Preparation and Characterization of Porous Carbon Composites from Oil-Containing Sludge by a Pyrolysis-Activation Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermochemical Characteristics Analyses of Oil-Containing Sludge
2.2.1. Thermogravimetric Analysis
2.2.2. Ash Content
2.2.3. Ultimate Analysis
2.2.4. Heating Value Analysis
2.2.5. Inorganic Element Analysis
2.3. Pyrolysis-Activation Experiments
2.4. Analysis of Resulting Carbon Composites
2.4.1. Pore Analysis
2.4.2. Scanning Electron Microscopy
3. Results and Discussion
3.1. Thermochemical Properties of Oil-Containing Sludge
3.2. Pore Analysis of Resulting Carbon Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, Y.L.; Liu, C.C. Evaluation and selection of regeneration of waste lubricating oil technology. Environ. Monit. Assess. 2011, 176, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.R.; Ibrahim, I.A.R.; Taha, A.H.; McKay, G. Waste lubricating oil treatment by extraction and adsorption. Chem. Eng. J. 2013, 220, 343–351. [Google Scholar] [CrossRef]
- Arpa, O.; Ymrutas, R.; Demirbas, A. Production of diesel-like fuel from waste engine oil by pyrolitic distillation. Appl. Energy 2010, 87, 122–127. [Google Scholar] [CrossRef]
- Maceiras, R.; Alfonsin, V.; Morales, F.J. Recycling of waste engine oil for diesel production. Waste Manag. 2017, 60, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.; Tang, J.; Lu, H.; Xi, B.; Qu, C.; Li, J. Status and prospect of oil recovery from oily sludge: A review. Arab. J. Chem. 2020, 13, 6523–6543. [Google Scholar] [CrossRef]
- Teng, Q.; Zhang, D.; Yang, C. A review of the application of different treatment processes for oily sludge. Environ. Sci. Pollut. Res. 2021, 28, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Mirghaffari, N. A preliminary study of the preparation of porous carbon from oil sludge for water treatment by simple pyrolysis or KOH activation. New Carbon Mater. 2015, 30, 310–318. [Google Scholar] [CrossRef]
- Wang, J.; Liu, T.L.; Huang, Q.X.; Ma, Z.Y.; Chi, Y.; Yan, J.H. Production and characterization of high quality activated carbon from oily sludge. Fuel Process. Technol. 2017, 162, 13–19. [Google Scholar] [CrossRef]
- Gong, Z.; Meng, F.; Wang, Z.; Fang, P.; Li, X.; Liu, L.; Zhang, H. Study on preparation of an oil sludge-based carbon material and its adsorption of CO2- effect of the blending ratio of oil sludge pyrolysis char to KOH and urea. Energy Fuels 2019, 33, 10056–10065. [Google Scholar] [CrossRef]
- Mojoudi, N.; Mirghaffari, N.; Soleimani, M.; Shariatmadari, H.; Belver, C.; Bedia, J. Phenol adsorption on high microporous activated carbons prepared from oily sludge—Equilibrium, kinetic and thermodynamic studies. Sci. Rep. 2019, 9, 19352. [Google Scholar] [CrossRef] [PubMed]
- Mojoudi, N.; Soleimani, M.; Mirghaffari, N.; Belver, C.; Bedia, J. Removal of phenol and phosphate from aqueous solutions using activated carbons prepared from oily sludge through physical and chemical activation. Water Sci. Technol. 2019, 80, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, D.; Zhang, M.; Li, B.; Wang, Z.; Gong, Z.; Liu, P.; Zhang, Y.; Yang, X. Removal of toxic dyes from aqueous solution using new activated carbon materials developed from oil sludge waste. Colloids Surf. A 2019, 578, 123505. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; McGill, W.B.; Whitcombe, T.W. Impact of pyrolysis temperature and activation on oily sludge-derived char for Pb(II) and Cd(II) removal from aqueous solution. Environ. Sci. Pollut. Res. 2021, 28, 5532–5547. [Google Scholar] [CrossRef] [PubMed]
- Marsh, H.; Rodriguez-Reinoso, F. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Chang, Y.M.; Tsai, W.T.; Li, M.H. Characterization of activated carbon prepared from chlorella-based algal residue. Bioresour. Technol. 2015, 184, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Standard Test Method for Ash from Petroleum Products. Available online: https://www.astm.org/d0482-19.html (accessed on 23 March 2022).
