
Citation: Zhong, H.; Zheng, C.; Li,

M.; Liu, T.; He, Y.; Li, Z. Transient

Pressure and Temperature Analysis

of a Deepwater Gas Well during a

Blowout Test. Processes 2022, 10, 846.

https://doi.org/10.3390/pr10050846

Academic Editors: Chuanliang Yan,

Kai Zhao, Fucheng Deng and Yang Li

Received: 28 March 2022

Accepted: 22 April 2022

Published: 25 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Transient Pressure and Temperature Analysis of a Deepwater
Gas Well during a Blowout Test
Haiquan Zhong 1,* , Chuangen Zheng 1 , Miao Li 1,2, Tong Liu 3, Yufa He 4 and Zihan Li 4

1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,
Chengdu 610500, China; 202022000688@stu.swpu.edu.cn (C.Z.); limiao2021@yeah.net (M.L.)

2 Sichuan Fortisa Petroleum Technology Development Co., Ltd., Chengdu 610500, China
3 Research Institute for Engineering Technology, Sinopec Southwest Branch Company, Deyang 618000, China;

liutong1.xnyq@sinopec.com
4 State Key Laboratory of Natural Gas Hydrates, CNOOC Research Institute Co., Ltd., Beijing 100028, China;

heyf@cnooc.com.cn (Y.H.); lizh19@cnooc.com.cn (Z.L.)
* Correspondence: swpuzhhq@126.com

Abstract: On one hand, a blowout test can clean the bottom of the well, and on the other, it can learn
the productivity of the well, which is important work before putting the well into production and
also the main basis for production allocation of the well. The accurate prediction of the blowout
test process provides a theoretical basis for the design of a reasonable blowout test system and
the determination of well cleaning time. During deepwater blowout tests, gas and liquid flows
are unsteady in pipes, and flow parameters change over time. At present, accurately predicting
changes in fluid temperature, pressure, liquid holdup, and other parameters in a wellbore during an
actual blowout process using the commonly used steady-state prediction methods is difficult, and
determining whether a test scheme is reasonable is impossible. Therefore, based on the conservation
of mass, momentum, and energy during the blowout test process, in this study, formation, wellbore,
and nozzle flows were coupled for the first time, and a time and space of unsteady pressure drop and
a heat transfer differential equation system was established; furthermore, using the Newton–Raphson
method, the equations were solved. Finally, the simulation of the transient flow of the blowout test
was completed. Considering a measured deepwater gas well A as an example, the blowout test
process was simulated, and the variations in the wellbore flow parameters were analyzed. Comparing
the simulation result with the test data, we concluded the following. (1) During the blowout process,
the wellbore temperature gradually increased; pressure at the bottom of the wellbore decreased;
and pressure at the wellhead increased; and (2) the established model agreed well with the actual
production data, and the average error of the wellhead pressure and temperature was less than 5%.
Considering the high production capacity of deepwater gas wells, the use of large-sized tubing and
nozzles to spray is recommended, which can improve the speed of clearing wells and prevent the
formation of hydrate.

Keywords: deepwater gas well testing; multiphase flow; coupled model of pressure and temperature
field; numerical simulation; transient flow

1. Introduction

At present, deepwater is one of the focuses of oil and gas resource development and
has broad prospects, but deepwater oil and gas exploitation has been handicapped by the
complexity of the environment. Due to environmental complexities in deepwater gas wells,
fluid flow parameters change with time during a two-phase flow (i.e., from the formation
to the wellbore and in the wellbore), thereby making the flow complicated. Therefore,
accurately predicting changes in flow parameters such as wellbore fluid temperature,
pressure, and liquid holdup during an actual blowout process is difficult, and researching
the two-phase transient flow during blowouts is necessary.
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Deepwater well testing is characterized by high technology, investment, and risk.
Moreover, gas well testing is crucial in the development potential evaluation of deepwater
wells [1,2]. Wellbore storage effect is obvious during a shut-in period of a deepwater gas
well [3]. The maximum test flow of the test string, ground process, and test system affect
the test, and the influence of the test system is the greatest [4]. Therefore, Wu et al. designed
a work system based on a critical test flow and proposed a test program of “one-open and
one-close” [5].

