Performance Characteristics of In-Line Oil Separator with Various Airfoil Vane Configurations of the Axial-Flow Swirl Generator
Abstract
:1. Introduction
2. Numerical Analysis
2.1. Model Description
2.2. Grid Systems and Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | Description |
Volume faction | |
Dynamic viscosity | |
Density | |
Viscous stress tensor | |
Separation efficiency | |
Drag coefficient | |
Droplet diameter | |
Interfacial momentum transfer of oil | |
Interfacial momentum transfer of water | |
Static pressure | |
Location of maximum camber | |
Q | Mass flow rate |
Reynold number | |
M | Maximum camber |
t | Thickness of airfoil |
Instantaneous velocity | |
Mean velocity | |
Turbulent velocity fluctuations |
References
- Wang, B.; Xu, D.; Chu, K.; Yu, A. Numerical study of gas–solid flow in a cyclone separator. Appl. Math. Model. 2006, 30, 1326–1342. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Hu, Z.; Zhang, Q.; Wang, Q.; Lv, X. Numerical study on gas-solid flow characteristics of ultra-light particles in a cyclone separator. Powder Technol. 2019, 344, 784–796. [Google Scholar] [CrossRef]
- Chu, K.W.; Wang, B.; Xu, D.L.; Chen, Y.X.; Yu, A.B. CFD-DEM simulation of the gas-solid flow in a cyclone separator. Chem. Eng. Sci. 2011, 66, 834–847. [Google Scholar] [CrossRef]
- Mikulčić, H.; Vujanović, M.; Ashhab, M.S.; Duić, N. Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone. Energy 2014, 75, 89–96. [Google Scholar] [CrossRef]
- Klujszo, L.A.; Rafaelof, M.; Rajamani, R.K. Dust collection performance of a swirl air cleaner. Powder Technol. 1999, 103, 130–138. [Google Scholar] [CrossRef]
- Hoekstra, A.J. Gas Flow Field and Collection Efficiency of Cyclone Separators. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2000. [Google Scholar]
- Swanborn, R.A. A New Approach to the Design of Gas-Liquid Separators for the Oil Industry. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1988. [Google Scholar]
- Liu, W.; Bai, B. Swirl decay in the gas–liquid two-phase swirling flow inside a circular straight pipe. Exp. Therm. Fluid Sci. 2015, 68, 187–195. [Google Scholar] [CrossRef]
- Yue, T.; Chen, J.; Song, J.; Chen, X.; Wang, Y.; Jia, Z.; Xu, R. Experimental and numerical study of Upper Swirling Liquid Film (USLF) among Gas-Liquid Cylindrical Cyclones (GLCC). Chem. Eng. J. 2019, 358, 806–820. [Google Scholar] [CrossRef]
- Rocha, A.D.; Bannwart, A.C.; Ganzarolli, M.M. Numerical and experimental study of an axially induced swirling pipe flow. Int. J. Heat Fluid Flow 2015, 53, 81–90. [Google Scholar] [CrossRef]
- Huang, L.; Deng, S.; Chen, Z.; Guan, J.; Chen, M. Numerical analysis of a novel gas-liquid pre-separation cyclone. Sep. Purif. Technol. 2018, 194, 470–479. [Google Scholar] [CrossRef]
- Wang, G.; Yan, C.; Fan, G.; Wang, J.; Xu, J.; Zeng, X.; Liu, A. Experimental study on a swirl-vane separator for gas–liquid separation. Chem. Eng. Res. Des. 2019, 151, 108–119. [Google Scholar] [CrossRef]
- Xiong, Z.; Lu, M.; Wang, M.; Gu, H.; Cheng, X. Study on flow pattern and separation performance of air–water swirl-vane separator. Ann. Nucl. Energy 2014, 63, 138–145. [Google Scholar] [CrossRef]
- Hreiz, R.; Gentric, C.; Midoux, N.; Lainé, R.; Fünfschilling, D. Hydrodynamics and velocity measurements in gas–liquid swirling flows in cylindrical cyclones. Chem. Eng. Res. Des. 2014, 92, 2231–2246. [Google Scholar] [CrossRef]
