Numerical Analysis of a Latent Heat Storage Using Plate Heat Exchanger for Absorption System Conditions
Abstract
:1. Introduction
2. Latent Heat Storage Tank Modeling
- The thermal properties of the PCM and HF are homogeneous;
- The thermophysical properties of the PCM are considered constant in the liquid, solid, and phase change;
- The phase change of the PCM is assumed to be isothermal;
- The thermal resistance of the metal wall between the plates is insignificant.
Plate Heat Exchanger
3. Results
3.1. Parametric Analyses in the Charging Process
3.2. Discharge Process
4. Discussion
5. Conclusions
- The latent heat in the center (TPCM3) of the PCM block lasted 1017 and 825 s for the flat and corrugated plate, respectively. The latent heat process finished first in the corrugated and then in the flat plate due to the higher value of heat transfer coefficient in the HF side.
- The latent heat process finished at 520 and 1684 s for the flat plate at PCM thickness = 0.02 and 0.04 m, respectively, while the corrugated plate took less time, and it finished at 387 and 1419 s. Higher PCM thicknesses decrease the thermal diffusivity, and the phase change process takes more time to finish.
- The increment of the input temperature of the HF from 140 to 150 °C reduced the latent heat time from 1368 to 1017 s for the flat plate and from 1104 to 825 s for the corrugated plate. A higher input temperature improves the heat transfer, caused by the differential temperature between the HF and the melting point of the PCM.
- The maximum average temperature (THF,AVE) was 91.75 and 109.50 °C for flat and corrugated plates, respectively, at an input temperature of HF equal to 85 °C and a flowrate of 0.8 kg/s; however, the time of operation for the ACS was 147 and 69 s at 0.8 kg/s for the flat and corrugated plates, respectively, while, it took 420 and 243 s at 0.27 kg/s.
- A higher flowrate increases the overall heat transfer coefficient (U); however, it was more significant for flat plates (from 0.053 to 0.064 kW/m2 °C) than for corrugate plates (from 0.073 to 0.075 kW/m2 °C); this means an improvement from 17% at higher flows and 37% at lower flows for the corrugate plate.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A | area: m2 |
ACS | absorption cooling system |
CORR | corrugated plate |
Cp | heat capacity, kJ kg−1 °C−1 |
FLAT | flat plate |
HF | heating fluid |
ISO | insulation |
k | thermal conductivity, kW m−1 °C−1 |
kEFF | effective thermal conductivity, kW m−1 °C−1 |
LHST | latent heat storage tank |
PCM | phase change material |
qu | liquid fraction |
T | temperature, °C |
t | time, s |
th | thickness, m |
U | overall heat transfer coefficient, kW m−2 °C−1 |
V | volume, m3 |
x | x coordinate |
y | y coordinate |
References
- Choi, J.C.; Kim, S.D. Heat transfer in a latent heat-storage system using MgCl2·6H2O at the melting point. Energy 1995, 20, 13–25. [Google Scholar] [CrossRef]
- Medrano, M.; Yilmaz, M.O.; Nogués, M.; Martorell, I.; Roca, J.; Cabeza, L.F. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl. Energy 2009, 86, 2047–2055. [Google Scholar] [CrossRef]
- Cerezo, J.; Lara, F.; Romero, R.J.; Rodríguez, A. Analysis and simulation of an absorption cooling system using a latent heat storage tank and a tempering valve. Energies 2021, 14, 1376. [Google Scholar] [CrossRef]
- Gürel, B. A numerical investigation of the melting heat transfer characteristics of phase change materials in different plate heat exchanger (latent heat thermal energy storage) systems. Int. J. Heat Mass Transf. 2020, 148, 119117. [Google Scholar] [CrossRef]
- Gürel, B. Thermal performance evaluation for solidification process of latent heat thermal energy storage in a corrugated plate heat exchanger. Appl. Therm. Eng. 2020, 174, 115312. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, W.; Ling, Z.; Fang, X.; Zhang, Z. Experimental study of the thermal performance of a novel plate type heat exchanger with phase change material. Appl. Therm. Eng. 2020, 178, 115630. [Google Scholar] [CrossRef]