At present, the research on wellbore temperature and pressure is relatively perfected.
Churchill and Chu studied the convective heat transfer coefficient of seawater, and Mathews
conducted a similar study [6,7]. Chin and Wang studied thermodynamic losses in the risers
of top test trees [8]. Based on the first principle of transient gas well production, Hasan et al.
established a wellbore temperature model [9]. Stiles and Trigg developed a temperature
mathematical simulator for deepwater drilling [10]. Izgec et al. and Ismadi used nodal
analysis methods to study temperature distribution [11–14].

Spindler explicitly gave the initial and boundary conditions for a calculated transient
temperature distribution [15]. Hasan and Kabir unified different situations of heat transfer
models, and Kabir used transient measured temperature to calculate static temperature as
well as established flow temperature gradient to accurately estimate geothermal gradient
and gas flow [16,17]. Chen derived a set of borehole-formation heat transfer differential
equations [18]. The difference between seawater and production pipe temperatures was
large, and thermal radiation could not be ignored, there was a large difference between
the flow of the formation and seawater sections in deepwater wells, and heat loss mainly
occurred in the seawater section [19,20].

Liu et al. established a transient temperature and pressure model for gas well testing
to explain the reason of abnormal wellhead pressure [21]. Zhang et al. reported that
the pressure at the bottom decreased to a certain extent, whereas the pressure at the
wellhead gradually increased and finally remained relatively stable. and Kabir et al.
studied the production logging of natural gas wells [22]. These studies were based on
heat transfer models and recorded well-logging fluid flows along boreholes to determine
regional contributions.

With an increase in production, the Joule–Thomson effect increases. On this basis,
Li et al. obtained the relationship between temperature and flow rate, and Xu established
a coupling model of the transient multiphase flow between the formation and wellbore.
He et al. studied the induced transient flow of deepwater gas wells and established a
transient model of multiphase flow, reproducing the flow in a wellbore under actual
working conditions [23–26].

At present, the commonly used prediction methods do not consider the transient
flow process response of formation inflow, wellbore flow rule, and surface nozzle flow.
Moreover, the prediction of the blowout test temperature, pressure, and liquid holdup of
the actual blowout test wellbore fluid has poor accuracy. Therefore, in a first, herein, the
formation, wellbore, and surface nozzle flows are coupled to establish a deepwater wellbore
transient flow model of the blowout test to improve the accuracy of the calculation results.

2. Mathematics Model

The wellbore flow is an unsteady two-phase flow in the test. The model is assumed
as follows:

(1) the gas–liquid flow in the pipe is one-dimensional and unsteady;
(2) the gas is compressible, whereas the liquid is incompressible;
(3) a high production and homogeneous flow during the blowout test; and
(4) the downward direction of the wellbore flow is defined as the positive direction of

the z-axis.
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According to the principles of the conservations of mass, momentum, and energy, the
control equations are

∂ρm

∂t
+

∂Gm
∂z

= 0 (1)

∂Gm

∂t
+

∂

∂z

(
∂G2

m
ρm

)
+

∂P
∂z

+ ρmg sin θ +
fmGm|Gm|

2dtiρm
= 0 (2)

Q =
∂(mE)cv

∂t
+

∂(m′E′)w
∂t

+
∂

∂z

[
wm

(
H f +

1
2

v2 + gz cos θ

)]
(3)

Considering the high gas production in the test, the transient simulation of the gas–
liquid flow is simplified to a homogeneous flow. Rendeiro and Kelso (1988) modified the
correction of the gas relative density, and the mixture relative density and mixture density
are expressed as follows:

γm =
γg + 817.7γL/GLR

1 + 200GLR
(4)

ρm =
28.96γmP

ZmRT
(5)

where the natural gas deviation coefficient, Zm, can be calculated using the Dranchuk–Abu–
Kassem relation:

Zm = 1 +
(

A1 + A2/Tpr + A3/T3
pr + A4/T4

pr + A5/T5
pr

)
ρmr +

(
A6 + A7/Tpr + A8/T2

pr

)
ρ2

mr

−A9

(
A7/Tpr + A8/T2

pr

)
ρ5

mr + A10
(
1 + A11ρ2

mr
)(

ρ2
mr/T3

pr

)
exp

(
−A11ρ2

mr
) (6)

2.1. Steady-State Heat Transfer

Heat transfer in deepwater wells comprises two sections: seawater and formation
sections. The heat transfer in the wellbore is steady, and the heat transfer during the
formation is unsteady and can be described via a transfer heat-conduction time function.
The wellbore structure and length of the differential cell, dz, are shown in Figure 1.

