/N·m against Al2O3, SiC, and SUJ2 counterbodies at a load of 10 N.
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For the sintered copper disc, the lowest wear rate disappeared when sliding against
Al2O3 counterbody, which is similar to the relationship of the friction coefficient. However,
the highest WR disappeared when sliding against SUJ2 counterbody that is different with
the result of the friction coefficient. In addition, the WR results with sintered Cu-MgPG
disc also shows that the lowest wear rate and highest wear rate disappeared when sliding
against Al2O3 and SUJ2 counterbody, respectively. Considering the data in Figures 5 and 6,
the specific wear rate of the sintered disc against SiC, Al2O3, SUJ2 counterbodies didn’t
show obvious dependence on their friction coefficients. At the same time, even though
the average friction coefficient of the sintered Cu-MgPG composite materials decreased
significantly with sintered copper materials, the specific wear rate increased instead when
sliding against SiC and Al2O3 ball.

The average specific wear rates of SiC, Al2O3, SUJ2 counterbodies with two sintered
discs are summarized in Figure 7.

It can be found from Figure 7 that Al2O3 ball exhibited lower specific wear rate when
sliding against two kinds of sintered disc compared with other counterbodies. The specific
wear rate of SiC ball was the highest when sliding against sintered Cu-MgPG composite
materials which is corresponding to the result shown in Figure 6. From the comparison
between Figures 6 and 7, it is clear that the specific wear rates between the sintered disc
and counterbodies were consistent.
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3.2. The Morphology Analysis of Worn Surface

Figure 8 shows the morphologies of worn surfaces of the sintered discs after sliding
tests with different counterbody. The corresponding elemental analysis results (EDS) are
shown in Figure 9.
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Figure 8A–C displayed the worn surface of the sintered copper sample. While
Figure 8D–F displayed the worn surface of the sintered Cu-MgPG sample. It can be seen
that after the sliding experiment, the worn surface left on the sintered Cu-MgPG sample
is different from sintered copper sample. Clear grooves appear on the wear surface of
the graphite-added sintered samples. From the analysis of the results of EDS (Figure 9),
it can be inferred that the formation of these grooves is related to the oxides formed on
the surface.

In addition, SEM images of Figure 8 D, E showed that there was a partial detachment
of graphite form the inner region of the pockets. For the samples with graphite addition,
graphite particles agglomerate in regions between Cu matrix grains, stored in pockets with
internal voids [19]. At the same time, it indicates that the reduced density and low theoreti-
cal density (as shown in Table 1) of the graphite-containing samples is associated with the
internal voids in pockets of graphite present in the composites. Meanwhile, in Figure 8F,
graphite particles staying on the worn surface are observed, which are presumably exposed
from the graphite-storing voids during the friction process.

Elemental analysis of all samples after sliding experiments showed the presence of a
large amount of oxygen on the wear track. However, material shedding, plastic deformation
and numerous grooves can be clearly seen on the wear track of the graphite added sintered
samples. There are only a few grooves on the wear track surface of the sintered copper
sample. This proves that different oxides are formed on the surface of the two samples. No
obvious graphite film formation was observed in the EDS mapping in Figure 9D,E, but
observed on the wear track formed by the Cu-MgPG/SuJ2 tribopair shown in Figure 9F,
there are some linear tracks formed by the graphite element.

According to the results in Figure 5, it can be known that the lowest friction coefficient
of sintered disc appeared when sliding against Al2O3 counterbody, while the hardness
of the Al2O3 ball is in the middle of the other two counterbodies. It was proved that the
hardness of the counterbody is not the key to determining the friction coefficient. Combined
with the EDS results, it is assumed that the reduction in the average friction coefficient of
Cu/Al2O3 and Cu-MgPG/Al2O3 tribopairs should be related to the oxides produced on
the worn surface during the friction process.

XPS results in Figures 10 and 11 were also conducted on the sintered copper sample
and sintered Cu-MgPG sample surfaces after sliding against different counterbodies to
confirm the oxidation in sliding. Results from XPS analysis for Al2p, O1s, C1s core levels
obtained on the worn surface of sintered samples sliding against Al2O3 counterbody are
provided in Figure 10.
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Figure 11. XPS analysis of worn surfaces of sintered copper and Cu-MgPG samples against (A) SUJ2
counterbody; (B) SiC counterbody.

