Predicting Mass Transfer in Liquid–Liquid Extraction Columns
Abstract
:1. Introduction
2. Numerical Modelling
2.1. Hydrodynamic Modelling
- (1)
- A standard multifluid formulation, suitable for small/dispersed interfacial scales: this approach is used in the cells where the local mesh size is larger than the local interfacial scales, and, therefore, it is not possible to directly resolve the morphology of the interface.
- (2)
- An ad-hoc multifluid formulation suitable for large/segregated interfacial scales: this approach is used in the cells where the local mesh size is smaller than the local interfacial scales and the mesh resolution is fine enough to guarantee an adequate resolution of the interface. This formulation aims to provide a form of interface resolution, similar to interface-resolving approaches, in the context of the multifluid framework.
2.2. Reduced Population Balance
2.3. Mass Transfer Modelling Approach
- (1)
- The hydrodynamic behaviour of the system is not significantly impacted by mass transfer.
- (2)
- The interfacial chemistry is infinitely fast, i.e., interfacial concentrations are assumed to be equilibrium concentrations.
- (3)
- The saturation of the solvent is neglected.
3. Results and Discussion
3.1. Simulation of a Rotating Disc Column
3.2. Simulation of a Pulsed Sieve-Plate Extraction Column
4. Conclusions
- It has been shown that the proposed modelling methodology represents the mass transfer performance in liquid–liquid extraction columns and provides a pragmatic tool for evaluating complex multiphase flows.
- The hydrodynamic modelling is in good agreement with the experimental observations for stage-averaged dispersed phase holdup and Sauter mean droplet diameter in an RDC and a PSEC.
- Furthermore, the modelled axial continuous and dispersed phase solute concentrations in the mid-section of the RDC are in good agreement with experimental observations when modelled as a series of CSTRs.
- Finally, the modelled axial solute concentrations in both the continuous and dispersed phases of a PSEC agree with experimental observations when modelling the column as a series of CSTRs, with pulsation accounted for via backflow in the continuous phase.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
interfacial area per unit volume, | |
concentration, | |
dispersed phase concentration driving force, | |
large interface identifier | |
droplet diameter, m | |
volume mean droplet diameter, m | |
Sauter mean droplet diameter, m | |
molecular diffusion coefficient, | |
Force, | |
initial film thickness, assumed to be in [23] | |
finial film thickness, assumed to be in [23] | |
interface resolution quality | |
continuous phase mass transfer coefficient, | |
mass transfer coefficient, | |
mass transfer coefficient, | |
equilibrium distribution of solute | |
mass transfer rate, | |
drop number density, | |
mean number of daughter drops | |
volumetric flow rate, | |
droplet break-up rate | |
droplet coalescence rate | |
Reynolds number for multi-particle system, | |
Reynolds number for single droplet system, | |
source term | |
phase x Schmidt number, | |
phase x Sherwood number, | |
time, s | |
velocity, | |
compressive velocity, | |
slip velocity, | |
relative velocity, | |
volume, | |
cell volume, | |
volume fraction | |
ratio of backflow to net forward flow | |
user-defined value | |
turbulence dissipation rate, | |
3.1416 | |
density, | |
dynamic viscosity, | |
interfacial tension, | |
Subscript | |
continuous phase | |
dispersed phase | |
interface | |
inlet | |
minimum value | |
maximum value | |
upper stage | |
stage number | |
outlet | |
overall | |
generic phase |
References