According to the law of heat conduction from the wellbore to formation and unsteady
heat dissipation, the radial heat gradient equation of formation can be established. More-
over, according to the law of convection heat transfer from the wellbore to seawater, the
radial heat gradient equation of seawater can also be established. Combining the conserva-
tion of energy and enthalpy gradient equations, a general formula to calculate the wellbore
temperature gradient of offshore oil and gas wells is formed:

dT
dz

= −Lr(T − Tei)−
g cos θ

Cpm
− vm

Cpm

dvm

dz
+ CJm

dp
dz

(7)

For the formation section:

Lr =
2πrtoUto1Ke

Cpmwt[Ke + f (tD)rtoUto1]

If the fluid heat-transfer coefficient in tubing, the heat conductivity of tubing and
casing offer negligible resistance to heat flow, Uto1 can be approximated by

Uto2 =

[
1

hc + hr
+

rto

Kcem
ln

rw

rco

]−1

For the seawater section:
Lr =

2πrtoUto2

CPmwt
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Similarly, where Uto2 can be approximated by

Uto2 =

[
1

hc + hr
+

rto

rcohw
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Figure 1. Simplified sketch of deepwater production for a gas well.

2.2. Transient Heat Transfer

During the test, the output fluid dissipates heat to the wellbore, and the temperature
decreases gradually from the bottom to wellhead. Furthermore, the cement and string are
continuously heated by the high-temperature fluid so that the temperature difference be-
tween the fluid and wellbore constantly decreases, and the fluid temperature continuously
changes with time. Therefore, the heat loss of the wellbore fluid during the test blowout is
a transient process (Figure 2).
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Figure 2. Schematic of the temperature change in the heat transfer fluid of the wellbore.

We introduced the Hasan and Kabir heat storage coefficient into Equation (3) and
combined it with the wellbore steady-state heat transfer, Equation (7); an explicit equation
for calculating the transient temperature of the wellbore fluid is obtained as follows:

Partial differential equation:

Q =
∂(mE)cv

∂T
+

∂(m′E′)w
∂T

+
∂

∂z

[
wm

(
H f +

1
2

v2 + gz cos θ

)]
Introduced heat storage coefficient:

CT =
m′E′

mE
,

dTf

dz
= gT cos θ − e(z−L)LR ψ

Explicit equation:

Tf (z, t) = Tebh − gTz cos θ +
1− e−bt

LR

[
1− e(z−L)LR

]
ψ

For different wells, the heat storage coefficient can be fitted using test data. Combined
with the conservations of mass and momentum in the transient process, the wellbore
pressure and temperature coupling model is obtained as follows:

∂P
∂z = − ∂Gm

∂t −
∂
∂z

(
∂G2

m
ρm

)
− ρmg sin θ − fmGm |Gm |

2dtiρm

Tf (z, t) = Tebh − gTz cos θ + 1−e−bt

LR

[
1− e(z−L)LR

]
ψ

(8)

2.3. Temperature during Production Adjustment

Because production is often unstable, it requires frequent production adjustment. In
this case, using an ordinary temperature transient model cannot predict the temperature
change accurately, which leads to a large pressure deviation. To improve the prediction
accuracy of the real blowout test process, developing the transient superposition correlation
of the wellbore temperature is necessary.

Assuming a virtual initial temperature rise time, the temperature is calculated through
the steady-state heat transfer model in the period of an increasing production. The temper-
ature change is divided into a superposition of the well shut-in and opening processes in
the period of a decreasing production. The corresponding transient superposition is shown
in Figure 3.
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(1) Increasing production
The temperature T1 can be calculated as follows:

T1 − Tei
T2,stable − Tei

= 1− e−a∆t1 (9)

The virtual time ∆t1 can be calculated as follows:

∆t1 = −1
a

ln
T2,stable − T1

T2,stable − Tei

Therefore, the temperature T2 at time t2 can be calculated as follows:

T2 − Tei
T2,stable − Tei

= 1− e−a(t2−t1+∆t1) (10)

(2) Decreasing production
Temperature changes ∆T2,close at t2 time shut-in process can be calculated as follows:

∆T2,close

T1 − Tei
= e−a(t2−t1) − 1 (11)

Temperature changes ∆T2,open in the well opening process can be calculated as follows:

T2,open

T2,stable − Tei
= 1− e−a(t2−t1) (12)

Finally, the temperature T2 at time t2 can be calculated as follows:

T2 = T1 + ∆T2,open + ∆T2,stable = T2,stable − (T2,stable − T1)e−a(t2−t1) (13)

3. Blowout Test Process and Model Solution

(1) Blowout test process
When the well is closed, the induced fluid is on the top of the test fluid in the wellbore.