- Saeed, R.M.; Schlegela, J.P.; Sawafta, R.; Kalra, V. Plate type heat exchanger for thermal energy storage and load shifting using phase change material. Energy Convers. Manag. 2019, 181, 120–132. [Google Scholar] [CrossRef]
- Kumar, N.; Chavez, R.; Banerjee, D. Experimental Validation of Thermal Performance of a Plate Heat Exchanger (PHX) with Phase Change Materials (PCM) for Thermal Energy Storage (TES). In Proceedings of the 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 29 May 2018. [Google Scholar]
- Mahani, R.B.; Mohammed, H.I.; Mahdi, J.M.; Alamshahi, F.; Ghalambaz, M.; Talebizadehsardari, P.; Yaïci, W. Phase change process in a zigzag plate latent heat storage system during melting and solidification. Molecules 2020, 25, 4643. [Google Scholar] [CrossRef]
- Wang, P.; Li, D.; Huang, Y.; Zheng, X.; Wang, Y.; Peng, Z.; Ding, Y. Numerical study of solidification in a plate heat exchange device with a zigzag configuration containing multiple phase-change-materials. Energies 2016, 9, 394. [Google Scholar] [CrossRef] [Green Version]
- Badenhorst, H. Optimising graphite composites and plate heat exchangers for latent thermal energy storage using measurements and simulation. J. Energy Storage 2020, 29, 101347. [Google Scholar] [CrossRef]
- Palomba, V.; Brancato, V.; Frazzica, A. Thermal performance of a latent thermal energy storage for exploitation of renewables and waste heat: An experimental investigation based on an asymmetric plate heat exchanger. Energy Convers. Manag. 2019, 200, 112121. [Google Scholar] [CrossRef]
- Diarce, G.; Campos, Á.; Sala, J.M.; García, A. A novel correlation for the direct determination of the discharging time of plate-based latent heat thermal energy storage systems. Appl. Therm. Eng. 2018, 129, 521–534. [Google Scholar] [CrossRef]
- Nekoonam, S.; Ghasempour, R. Optimization of a solar cascaded phase change slab-plate heat exchanger thermal storage system. J. Energy Storage 2021, 34, 102005. [Google Scholar] [CrossRef]
- Akyol, E.; Hacıhafızoğlu, O.; Susantez, Ç.; Kahveci, K.; Akyol, U. Experimental and numerical investigation of heat transfer in a channel with multiple phase change materials (PCMs). J. Energy Storage 2022, 45, 103710. [Google Scholar] [CrossRef]
- Pintaldi, S.; Sethuvenkatraman, S.; White, S.; Rosengarten, G. Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems. Appl. Energy 2017, 188, 160–177. [Google Scholar] [CrossRef]
- Fan, Z.; Infante, C.A.; Mosaffa, A.H. Numerical modelling of high temperature latent heat thermal storage for solar application combining with double-effect H2O/LiBr absorption refrigeration system. Sol. Energy 2014, 110, 398–409. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.; Zhao, Y.; Dai, Y. Performance assessment of a single/double hybrid effect absorption cooling system driven by linear Fresnel solar collectors with latent thermal storage. Sol. Energy 2017, 151, 82–94. [Google Scholar] [CrossRef]
- Singh, R.P.; Sze, J.Y.; Kaushik, S.C.; Rakshit, D.; Romagnoli, A. Thermal performance enhancement of eutectic PCM laden with functionalised graphene nanoplatelets for an efficient solar absorption cooling storage system. J. Energy Storage 2021, 33, 102092. [Google Scholar] [CrossRef]
- Klein, S.A. EES, Engineering Equation Solver; Professional Version; FChart Software: Madison, WI, USA, 2017; Available online: http://www.fchart.com/ees/ (accessed on 16 March 2022).
- Cengel, Y.A. Heat and Mass Transfer: A Practical Approach, 2nd ed.; Mc Graw-Hill Professional: New York, NY, USA, 2007. [Google Scholar]
- Plate Heat Exchanger, Sondex S54. Available online: https://www.cjmulanixco.com/Sondex/index.php (accessed on 16 March 2022).