- Hanson, B. Process engineering and design for spent nuclear fuel reprocessing and recycling plants. In Reprocessing and Recycling of Spent Nuclear Fuel; Taylor, R., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 125–151. [Google Scholar]
- D’Auria, F. Prioritisation of nuclear thermal-hydraulics researches. Nucl. Eng. Des. 2018, 340, 105–111. [Google Scholar] [CrossRef]
- Marschall, H. Towards the Numerical Simulation of Multi-Scale Two-Phase Flows. Ph.D. Thesis, Lehrstuhl für Technische Chemie, Technische Universität München, Munich, Germany, 2011. [Google Scholar]
- Prosperetti, A.; Tryggvason, G. Computational Methods for Multiphase Flow; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid VOF method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Strubelj, L.; Tiselj, I. Two-fluid model with interface sharpening. Int. J. Numer. Methods Eng. 2011, 85, 575–590. [Google Scholar] [CrossRef]
- Hänsch, S.; Lucas, D.; Krepper, E.; Höhne, T. A multi-field two-fluid concept for transitions between different scales of interfacial structures. Int. J. Multiph. Flow 2012, 47, 171–182. [Google Scholar] [CrossRef]
- Mathur, A.; Dovizio, D.; Frederix, E.M.A.; Komen, E.M.J. A Hybrid Dispersed-Large Interface Solver for multiscale two-phase flow modelling. Nucl. Eng. Des. 2019, 344, 69–82. [Google Scholar] [CrossRef]
- Marschall, H.; Hinrichsen, O. Numerical simulation of multiscale two-phase flows using a hybrid interface-resolving two-fluid model (HIRES-TFM). J. Chem. Eng. Jpn. 2013, 46, 517–523. [Google Scholar] [CrossRef]
- de Santis, A.; Colombo, M.; Hanson, B.C.; Fairweather, M. A generalised multiphase modelling approach for multiscale flows. J. Comput. Phys. 2021, 436, 110321. [Google Scholar] [CrossRef]
- De Santis, A.; Hanson, B.C.; Fairweather, M. Hydrodynamics of Annular Centrifugal Contactors: A CFD analysis using a novel multiphase flow modelling approach. Chem. Eng. Sci. 2021, 242, 116729. [Google Scholar] [CrossRef]
- Theobald, D. Computational Engineering for Nuclear Solvent Extraction Equipment. Ph.D. Thesis, University of Leeds, Leeds, UK, 2020. [Google Scholar]
- Hlawitschka, M.W.; Bart, H.J. CFD-mass transfer simulation of an RDC column. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2012; Volume 31, pp. 920–924. [Google Scholar]
- Attarakih, M.; Hlawitschka, M.W.; Abu-Khader, M.; Al-Zyod, S.; Bart, H.J. CFD-population balance modeling and simulation of coupled hydrodynamics and mass transfer in liquid extraction columns. Appl. Math. Model. 2015, 39, 5105–5120. [Google Scholar] [CrossRef]
- Alzyod, S.; Attarakih, M.; Bart, H.J. CFD modelling of pulsed sieve plate liquid extraction columns using OPOSPM as a reduced population balance model: Hydrodynamics and mass transfer. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 43, pp. 451–456. [Google Scholar]
- The OpenFOAM Foundation. OpenFOAM-User Guide. 2019. Available online: https://www.openfoam.com (accessed on 31 March 2022).
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Smagorinsky, J. General Circulation Experiments With the Primitive Equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Behzadi, A.; Issa, R.; Rusche, H. Modelling of dispersed bubble and droplet flow at high phase fractions. Chem. Eng. Sci. 2004, 59, 759–770. [Google Scholar] [CrossRef]
- Krepper, E.; Lucas, D.; Frank, T.; Prasser, H.-M.; Zwart, P.J. The inhomogeneous MUSIG model for the simulation of polydispersed flows. Nucl. Eng. Des. 2008, 238, 1690–1702. [Google Scholar] [CrossRef]
- Drumm, C.; Attarakih, M.; Hlawitschka, M.W.; Bart, H.-J. One-Group Reduced Population Balance Model for CFD Simulation of a Pilot-Plant Extraction Column. Ind. Eng. Chem. Res. 2010, 49, 3442–3451. [Google Scholar] [CrossRef]