As shown in Figure 10A,D, the Al2p peak(P1 + P2 + P3) fitted to the original peak is
composed of three peaks P1, P2, P3 (as revealed by Gaussian curve fitting), each of which
are assigned to different bonds containing Al. The Al2p peak at 75 eV corresponds to the
presence of Al2O3 [20]. Meanwhile, there are also two unknown peaks appeared in copper
sample and Cu-MgPG sample. The fitted O1s peak was deconvoluted into three parts
using Gaussian curve fitting. The two main O1s peak at 530.35 eV and 531.4 eV appeared
in Figure 10B correspond to the presence of CuO [21] and Al2O3 [22] or Al2CuO4 [23]
respectively. While as shown in Figure 10E, the O1s peak at 530.2 eV corresponds to the
presence of CuO2 [24], O1s peak at 532.0 eV belongs to Al2O3 [25]. The C element in the
EDS results (Figure 9A) indicates that there is also carbon in the wear surface of the pure
copper sample. After the analysis of C1s by XPS, the fitted C1s peak was deconvoluted
into three separate peaks using Gaussian curve fitting. C1s peak at 284.8 eV as shown in
Figure 10C, and 284.9 eV as shown in Figure 10F corresponds to the presence of diamond
structure [26,27]. It can be speculated that there are some abrasive particles (diamond)
remaining after the copper sample is polished. In addition, the C1s peak at 285.7 eV in
Figure 10F corresponds to the presence of graphite [28]. This proves that during the friction
process, there are graphite particles exposed from the graphite-storing voids and stay on
the friction contact surface.

XPS analysis of worn surfaces of copper and Cu-MgPG composite materials against
SuJ2 counterbody and SiC counterbody is shown in Figure 11. Compared with the analysis
results of EDS (as shown in Figure 9C), the presence of Mn element was detected on the
wear surface with XPS analysis (Figure 11A) after the copper sample sliding against SUJ2
counterbody. It can be speculated that the Mn element comes from the debris of the SUJ2
counterbody remaining on the disc surface. The Mn2p peak at 642.2 eV corresponds to the
presence of MnO2 [29] and the peak at 650.0 eV corresponds to the presence of Mn [30].
However, the peak representing the Mn element is not significant on the Cu-MgPG sample.
The Si2p peak at 103.1 eV corresponds to the presence of SiO2 [31]. The peak representing
the Si element is not significant on the Cu/MgPG sample.

Combined with the results of the Specific wear rate shown in Figures 6 and 7, it can
be speculated that the sliding test with Cu-MgPG sample against SUJ2 counterbody can
reduce the average friction coefficient while reducing wear.

4. Conclusions

In this study, a Cu-MgPG material was prepared, and the experimental results proved
that the Cu-MgPG material in this study has self-lubricating properties. In addition, under
fixed experimental conditions (fixed load 10 N and sliding speed 0.1 m/s), the optimum
tribopair combination of Cu and Cu-MgPG with the counterbody material, the influence of
the counterbody materials in terms of coefficient of friction and wear was examined, and
the following findings were obtained.
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(1) The friction coefficient detected with the tribopairs of Cu-MgPG composite material
is significantly lower than that of the pure copper material since the added graphite acts as
a solid lubricant.

(2) The Cu-MgPG/SUJ2 pair was found to decrease both the friction coefficient and
specific wear amount compared to the Cu/SUJ2 pair. From the results of XPS and EDS
analysis of the sliding surfaces, it is considered that the added MgPG acted as a solid
lubricant and suppressed the oxidation behavior of the material. On the other hand, the
Cu-MgPG/Al2O3 pair was found to have the lowest coefficient of friction and specific wear
of all of the pairs.

In general, the results of this study have demonstrated the application potential
of Cu/MgPG materials under specific circumstances. However, in the case of practical
application, there are changes in loads and sliding speeds, so the materials prepared in
this study cannot be immediately put into the application of brush or bearing materials. In
future research, it is necessary to continue studying the effects of sliding loads and sliding
speeds on the coefficient of friction and wear with different tribopairs.
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