Fabrication and Thermal Performance of 3D Copper-Mesh-Sintered Foam/Paraffin Phase Change Materials for Solar Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sintered Copper Foam
2.3. Preparation of the PCM Composite
2.4. Measurement and Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewis, N.S. Research Opportunities to Advance Solar Energy Utilization. Science 2016, 351, 1920–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Li, C.; Wasielewski, M.R. Advances in Solar Energy Conversion. Chem. Soc. Rev. 2019, 48, 1862–1864. [Google Scholar] [CrossRef] [PubMed]
- Dalvi, V.H.; Panse, S.V.; Joshi, J.B. Solar Thermal Technologies as a Bridge from Fossil Fuels to Renewables. Nat. Clim. Chang. 2015, 5, 1007–1013. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, D.; Shi, L.; Wang, L.; Jin, Y.; Tian, L.; Li, Z.; Wang, G.; Zhao, L.; Yan, Y. A Review of Phase Change Heat Transfer in Shape-Stabilized Phase Change Materials (SS-PCMs) Based on Porous Supports for Thermal Energy Storage. Renew. Sustain. Energy Rev. 2021, 135, 110127. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, C.-Y. A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications. Appl. Energy 2013, 104, 538–553. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Tyagi, V.V.; Chen, C.; Buddhi, D. Review on Thermal Energy Storage with Phase Change Materials and Applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Chen, G.; Su, Y.; Jiang, D.; Pan, L.; Li, S. An Experimental and Numerical Investigation on a Paraffin Wax/Graphene Oxide/Carbon Nanotubes Composite Material for Solar Thermal Storage Applications. Appl. Energy 2020, 264, 114786. [Google Scholar] [CrossRef]
- Chen, M.; He, Y.; Ye, Q.; Zhang, Z.; Hu, Y. Solar Thermal Conversion and Thermal Energy Storage of CuO/Paraffin Phase Change Composites. Int. J. Heat Mass Transf. 2019, 130, 1133–1140. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, C.; Fang, G. Synthesis and Properties of Microencapsulated Stearic Acid/Silica Composites with Graphene Oxide for Improving Thermal Conductivity as Novel Solar Thermal Storage Materials. Sol. Energy Mater. Sol. Cells 2019, 189, 197–205. [Google Scholar] [CrossRef]
- Tao, P.; Chang, C.; Tong, Z.; Bao, H.; Song, C.; Wu, J.; Shang, W.; Deng, T. Magnetically-Accelerated Large-Capacity Solar-Thermal Energy Storage within High-Temperature Phase-Change Materials. Energy Environ. Sci. 2019, 12, 1613–1621. [Google Scholar] [CrossRef]
- Malik, M.Z.; Musharavati, F.; Khanmohammadi, S.; Khanmohammadi, S.; Nguyen, D.D. Solar Still Desalination System Equipped with Paraffin as Phase Change Material: Exergoeconomic Analysis and Multi-Objective Optimization. Environ. Sci. Pollut. Res. 2021, 28, 220–234. [Google Scholar] [CrossRef]
- Prakash, J.; Roan, D.; Tauqir, W.; Nazir, H.; Ali, M.; Kannan, A. Off-Grid Solar Thermal Water Heating System using Phase-Change Materials: Design, Integration and Real Environment Investigation. Appl. Energy 2019, 240, 73–83. [Google Scholar] [CrossRef]
- Ding, Z.; Wu, W.; Chen, Y.; Li, Y. Dynamic Simulation and Parametric Study of Solar Water Heating System with Phase Change Materials in Different Climate Zones. Sol. Energy 2020, 205, 399–408. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, C.-Y.; Tian, Y. Review on Thermal Energy Storage with Phase Change Materials (PCMs) in Building Applications. Appl. Energy 2012, 92, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wang, C.; Wang, Y.; Zhu, Y. Experimental Study of Thermo-Physical Properties and Application of Paraffin-Carbon Nanotubes Composite Phase Change Materials. Int. J. Heat Mass Transf. 2019, 140, 671–677. [Google Scholar] [CrossRef]