- Liu, L.; Wang, K.; Bai, B. Experimental study on flow patterns and transition criteria for vertical swirling gas-liquid flow. Int. J. Multiph. Flow 2020, 122, 103113. [Google Scholar] [CrossRef]
- Delfos, R.; Murphy, S.; Stanbridge, D.; Olujic, D.; Jansens, P.J. A design tool for optimising axial liquid–liquid hydrocyclones. Miner. Eng. 2004, 17, 721–731. [Google Scholar] [CrossRef]
- Amini, S.; Mowla, D.; Golkar, M. Developing a new approach for evaluating a de-oiling hydrocyclone efficiency. Desalination 2012, 285, 131–137. [Google Scholar] [CrossRef]
- Huang, S. Numerical Simulation of Oil-water Hydrocyclone Using Reynolds-Stress Model for Eulerian Multiphase Flows. Can. J. Chem. Eng. 2008, 83, 829–834. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, L.; Shen, X. Numerical simulation of strongly swirling turbulent flows in a liquid-liquid hydrocyclone using the Reynolds stress transport equation model. Sci. China 2000, 43, 86–96. [Google Scholar] [CrossRef]
- Campen, L.V.; Mudde, R.F.; Slot, J.J.; Hoeihmakers, H. A numerical and experimental survey of a liquid-liquid axial cyclone. Int. J. Chem. React. Eng. 2012, 10, A35. [Google Scholar] [CrossRef]
- Slot, J.J.; Campen, L.V.; Hoeijmakers, H.; Mudde, R.F. In-line oil-water separation in swirling flow. In Proceedings of the 8th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, Trondheim, Norway, 21–23 June 2011. [Google Scholar]
- Oropeza-Vazquez, C.; Afanador, E.; Gomez, L.; Wang, S.; Mohan, R.; Shoham, O.; Kouba, G. Oil-water separation in a novel liquid-liquid cylindrical cyclone (LLCC) compact separator-Experiments and modeling. In Proceeding of ASME FEDSM’03, Honolulu, HI, USA, 6–10 July 2003. FEDSM2003-45547. [Google Scholar]
- Zeng, X.; Zhao, L.; Fan, G.; Yan, C. Numerical and experimental study on a new axial separator for liquid-liquid separation. J. Taiwan Inst. Chem. Eng. 2021, 123, 104–114. [Google Scholar] [CrossRef]
- Husveg, T.; Rambeau, O.; Drengstig, T.; Bilstad, T. Performance of a deoiling hydrocyclone during variable flow rates. Miner. Eng. 2007, 20, 368–379. [Google Scholar] [CrossRef]
- Sharifi, K.; Behnahani, T.J.; Ebrahimi, S.; Sabeti, M.; Soflaee, S. A new computational fluid dynamics study of a liquid-liquid hydrocyclone in the two phase case for separation of oil droplets and water. Braz. J. Chem. Eng. 2019, 36, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Noroozi, S.; Hashemabadi, S.H. CFD Simulation of Inlet Design Effect on Deoiling Hydrocyclone Separation Efficiency. Chem. Eng. Technol. 2009, 32, 1885–1893. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, L.; Zhao, W.; Hou, M.; Zhu, F.; Fan, G.; Yan, C. Experimental study on a compact axial separator with conical tube for liquid-liquid separation. Sep. Purif. Technol. 2021, 257, 117904. [Google Scholar] [CrossRef]
- Schütz, S.; Gorbach, G.; Piesche, M. Modeling fluid behavior and droplet interactions during liquid–liquid separation in hydrocyclones. Chem. Eng. Sci. 2009, 64, 3935–3952. [Google Scholar] [CrossRef]
- Young, G.; Wakley, W.; Taggart, D.; Andrews, S.; Worrell, J. Oil-water separation using hydrocyclones: An experimental search for optimum dimensions. J. Pet. Sci. Eng. 1994, 11, 37–50. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Hamza, J.E.; Lemmu, T.A. Performance enhancement of axial concurrent liquid–liquid hydrocyclone separator through optimization of the swirler vane angle. J. Pet. Explor. Prod. Technol. 2020, 10, 2957–2967. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, Y.; Zhao, L.; Fan, G.; Yan, C. Numerical investigation on axial liquid-liquid separators with different swirl chambers. Chem. Eng. Processing Process Intensif. 2021, 161, 108324. [Google Scholar] [CrossRef]