However, when the gas well is open, the upper induced fluid relieved pressure; wellhead
fluid flowed first; and bottom fluid flowed later, leading to a two-phase variable mass
flow in the wellbore, the blowout test process is shown in Figure 4. During the upstream
period, the gas–liquid fluid flowed from the formation into the wellbore and continuously
released heat to the formation and seawater sections. When blown out for a while, a steady
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flow stage was developed. Therefore, the transient flow model was coupled by “wellhead
nozzle flow + induced fluid pipe flow + well fluid pipe flow + formation seepage.”
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Figure 4. Wellbore flow diagram during the well opening and blowout. (a) Before blowout, (b) Initial
blowout, (c) Steady flow.

In summary, based on the above-mentioned phenomena, the two-phase flow transient
model comprises the transient conservations of mass, momentum, and energy, and the
coupling of the wellbore flow, wellhead throttling, and formation productivity is considered.
The influence of the heat transfer difference between the formation and seawater is involved
in the calculation of the fluid density in the wellbore using a pseudo single-phase model.

Deliverability equation:

qgsc = C
(

P2
r − P2

w f

)n
(14)

The flow rate in the blowout was high, and the wellhead nozzle flow was suitable for
the multiphase flow formula (i.e., the Sachdeva-Model of subcritical flow).

The critical pressure ratio of gas–liquid two phases passing through the nozzle:

pr =


k

k−1 +
(1−xg)υL(1−pr)

xgυg1

k
k−1 + n

2 +
n(1−xg)υL

xgυg2
+ n

2

[
(1−xg)υL

xgυg2

]2


k

k−1

(15)

n = 1 +
xg1(cp − cv)

xg2cv + (1− xg1)cl

Total mass flow rate:

Gm = CA2

[
2p1ρm2

(
(1− xg)(1− prcal)

ρL
+

xgk
k− 1

(υg1 − prcalυg2)

)]0.5

(16)

(2) Model solution
The transient model of the gas well contains partial differential equations, Equa-

tions (1)–(3), which need to be solved numerically. First, divide the well depth H into N
sections (the well depth step is ∆z = H/N), and determine the time step ∆t and difference
grid (Figure 5). The implicit central finite difference method is used to express the difference
equations of each grid:
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fi(ρ, G) =
(
ρi,j+1 + ρi+1,j+1 − ρi,j − ρi+1,j

)
+

∆t
∆z
(
Gi+1,j + Gi+1,j+1 − Gi,j − Gi,j+1

)
= 0 (17)

fN+i(ρ, G) =
(
Gi,j+1 + Gi+1,j+1 − Gi,j − Gi+1,j

)
+ ∆t

∆z

(
G2

i+1,j
ρi+1,j

+
G2

i+1,j+1
ρi+1,j+1

−
G2

i,j
ρi,j
−

G2
i,j+1

ρi,j+1
+ pi+1,j + pi+1,j+1 − pi,j − pi,j+1

)
+∆tg sin θ

2
(
ρi,j + ρi+1,j + ρi,j+1 + ρi+1,j+1

)
+ λ∆t

4D
(Gi,j+Gi+1,j+Gi,j+1+Gi+1,j+1)|Gi,j+Gi+1,j+Gi,j+1+Gi+1,j+1|

ρi,j+ρi+1,j+ρi,j+1+ρi+1,j+1
= 0

(18)

where ρ =
(
ρ1,j+1, ρ2,j+1, · · · , ρN,j+1, ρN+1,j+1

)
, G =

(
G1,j+1, G2,j+1, · · · , GN,j+1, GN+1,j+1

)
, and

i = 1, 2, . . . , N; i = 1 represent a wellhead node, and i = N + 1 represents a bottom node.
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(2) Model solution 
The transient model of the gas well contains partial differential equations, Equations 

(1)–(3), which need to be solved numerically. First, divide the well depth H into N sections 
(the well depth step is Δz = H/N), and determine the time step Δt and difference grid (Fig-
ure 5). The implicit central finite difference method is used to express the difference equa-
tions of each grid: 
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The wellbore pressure at any moment can be solved using the Newton–Raphson
method, where the Jacobian matrix J, residual vector R, and independent variable change
vector V are, respectively, as follows:

J =



1 1 0 · · · 0 0 −∆t/∆z ∆t/∆z 0 · · · 0 0
0 1 1 0 · · · 0 0 −∆t/∆z ∆t/∆z 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 1 1 0 · · · 0 0 −∆t/∆z ∆t/∆z 0
0 0 · · · 0 1 1 0 · · · 0 0 −∆t/∆z ∆t/∆z

a(N+1)1 a(N+1)2 0 · · · 0 0 a(N+1)(N+2) a(N+1)(N+3) 0 · · · 0 0
0 a(N+2)2 a(N+2)3 0 · · · 0 0 a(N+2)(N+3) a(N+2)(N+4) 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 a(2N−1)(N−1) a(2N−1)N 0 · · · 0 0 a(2N−1)(2N) a(2N−1)(2N+1) 0
0 0 · · · 0 a(2N)N a(2N)(N+1) 0 · · · 0 0 a(2N)(2N+1) a(2N)(2N+2)

a(2N+1)1 0 0 · · · 0 0 1 0 · · · · · · 0 0
0 0 0 · · · 0 a(2N+2)(N+1) 0 0 · · · · · · 0 1


(2N+2)×(2N+2)

(19)

− f1(ρ, G),− f2(ρ, G) · · · · · · − f2N+1(ρ, G),− f2N+2(ρ, G) (20)

V =
[
∆ρ1,j+1, ∆ρ2,j+1 · · · · · ·∆ρN,j+1, ∆ρN+1,j+1, ∆G1,j+1, ∆G2,j+1 · · · · · ·∆GN,j+1, ∆GN+1,j+1

]T
(21)

The Newton–Raphson iterative and Gaussian elimination methods are used to solve
the difference equation iteratively. The procedure can be described as follows.

(1) Input basic parameters: well depth H, tubing diameter dti, formation pressure pr, fluid
extraction index IL, average wellbore temperature Tave, external pressure P0, nozzle
size dchock, test fluid level Lh, and time interval dt.

(2) Calculate the initial values at t = 0: bottomhole pressure pwf(0), liquid depth Lh(0), pres-
sure at the liquid level ph(0), wellhead pressure pt(0), and liquid column mass mL(0).

(3) Sort the well structure; determine the calculation step length of the formation and
seawater sections; and calculate the position, temperature, and pressure of the inter-
polation point.

(4) Set the calculation time and calculate the step length; perform the transient flow
simulation calculation; and obtain the transient temperature and pressure profiles of
the deepwater wellbore.

A simple flowchart of the model solution process is shown in Figure 6.
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4. Application and Analysis Discussion

We selected deepwater well A to verify the applicability of the established model. The
basic parameters corresponding to well A are shown in Table 1.
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Table 1. Basic parameters of well A.

Parameter Value Unit

Well depth 3350.7 m
Water depth 1447 m

Production pressure 40 MPa
Shut-in wellhead pressure 1.5 MPa
Production temperature 95 ◦C

Mudline temperature 4 ◦C
Surface seawater temperature 15 ◦C

Geothermal gradient 3.87 ◦C/100 m
Outer diameter of testing pipe 114.3 mm
Inner diameter of testing pipe 76.2 mm

Outer diameter of cement 317.5 mm
Inner diameter of cement 244.5 mm

Heat transfer coefficients of formation section 20 W/(m2·◦C)
Heat transfer coefficients of seawater section 45 W/(m2·◦C)

Formation thermal conductivity 4.2 W/(m·◦C)
Dimensionless heat storage coefficient 5 -

Induced fluid specific density 1.16 -
Gas specific weight 0.6 -

Hole drift angle 0 rad

Before the blowout, the wellbore was filled with the test and induced fluid. We
assumed that the density of the induced fluid was equal to that of the test fluid to simplify
the calculation. The gas well productivity is described using an exponential equation; select
the coefficient n = 0.75 and C = 1.2 × 104 m3/d·MPa−2n. The results of the interpolation
temperature and initial pressure profile are shown in Figure 7.
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Figure 7. Results of the interpolation temperature and initial wellbore pressure profile. (a) Tempera-
ture interpolation; (b) Initial wellbore pressure.