- Tang, Q.; Sun, J.; Yu, S.; Wang, G. Improving Thermal Conductivity and Decreasing Supercooling of Paraffin Phase Change Materials by N-octadecylamine-Functionalized Multi-Walled Carbon Nanotubes. RSC Adv. 2014, 4, 36584–36590. [Google Scholar] [CrossRef]
- Liu, P.; Gu, X.; Zhang, Z.; Rao, J.; Shi, J.; Wang, B.; Bian, L. Capric Acid Hybridizing Fly Ash and Carbon Nanotubes as a Novel Shape-Stabilized Phase Change Material for Thermal Energy Storage. ACS Omega 2019, 4, 14962–14969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Lin, T.; Li, N.; Zheng, H. Heat Transfer Enhancement of Phase Change Composite Material: Copper Foam/Paraffin. Renew. Energy 2016, 96, 960–965. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Zhang, B.; Xie, B.; He, Z.; Chen, J.; He, J. Stearic Acid/Copper Foam as Composite Phase Change Materials for Thermal Energy Storage. J. Therm. Sci. 2020, 29, 492–502. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Liu, L.; Ma, T.; Wang, Q.; Liu, J. Experimental Investigation on Paraffin Melting in High Porosity Copper Foam Under Centrifugal Accelerations. Appl. Therm. Eng. 2020, 178, 115504. [Google Scholar] [CrossRef]
- Cohen-Erner, M.; Khandadash, R.; Hof, R.; Shalev, O.; Antebi, A.; Cyjon, A.; Kanakov, D.; Nyska, A.; Goss, G.; Hilton, J. Fe3O4 Nanoparticles and Paraffin Wax as Phase Change Materials Embedded in Polymer Matrixes for Temperature-Controlled Magnetic Hyperthermia. ACS Appl. Nano Mater. 2021, 4, 11187–11198. [Google Scholar] [CrossRef]
- Shahsavar, A.; Khanmohammadi, S.; Toghraie, D.; Salihepour, H. Experimental Investigation and Develop ANNs by Introducing the Suitable Architectures and Training Algorithms Supported by Sensitivity Analysis: Measure Thermal Conductivity and Viscosity for Liquid Paraffin Based Nanofluid Containing Al2O3 Nanoparticles. J. Mol. Liq. 2019, 276, 850–860. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, Y.; Sun, D.; Jing, X. Experimental Investigation on Thermal Properties of Paraffin/Expanded Graphite Composite Material for Low Temperature Thermal Energy Storage. Renew. Energy 2021, 178, 669–678. [Google Scholar] [CrossRef]
- Kumar, P.M.; Anandkumar, R.; Mylsamy, K.; Prakash, K. Experimental Investigation on Thermal Conductivity of Nanoparticle Dispersed Paraffin (NDP). Mater. Today Proc. 2021, 45, 735–739. [Google Scholar] [CrossRef]
- Shama, A.; Kabeel, A.; Moharram, B.; Abosheiasha, H. Improvement of the Thermal Properties of Paraffin Wax Using High Conductive Nanomaterial to Appropriate the Solar Thermal Applications. Appl. Nanosci. 2021, 11, 2033–2042. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, Y.; Liu, Y.; Wang, S.; Guo, X.; Wang, H.; Cao, D. Paraffin/Polyethylene/Graphite Composite Phase Change Materials with Enhanced Thermal Conductivity and Leakage-Proof. Adv. Compos. Hybrid. Mater. 2021, 4, 543–551. [Google Scholar] [CrossRef]
- Maher, H.; Rocky, K.A.; Bassiouny, R.; Saha, B.B. Synthesis and Thermal Characterization of Paraffin-Based Nanocomposites for Thermal Energy Storage Applications. Therm. Sci. Eng. Prog. 2021, 22, 100797. [Google Scholar] [CrossRef]
- Wang, M.; Li, P.; Yu, F. Hierarchical Porous Carbon Foam-Based Phase Change Composite with Enhanced Loading Capacity and Thermal Conductivity for Efficient Thermal Energy Storage. Renew. Energy 2021, 172, 599–605. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Hu, Z.; Cai, Z. Facile Synthesis and Thermal Performance of Cety palmitate/Nickel Foam Composite Phase Change Materials for Thermal Energy Storage. J. Energy Storage 2020, 28, 101179. [Google Scholar] [CrossRef]