- Jacobs, E.N.; Ward, K.E.; Pinkerton, R.M. The characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel; Technical Report; NACA: Hampton, VA, USA, 1933. [Google Scholar]
- Shiller, L.; Naumann, A. A drag coefficient correlation. Z. Des Ver. Dtsch. Ing. 1935, 77, 318–320. [Google Scholar]
- Speziale, C.G.; Sarkar, S.; Gatski, T.B. Modelling the pressure-strain correlation of turbulence: An invariant dynamical systems approach. J. Fluid Mech. 1991, 227, 245–272. [Google Scholar] [CrossRef]
- Mattner, T.W.; Joubert, P.N.; Chong, M.S. Vortical flow. part 1. flow through a constant-diameter pipe. J. Fluid Mech. 2002, 463, 259–291. [Google Scholar] [CrossRef] [Green Version]
- Rankine, W.J.M. A Manual of Applied Mechanics; Charles Griffin and Co.: London, UK, 1877. [Google Scholar]
Maximum Camber (m) [%] | Location of Maximum Camber (p) [%] | |
---|---|---|
Case 1 | 17.51 | 50 |
Case 2 | 17.51 | 40 |
Case 3 | 17.51 | 45 |
Case 4 | 17.51 | 55 |
Case 5 | 17.51 | 60 |
Case 6 | 19.51 | 50 |
Case 7 | 15.51 | 50 |
Case 8 | 13.51 | 50 |
Value | ||||
---|---|---|---|---|
Calculation type | Steady state | |||
Turbulence model | SSG Reynolds stress model [34] | |||
Working fluid | Water | Density | 1068.7 | |
Viscosity | 1.183 × 10−3 | |||
Oil | Density | 867 | ||
Viscosity | 8.69 × 10−3 | |||
Droplet size | 100 | |||
Gravity (z-axis) | −9.81 | |||
Inlet | Velocity | 2 | ||
Volume of fraction | 0.75 0.25 | (water) (oil) | ||
Outlet | Pressure outlet | 101.325 | ||
Mass flow outlet | 5.03 | |||
Wall | No-slip wall | |||
Drag law | Schiller–Naumann model [33] |
1.7 | −1.05 | 0.9 | 0.8 | 0.65 | 0.625 | 0.2 |
Stage | Program | Method | No. of Grid |
---|---|---|---|
a | ANSYS meshing | Triangular prism, hexahedron | 18,000 |
b | Turbo grid | Hexahedron | 47,000 |
c, d | ANSYS meshing | Triangular prism, hexahedron | 143,000 |
Case | Maximum Camber [%] | Location of Maximum Camber [%] | Separation Efficiency |
---|---|---|---|
1 | 17.51 | 50 | 0.617 |
2 | 17.51 | 40 | 0.601 |
3 | 17.51 | 45 | 0.606 |
4 | 17.51 | 55 | 0.610 |
5 | 17.51 | 60 | 0.609 |
6 | 19.51 | 50 | 0.595 |
7 | 15.51 | 50 | 0.625 |
8 | 13.51 | 50 | 0.639 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Je, Y.-W.; Lee, J.-C.; Kim, Y.-J. Performance Characteristics of In-Line Oil Separator with Various Airfoil Vane Configurations of the Axial-Flow Swirl Generator. Processes 2022, 10, 948. https://doi.org/10.3390/pr10050948
Je Y-W, Lee J-C, Kim Y-J. Performance Characteristics of In-Line Oil Separator with Various Airfoil Vane Configurations of the Axial-Flow Swirl Generator. Processes. 2022; 10(5):948. https://doi.org/10.3390/pr10050948
Chicago/Turabian StyleJe, Yeong-Wan, Jong-Chul Lee, and Youn-Jea Kim. 2022. "Performance Characteristics of In-Line Oil Separator with Various Airfoil Vane Configurations of the Axial-Flow Swirl Generator" Processes 10, no. 5: 948. https://doi.org/10.3390/pr10050948
APA StyleJe, Y. -W., Lee, J. -C., & Kim, Y. -J. (2022). Performance Characteristics of In-Line Oil Separator with Various Airfoil Vane Configurations of the Axial-Flow Swirl Generator. Processes, 10(5), 948. https://doi.org/10.3390/pr10050948