- Martinez-Bazan, C.; Montanes, J.L.; Lasheras, J.C. On the breakup of an air bubble injected into a fully developed turbulent flow. J. Fluid Mech. 1999, 401, 157–182. [Google Scholar] [CrossRef] [Green Version]
- Prince, M.J.; Blanch, H.W. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J. 1990, 36, 1485–1499. [Google Scholar] [CrossRef]
- Wardle, K.E. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors. In Proceedings of the Global 2013, Salt Lake City, UT, USA, 29 September–30 October 2013. [Google Scholar]
- Garthe, D. Fluid-Dynamics and Mass Transfer of Single Particles and Swarm of Particles in Extraction Columns. Ph.D. Thesis, Lehrstuhl für Fluidverfahrenstechnik, Technische Universität München, Munich, Germany, 2006. [Google Scholar]
- Attarakih, M.; Al-Zyod, S.; Abu-Khader, M.; Bart, H.J. PPBLAB: A New Multivariate Population Balance Environment for Particulate System Modelling and Simulation. Procedia Eng. 2012, 42, 1445–1462. [Google Scholar] [CrossRef] [Green Version]
- Lewis, W.K.; Whitman, W.G. Principles of Gas Absorption. Ind. Eng. Chem. 1924, 16, 1215–1220. [Google Scholar] [CrossRef]
- Jourdan, N.; Neveux, T.; Potier, O.; Kanniche, M.; Wicks, J.; Nopens, I.; Rehman, U.; Le Moullec, Y. Compartmental Modelling in chemical engineering: A critical review. Chem. Eng. Sci. 2019, 210, 115196. [Google Scholar] [CrossRef]
- Attarakih, M.M.; Drumm, C.; Bart, H. Solution of the population balance equation using the sectional quadrature method of moments (SQMOM). Chem. Eng. Sci. 2009, 64, 742–752. [Google Scholar] [CrossRef]
- Yilmaz, F.; Gundogdu, Y.M. Analysis of conventional drag and lift models for multiphase CFD modeling of blood flow. Korea-Aust. Rheol. J. 2009, 21, 161–173. [Google Scholar]
- Legendre, D.; Magnaudet, J. The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 1998, 368, 81–126. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Ranz, W.E.; Marshall, W.R. Evaporation from drosp. Chem. Eng. Prog. 1952, 48, 141–146. [Google Scholar]
- Treybal, R.R. Liquid Extraction; McGraw Hill: New York, NY, USA, 1963. [Google Scholar]
- Heertjes, P.M.; Holve, P.M.; Talsma, H. Mass transfer between isobutanol and water in a spray-column. Chem. Eng. Sci. 1954, 3, 122–142. [Google Scholar] [CrossRef]
- Kronig, R.; Brink, J. On the theory of extraction from falling droplets. Appl. Sci. Res. 1954, 2, 142–154. [Google Scholar] [CrossRef]
- Handlos, A.E.; Baron, T. Mass and heat transfer from drops in liquid-liquid extraction. AIChE J. 1957, 3, 127–136. [Google Scholar] [CrossRef]
- Laddha, G.S.; Degaleesan, T.E. Transport Phenomena in Liquid Extraction; Tata–McGraw Hill: New York, NY, USA, 1976. [Google Scholar]
- Pilhofer, T.; Mowes, D. Siebboden Extraktionkolonnen; VCH: Vancouver, BC, Canada, 1979. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fells, A.; De Santis, A.; Colombo, M.; Theobald, D.W.; Fairweather, M.; Muller, F.; Hanson, B. Predicting Mass Transfer in Liquid–Liquid Extraction Columns. Processes 2022, 10, 968. https://doi.org/10.3390/pr10050968
Fells A, De Santis A, Colombo M, Theobald DW, Fairweather M, Muller F, Hanson B. Predicting Mass Transfer in Liquid–Liquid Extraction Columns. Processes. 2022; 10(5):968. https://doi.org/10.3390/pr10050968
Chicago/Turabian StyleFells, Alex, Andrea De Santis, Marco Colombo, Daniel W. Theobald, Michael Fairweather, Frans Muller, and Bruce Hanson. 2022. "Predicting Mass Transfer in Liquid–Liquid Extraction Columns" Processes 10, no. 5: 968. https://doi.org/10.3390/pr10050968
APA StyleFells, A., De Santis, A., Colombo, M., Theobald, D. W., Fairweather, M., Muller, F., & Hanson, B. (2022). Predicting Mass Transfer in Liquid–Liquid Extraction Columns. Processes, 10(5), 968. https://doi.org/10.3390/pr10050968