Hydrodynamics of an Elliptical Squirmer
Abstract
:1. Introduction
2. Numerical Method and Swimming Model of Squirmer
2.1. Lattice Boltzmann Method
2.2. Direct-Forcing Immersed Boundary Method
2.3. The Velocity Model of the Elliptical Squirmer
2.4. Swimming Power and Hydrodynamic Efficiency
3. Results and Discussion
3.1. Validation of Numerical Scheme
3.2. Flow Induced by the Squirmer
3.3. Effect of Reynolds Number
3.4. Effect of AR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
cs | sound speed | D | discrete delta function |
eα | unit direction vector | f | external force density |
fα | particle distribution function | fαeq | equilibrium distribution function |
Fb | force density | h | mesh spacing |
Fα | discrete force distribution function | n | normal vector to squirmer surface |
U | fluid velocity | ubnoF | unforced velocity |
U | stable squirmer velocity | vθ | tangential velocity at boundary |
wα | weight associated with eα | Δsb | arc length of boundary segment |
Δt | unit lattice time | η | hydrodynamic efficiency |
Μ | fluid viscosity | ρ | fluid density |
ρbnoF | unforced density | σ | stress tensor |
τ | dimensionless relaxation time | φ | rotation angle of squirmer |
References
- Liu, C.; Lin, J.Z. A review on the some issues of multiphase flow with self-driven particles. Appl. Sci. 2021, 11, 7361. [Google Scholar] [CrossRef]
- Lighthill, M.J. On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers. Commun. Pure Appl. Math. 1952, 5, 109–118. [Google Scholar] [CrossRef]
- Blake, J.R. A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 1971, 46, 199–208. [Google Scholar] [CrossRef]
- Blake, J.R. Self propulsion due to oscillations on the surface of a cylinder at low reynolds number. Bull. Aust. Math. Soc. 1971, 5, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, T.; Pedley, T.J. Coherent structures in monolayers of swimming particles. Phys. Rev. Lett. 2008, 100, 088103. [Google Scholar] [CrossRef] [PubMed]
- Magar, V.; Pedley, T.J. Average nutrient uptake by a self-propelled unsteady squirmer. J. Fluid Mech. 2005, 539, 93. [Google Scholar] [CrossRef]
- Ishikawa, T.; Simmonds, M.; Pedley, T.J. Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 2006, 568, 119–160. [Google Scholar] [CrossRef]
- Ishikawa, T.; Pedley, T.J. The rheology of a semi-dilute suspension of swimming model micro-organisms. J. Fluid Mech. 2007, 588, 399–435. [Google Scholar] [CrossRef]
- Ouyang, Z.; Lin, J.Z.; Ku, X. The hydrodynamic behavior of a squirmer swimming in power-law fluid. Phys. Fluids 2018, 30, 083301. [Google Scholar] [CrossRef]
- Ouyang, Z.; Lin, J.Z.; Ku, X. Hydrodynamic properties of squirmer swimming in power-law fluid near a wall. Rheol. Acta 2018, 57, 655–671. [Google Scholar] [CrossRef]
- Ouyang, Z.; Lin, J.Z.; Ku, X. Hydrodynamic interaction between a pair of swimmers in power-law fluid. Int. J. Non-Linear Mech. 2019, 108, 72–80. [Google Scholar] [CrossRef]
- Ouyang, Z.; Lin, J.Z. Migration of a micro-swimmer in a channel flow. Powder Technol. 2021, 392, 587–600. [Google Scholar] [CrossRef]
- Zantop, A.W.; Stark, H. Squirmer rods as elongated microswimmers: Flow fields and confinement. Soft Matter 2020, 16, 6400–6412. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Phan-Thien, N. Inertial swimming in a channel filled with a power-law fluid. Phys. Fluids 2021, 33, 113312. [Google Scholar] [CrossRef]
- Ouyang, Z.; Lin, J.Z. The Hydrodynamics of an inertial squirmer rod. Phys. Fluids 2021, 33, 073302. [Google Scholar] [CrossRef]
- Blake, J. A Model for the micro-structure in ciliated organisms. J. Fluid Mech. 1972, 55, 1–23. [Google Scholar] [CrossRef]
- Blake, J. A Finite model for ciliated micro-organisms. J. Biomech. 1973, 6, 133–140. [Google Scholar] [CrossRef]