- Zhang, P.; Meng, Z.; Zhu, H.; Wang, Y.; Peng, S. Melting Heat Transfer Characteristics of a Composite Phase Change Material Fabricated by Paraffin and Metal Foam. Appl. Energy 2017, 185, 1971–1983. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wang, C.; Liu, Q.; Tian, Z.; Fan, X. Thermal Performance of Copper Foam/Paraffin Composite Phase Change Material. Energy Convers. Manag. 2018, 157, 372–381. [Google Scholar] [CrossRef]
- Martinelli, M.; Bentivoglio, F.; Caron-Soupart, A.; Couturier, R.; Fourmigue, J.-F.; Marty, P. Experimental Study of a Phase Change Thermal Energy Storage with Copper Foam. Appl. Therm. Eng. 2016, 101, 247–261. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Xi, S.; Xie, H.; Yu, W. 3D Porous Copper Foam-Based Shape-Stabilized Composite Phase Change Materials for High Photothermal Conversion, Thermal Conductivity and Storage. Renew. Energy 2021, 175, 307–317. [Google Scholar] [CrossRef]
- Ye, Q.; Tao, P.; Chang, C.; Zhou, L.; Zeng, X.; Song, C.; Shang, W.; Wu, J.; Deng, T. Form-Stable Solar Thermal Heat Packs Prepared by Impregnating Phase-Changing Materials within Carbon-Coated Copper Foams. ACS Appl. Mater. Interfaces 2018, 11, 3417–3427. [Google Scholar] [CrossRef]
- Liang, W.; Zhu, H.; Wang, R.; Wang, C.; Zhu, Z.; Sun, H.; Li, A. Superhydrophobic Copper Foam Supported Phase Change Composites with High Thermal Conductivity for Energy Storage. Mater. Res. 2018, 21. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Gao, X.; Huang, Z.; Li, Z.; Fang, Y.; Zhang, Z. Form-Stable Paraffin/Graphene Aerogel/Copper Foam Composite Phase Change Material for Solar Energy Conversion and Storage. Sol. Energy Mater. Sol. Cells 2021, 226, 111083. [Google Scholar] [CrossRef]
- Shang, B.; Hu, J.; Hu, R.; Cheng, J.; Luo, X. Modularized thermal storage unit of metal foam/paraffin composite. Int. J. Heat Mass Transf. 2018, 125, 596–603. [Google Scholar] [CrossRef]
- El Idi, M.M.; Karkri, M.; Kraiem, M. Preparation and effective thermal conductivity of a Paraffin/Metal Foam composite. J. Energy Storage 2021, 33, 102077. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, P.; Li, M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int. J. Therm. Sci. 2014, 81, 94–105. [Google Scholar] [CrossRef]
- Huang, X.; Lin, Y.; Alva, G.; Fang, G. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol. Energy Mater. Sol. Cells 2017, 170, 68–76. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.; Chen, G.; Wu, F.; Han, Z.; Pei, L. Fabrication and Thermal Performance of 3D Copper-Mesh-Sintered Foam/Paraffin Phase Change Materials for Solar Thermal Energy Storage. Processes 2022, 10, 897. https://doi.org/10.3390/pr10050897
Chang C, Chen G, Wu F, Han Z, Pei L. Fabrication and Thermal Performance of 3D Copper-Mesh-Sintered Foam/Paraffin Phase Change Materials for Solar Thermal Energy Storage. Processes. 2022; 10(5):897. https://doi.org/10.3390/pr10050897
Chicago/Turabian StyleChang, Chao, Guowei Chen, Fengyongkang Wu, Zhaoyang Han, and Lilin Pei. 2022. "Fabrication and Thermal Performance of 3D Copper-Mesh-Sintered Foam/Paraffin Phase Change Materials for Solar Thermal Energy Storage" Processes 10, no. 5: 897. https://doi.org/10.3390/pr10050897
APA StyleChang, C., Chen, G., Wu, F., Han, Z., & Pei, L. (2022). Fabrication and Thermal Performance of 3D Copper-Mesh-Sintered Foam/Paraffin Phase Change Materials for Solar Thermal Energy Storage. Processes, 10(5), 897. https://doi.org/10.3390/pr10050897