4.1. Transient Flow Prediction

According to the actual test conditions, the wellbore pressure, temperature, gas produc-
tion, liquid holdup, hydrate formation temperature, and other parameters were simulated
during the blowout (Figure 8). After opening the well for approximately 2 h (8640 s), the
formation started producing gas; the working fluid in the wellbore began to be displaced
by the gas; the gas–liquid two-phase interface kept moving up; and the wellhead pressure
started to increase. At approximately 14,400 s, the wellhead liquid holdup changed to 0 and
working fluid was completely displaced, which agreed with the actual situation. The aver-
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age error in the wellhead pressure and temperature calculations and measured parameters
was less than 5%. The simulations agreed well with the measured values, which showed
that the established model met the requirements of computational accuracy. The simulation
results were verified via field temperature measurements. The simulation results showed
that the mudline temperature was slightly lower than the hydrate formation temperature
at the end of the cleanup, and the hydrate inhibitor was injected in the field operation.
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Figure 8. Pressure, temperature, gas production, and liquid holdup simulation of well A. (a) Simula-
tion of pressure, (b) Simulation of temperature, (c) Simulation of gas production, (d) Simulation of
wellhead liquid holdup, (e) Hydrate formation temperature, (f) Wellhead mass velocity simulation.

The wellbore pressure, temperature, liquid holdup, and mixture density distribution
at different times were predicted; the results are shown in Figure 9. After the well opening,
the test fluid was replaced by airflow and wellbore pressure gradient decreased, whereas
the wellhead pressure increased gradually. The gas production and wellbore temperature
increased gradually. The liquid holdup and mixture density decreased gradually and
finally formed as an annular flow.
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Figure 9. Wellbore pressure, temperature, liquid holdup, and mixture density profiles at different
times. (a) Wellbore pressure profile, (b) Temperature profile prediction, (c) Liquid holdup profile,
(d) Mixture fluid density profile.

4.2. Sensitivity Analysis of the Key Parameters of the Test

(1) Nozzle size
In the blowout design, the nozzle size is an essential technological parameter. The noz-

zle size significantly influences the clearance time, surface equipment, and flow path. We
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selected 3-, 6-, 9-, 12-, and 15-mm nozzles for the sensitivity analysis (Figure 10). The larger
the nozzle size, the higher the gas production, the faster the clearance speed, and higher
the mudline temperature. When selecting the nozzle size, it should be larger than 10 mm to
improve the cleaning speed and mudline temperature as well as prevent hydration.
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Figure 10. Sensitivity analysis of different nozzle sizes. (a) Wellhead pressure (b) Gas production,
(c) Mudline temperature, (d) Wellhead liquid holdup.

(2) Influence of tubing sizes
Based on the basic data of well A, 62-, 76-, 88.3-, and 100.5-mm inner diameter tubing

were selected for the sensitivity analysis (Figure 11). The larger the tubing, the lower the
friction resistance, the higher the gas production, and faster the cleaning speed. However,
affected by the decrease in the flow rate, the rising speed of the mudline temperature would
be slower. To improve the cleaning speed, choosing tubing with a size of 76 or 88.3 mm is
recommended.
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5. Conclusions 
(1) Coupling formation, wellbore, and surface nozzle flows as well as combining a two-

phase nozzle flow model, two-phase fluid holdup model, formation productivity 
equation, and deepwater transient heat transfer model, a deepwater blowout well-
bore transient flow model was established, which considered the characteristics of 
the transient flow and determines the reliable blowout test time and test system. 

(2) As the blowout test continued, the bottomhole pressure decreased slightly and the 
wellhead pressure increased gradually. Moreover, the wellbore temperature in-
creased gradually; however, the mudline temperature was low. The mudline tem-
perature may be lower than the hydrate formation temperature in the cleaning pro-
cess, so corresponding measures should be taken to prevent and control the hydrate 
formation. 

(3) The new model can be used to simulate the variation in the wellbore fluid level, pres-
sure, temperature, gas production, liquid holdup, and hydrate formation tempera-
ture with time and well depth changing during the blowout period. The simulation 
result of gas well A showed that the calculated data agreed well with the measured 
values in the test, with an average error in the wellhead pressure and temperature of 
less than 5%, and the established model had a high calculation accuracy. 