- Keller, S.R.; Wu, T.Y. A porous prolate-spheroidal model for ciliated micro-organisms. J. Fluid Mech. 1977, 80, 259–278. [Google Scholar] [CrossRef] [Green Version]
- Theers, M.; Westphal, E.; Gompper, G.; Winkler, R.G. Modeling a spheroidal microswimmer and cooperative swimming in thin films. Soft Matter 2016, 12, 7372–7385. [Google Scholar] [CrossRef] [Green Version]
- Theers, M.; Westphal, E.; Qi, K.; Winkler, R.G.; Gompper, G. Clustering of microswimmers: Interplay of shape and hydrodynamics. Soft Matter 2018, 14, 8590–8603. [Google Scholar] [CrossRef] [Green Version]
- Shapere, A.; Wilczek, F. Geometry of self-propulsion at low reynolds number. J. Fluid Mech. 1989, 198, 557–585. [Google Scholar] [CrossRef] [Green Version]
- Leshansky, A.M.; Kenneth, O.; Gat, O.; Avron, J.E. A frictionless microswimmer. New J. Phys. 2007, 9, 145. [Google Scholar] [CrossRef]
- Kang, S.K.; Hassan, Y.A. A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries. Int. J. Numer. Methods Fluids 2011, 66, 1132–1158. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Li, Z.; He, G.W. A Smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J. Comput. Phys. 2009, 228, 7821–7836. [Google Scholar] [CrossRef]
- Choudhary, A.; Paul, S.; Ruhle, F.; Stark, H. How inertial lift affects the dynamics of a microswimmer in Poiseuille flow. Commun. Phys. 2022, 5, 14. [Google Scholar] [CrossRef]
- Avron, J.E.; Gat, O.; Kenneth, O. Optimal swimming at low reynolds numbers. Phys. Rev. Lett. 2004, 93, 186001. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Hu, H.H.; Joseph, D.D. Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid part 1. sedimentation. J. Fluid Mech. 1994, 261, 95–134. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.G.; Michaelides, E.E. Interparticle forces and lift on a particle attached to a solid boundary in suspension flow. Phys. Fluids 2002, 14, 49–60. [Google Scholar] [CrossRef]
- Feng, Z.G.; Michaelides, E.E. The immersed boundary-lattice boltzmann method for solving fluid–particles interaction problems. J. Comput. Phys. 2004, 195, 602–628. [Google Scholar] [CrossRef]
- Pöhnl, R.; Popescu, M.N.; Uspal, W.E. Axisymmetric spheroidal squirmers and self-diffusiophoretic particles. J. Phys. Condens. Matter 2020, 32, 164001. [Google Scholar] [CrossRef]
- Andreoni, W.; Yip, S. Handbook of Materials Modeling: Methods: Theory and Modeling; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Chisholm, N.G.; Legendre, D.; Lauga, E.; Khair, A.S. A squirmer across reynolds numbers. J. Fluid Mech. 2016, 796, 233–256. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Do-Quang, M.; Lauga, E.; Brandt, L. Locomotion by tangential deformation in a polymeric fluid. Phys. Rev. E 2011, 83, 011901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejat, A.; Mirzakhalili, E.; Aliakbari, A.; Niasar, M.S.F.; Vahidkhah, K. Non-newtonian power-law fluid flow and heat transfer computation across a pair of confined elliptical cylinders in the line array. J. Non-Newton. Fluid Mech. 2012, 171–172, 67–82. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zhang, P.; Lin, J.; Ouyang, Z. Hydrodynamics of an Elliptical Squirmer. Processes 2022, 10, 805. https://doi.org/10.3390/pr10050805
Liu C, Zhang P, Lin J, Ouyang Z. Hydrodynamics of an Elliptical Squirmer. Processes. 2022; 10(5):805. https://doi.org/10.3390/pr10050805
Chicago/Turabian StyleLiu, Chen, Peijie Zhang, Jianzhong Lin, and Zhenyu Ouyang. 2022. "Hydrodynamics of an Elliptical Squirmer" Processes 10, no. 5: 805. https://doi.org/10.3390/pr10050805
APA StyleLiu, C., Zhang, P., Lin, J., & Ouyang, Z. (2022). Hydrodynamics of an Elliptical Squirmer. Processes, 10(5), 805. https://doi.org/10.3390/pr10050805