- Heavner, R.L.; Kumar, H.; Wanniarachchi, A.S. Performance of an industrial plate heat exchanger: Effect of chevron angle. AICHE Sympo. Ser. 1993, 89, 262–267. [Google Scholar]
- Kays, W.M.; Crawford, M.E. Convective Heat and Mass Transfer, 2nd ed.; McGraw-Hill: New York, NY, USA, 1981. [Google Scholar]
- Kakac, S.; Yerner, Y. Convective Heat Transfer, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Gnielinski, V. Forced Convection Ducts. In Heat Exchanger Design Handbook; Hemisphere; Begell House Inc.: New York, NY, USA, 1983; pp. 2.5.1–2.5.3. [Google Scholar]
- Zivkovic, B.; Fujii, I. An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Sol. Energy 2001, 70, 51–61. [Google Scholar] [CrossRef]
- Dowthermtm Q Technical Data Sheet. Available online: https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/176/176-01467-01-dowtherm-q-tds.pdf?iframe=true (accessed on 17 March 2022).
- Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Single Effect Hot Water Absorption Chiller, Model SYDHL, SYSTEMA. Available online: https://www.systea.it/en/ (accessed on 16 March 2022).
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 7th ed.; John Wiley & Sons Inc.: New York, NY, USA, 1991. [Google Scholar]
- Mofijur, M.; Mahlia, T.M.I.; Silitonga, A.S.; Ong, H.C.; Silakhori, M.; Hasan, M.H.; Putra, N.; Rahman, S.M.A. Phase change materials (PCM) for solar energy usages and storage: An overview. Energies 2019, 12, 3167. [Google Scholar] [CrossRef] [Green Version]
Compound | Melting Temperature, °C | Heat of Fusion, kJ/kg | k, W/m °C | ρ, kg/m3 |
---|---|---|---|---|
MgCl2·6H2O | 117 | 168.6 | 0.69 (solid) at 90 °C 0.57 (liquid) at 120 °C | 1569 (solid) 1450 (liquid) |
Flowrate, kg/s | RHF, (m2 C/kW) | U, (kW/m2 C) | |
---|---|---|---|
Flat | 0.267 | 5.788 | 0.053 |
Flat | 0.400 | 4.187 | 0.058 |
Flat | 0.800 | 2.377 | 0.064 |
Corrugated | 0.267 | 0.524 | 0.073 |
Corrugated | 0.400 | 0.396 | 0.074 |
Corrugated | 0.800 | 0.245 | 0.075 |
Material | Volume, (m3) | Vapor Pressure, (kPa) | Energy, (kJ) |
---|---|---|---|
Water | 1.04 | 198 | 147,718 |
MgCl2·6H2O | 0.63 | Very low | 284,430 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerezo, J.; Lara, F.; Romero, R.J.; Hernández-Luna, G.; Montiel-González, M. Numerical Analysis of a Latent Heat Storage Using Plate Heat Exchanger for Absorption System Conditions. Processes 2022, 10, 815. https://doi.org/10.3390/pr10050815
Cerezo J, Lara F, Romero RJ, Hernández-Luna G, Montiel-González M. Numerical Analysis of a Latent Heat Storage Using Plate Heat Exchanger for Absorption System Conditions. Processes. 2022; 10(5):815. https://doi.org/10.3390/pr10050815
Chicago/Turabian StyleCerezo, Jesús, Fernando Lara, Rosenberg J. Romero, Gabriela Hernández-Luna, and Moisés Montiel-González. 2022. "Numerical Analysis of a Latent Heat Storage Using Plate Heat Exchanger for Absorption System Conditions" Processes 10, no. 5: 815. https://doi.org/10.3390/pr10050815
APA StyleCerezo, J., Lara, F., Romero, R. J., Hernández-Luna, G., & Montiel-González, M. (2022). Numerical Analysis of a Latent Heat Storage Using Plate Heat Exchanger for Absorption System Conditions. Processes, 10(5), 815. https://doi.org/10.3390/pr10050815