(4) The sizes of the nozzles and tubing are the essential parameters in the blowout de-
sign. They significantly influence the clearance time, surface equipment, and blowout 
process. The transient model of the blowout test in this paper could effectively deter-
mine the nozzle regulation system during a blowout test as well as determine the 
reasonable injection time of the inhibitor and tubing string size. Application analysis 
and discussion showed that under the condition of satisfying the requirements of the 
test operation, choosing large nozzle and tubing sizes is necessary to accelerate the 
discharge of the wellbore working fluid, increase the wellbore temperature, and pre-
vent hydrate formation. 
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Figure 11. Sensitivity analysis of different tubing sizes. (a) Wellhead pressure (b) Gas production,
(c) Mudline temperature, (d) Wellhead liquid holdup.

5. Conclusions

(1) Coupling formation, wellbore, and surface nozzle flows as well as combining a two-
phase nozzle flow model, two-phase fluid holdup model, formation productivity
equation, and deepwater transient heat transfer model, a deepwater blowout wellbore
transient flow model was established, which considered the characteristics of the
transient flow and determines the reliable blowout test time and test system.

(2) As the blowout test continued, the bottomhole pressure decreased slightly and the
wellhead pressure increased gradually. Moreover, the wellbore temperature increased
gradually; however, the mudline temperature was low. The mudline temperature
may be lower than the hydrate formation temperature in the cleaning process, so
corresponding measures should be taken to prevent and control the hydrate formation.

(3) The new model can be used to simulate the variation in the wellbore fluid level, pres-
sure, temperature, gas production, liquid holdup, and hydrate formation temperature
with time and well depth changing during the blowout period. The simulation result
of gas well A showed that the calculated data agreed well with the measured values
in the test, with an average error in the wellhead pressure and temperature of less
than 5%, and the established model had a high calculation accuracy.

(4) The sizes of the nozzles and tubing are the essential parameters in the blowout design.
They significantly influence the clearance time, surface equipment, and blowout
process. The transient model of the blowout test in this paper could effectively
determine the nozzle regulation system during a blowout test as well as determine the
reasonable injection time of the inhibitor and tubing string size. Application analysis
and discussion showed that under the condition of satisfying the requirements of
the test operation, choosing large nozzle and tubing sizes is necessary to accelerate
the discharge of the wellbore working fluid, increase the wellbore temperature, and
prevent hydrate formation.
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Nomenclature

A1~A11 Model coefficient, dimensionless
CJm Joule–Thomson coefficient, K/Pa
Cpm Gas–liquid specific heat at constant pressure, J/kg/K
cp Gas specific heat at constant pressure, J/(kg·K)
cv Gas specific heat at constant volume, J/(kg·K)
cl Liquid specific heat capacity, J/(kg·K)
fm Two-phase friction coefficient, dimensionless
f (t) Transient heat-conduction time function, dimensionless
GLR Gas liquid ratio, m3/m3

g Gravitational acceleration, m/s2

Gm Two-phase mass flow of per unit area, kg/(m2·s)
hr Convection heat transfer coefficient of annulus fluid, W/(m2·K)
hc Annular fluid radiation coefficient, W/(m2·K)
hw Convective heat transfer coefficient of seawater, W/(m2·K)
H Well depth, m
Hf Fluid enthalpy per unit mass, J/kg
Ke Formation thermal conductivity, W/(m·K)
kcerm Cement thermal conductivity, W/(m·K)
Lr Relaxation distance parameter, m−1

p Wellbore pressure, Pa
R Gas constant, 8315 Pa·m3·kmol−1·K−1

rto Outer tubing radius, m
rw Wellbore radius, m
rco Outer casing radius, m
t Time, s
T Wellbore temperature, K
Te Ambient temperature, K
Tpr Pseudo-reduced temperature, dimensionless
Uto1 Total heat transfer coefficient of formation, W/(m2·K)
Uto2 Total heat transfer coefficient of seawater, W/(m2·K)
vm Mixture velocity, m/s
wt Total mass flow, kg/s
xg Gas phase mass fraction, decimal
z Well depth, m
Zm Mixture deviation coefficient, dimensionless
υL Liquid specific volume before nozzle, m3/kg
υg1/υg2 Gas specific volume before/after nozzle, m3/kg
ρm Two-phase flow density, kg/m3

ρmr Pseudo-reduced density, dimensionless
θ Angle of inclination, rad
γm Mixture relative density, dimensionless
γg Gas relative density, dimensionless
γL Liquid relative density, dimensionless
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