- Touyray, N.; Tsai, W.T.; Chen, H.R.; Liu, S.C. Thermochemical and pore properties of goat-manure-derived biochars prepared from different pyrolysis temperatures. J. Anal. App. Pyrolysis 2014, 109, 116–122. [Google Scholar] [CrossRef]
- Tsai, W.T.; Jiang, T.J. Mesoporous activated carbon produced from coconut shell using a single-step physical activation process. Biomass Conver. Biorefin. 2018, 8, 711–718. [Google Scholar] [CrossRef]
- Condon, J.B. Surface Area and Porosity Determinations by Physisorption: Measurements and Theory; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Yang, H.; Shen, K.; Fu, P.; Zhang, G. Preparation of a novel carbonaceous material for Cr(VI) removal in aqueous solution using oily sludge of tank bottom as a raw material. J. Environ. Chem. Eng. 2019, 7, 102898. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction, 2nd ed.; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Mohammadi, S.; Mirghaffari, N. Optimization and comparison of Cd Removal from aqueous solutions using activated and non-activated carbonaceous adsorbents prepared by pyrolysis of oily sludge. Water Air Soil Pollut. 2015, 226, 2237. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Zhou, L.; Han, X.; Cui, Z. Pyrolysis treatment of oil sludge and model-free kinetics analysis. J. Hazard. Mater. 2019, 161, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Yi, I.G.; Kang, J.K.; Lee, S.C.; Lee, C.G.; Kim, S.B. Synthesis of an oxidized mesoporous carbon-based magnetic composite and its application for heavy metal removal from aqueous solutions. Microporous Mesoporous Mater. 2019, 279, 45–52. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Proximate analysis a,b | |
Ash (wt%) | 56.01 ± 0.78 |
Ultimate analysis b,c | |
Carbon (wt%) | 34.34 ± 0.37 |
Hydrogen (wt%) | 4.46 ± 0.11 |
Oxygen (wt%) | 20.20 ± 0.07 |
Nitrogen (wt%) | 0.46 ± 0.10 |
Sulfur (wt%) | 0.45 ± 0.18 |
Calorific value (MJ/kg) a,b | 18.10 ± 0.08 |
Inorganic Element | Value |
---|---|
Fe (wt%) | 20.077 |
Al (wt%) | 0.390 |
Cr (wt%) | 0.102 |
Cu (wt%) | 0.008 |
Pore Property | OS-CC-30 | OS-CC-30-A | OS-CC-60 | OS-CC-60-A | OS-CC-90 | OS-CC-90-A |
---|---|---|---|---|---|---|
Surface area (m2/g) | ||||||
Single point surface area a | 20.78 | 39.01 | 19.05 | 27.98 | 0.47 | 1.34 |
BET surface area b | 21.59 | 40.53 | 19.18 | 28.98 | 0.56 | 1.47 |
Langmuir surface area | 120.01 | 166.83 | 29.75 | 164.74 | 0.27 | 5.45 |
t-plot micropore area c | 6.17 | 9.09 | 5.02 | 7.27 | 0.35 | 0.03 |
t-plot external surface area | 15.42 | 31.44 | 14.15 | 21.71 | 0.21 | 1.44 |
Pore volume (cm3/g) | ||||||
Total pore volume d | 0.050 | 0.072 | 0.054 | 0.067 | 0.002 | 0.005 |
t-plot micropore area c | 0.003 | 0.004 | 0.003 | 0.003 | 0.0002 | 0.0000 |
Pore size (nm) | ||||||
Average pore width e | 9.32 | 7.14 | 11.22 | 9.22 | 13.94 | 14.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, W.-T.; Lin, Y.-Q. Preparation and Characterization of Porous Carbon Composites from Oil-Containing Sludge by a Pyrolysis-Activation Process. Processes 2022, 10, 834. https://doi.org/10.3390/pr10050834
Tsai W-T, Lin Y-Q. Preparation and Characterization of Porous Carbon Composites from Oil-Containing Sludge by a Pyrolysis-Activation Process. Processes. 2022; 10(5):834. https://doi.org/10.3390/pr10050834
Chicago/Turabian StyleTsai, Wen-Tien, and Yu-Quan Lin. 2022. "Preparation and Characterization of Porous Carbon Composites from Oil-Containing Sludge by a Pyrolysis-Activation Process" Processes 10, no. 5: 834. https://doi.org/10.3390/pr10050834
APA StyleTsai, W. -T., & Lin, Y. -Q. (2022). Preparation and Characterization of Porous Carbon Composites from Oil-Containing Sludge by a Pyrolysis-Activation Process. Processes, 10(5), 834. https://doi.org/10.3390/pr10050834