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Abstract: Coalescence-induced droplet jumping on superhydrophobic surfaces with different initial
positions was numerically simulated using the 2D multi-relaxation-time (MRT) Lattice Boltzmann
method (LBM). Simulation results show that for coalesced droplets with radii close to the structure
length scale, the change of initial droplet positions leads to a significant deviation of jumping velocity
and direction. By finely tuning the initial droplet positions on a flat-pillared surface, perpendicular
jumping, oblique jumping, and non-jumping are successively observed on the same structured
surface. Droplet morphologies and vector diagrams at different moments are considered. It is
revealed that the asymmetric droplet detachment from the structured surface leads to the directional
transport of liquid mass in the droplet and further results in the oblique jumping of the coalesced
droplet. In order to eliminate the influence of initial droplet position on droplet jumping probability,
a surface with pointed micropillars is designed. It is demonstrated that compared to flat-topped
micropillars, a surface with pointed micropillars can suppress the initial droplet position effects
and enhance droplet jumping probability. Furthermore, the effect of droplet/structure scale on
droplet jumping is investigated. The influence of initial positions on coalescence-induced droplet
jumping from the refined surface can be ignored when the droplet scale is larger than three times
the structure scale. This study illustrates the role of initial droplet position in coalescence-induced
droplet jumping and provides guidelines for the rational design of structured surfaces with enhanced
droplet self-shedding for energy and heat transfer applications.

Keywords: Lattice Boltzmann method; droplet jumping; superhydrophobic surface

1. Introduction

In 2009, Boreyko and Chen first reported that coalesced microdroplets could jump
away from a superhydrophobic surface (SHS) induced by the surface energy released
upon the coalescence of droplets [1]. Due to its potential applications, including self-
cleaning [2], inkjet printing [3,4], and condensation heat transfer enhancement [5–7],
coalescence-induced droplet jumping has drawn extensive attention in the past few years.

Considerable experiments have been conducted to observe the self-propelled droplet
behavior and analyze droplet-jumping hydrodynamics [8–12]. In recent years, studies have
been made to investigate the interaction between droplets and surface structures [11,13]
and further explore the effects of surface structures on the early-coalescing stage [14,15].
Various micro-nanostructured surfaces are designed to decrease the critical jumping size
and enhance the behavior of droplet jumping [16–20]; however, in order to achieve high
kinetic energy conversion efficiency, the requirement for the initial droplet position is also
improved. For droplets with comparable size to the roughness length scale, the surface
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structure can participate in the coalescence process directly [18,19]. It is found that the
direction of the jumping droplet is not necessarily perpendicular to the surface when the
droplet scale is close to the structure scale [10]. Coalescence-induced oblique jumping
of a droplet inside a microgroove and a droplet on an adjacent plateau is observed [11].
This is caused by the impact of the liquid bridge on the edge of the microgroove, which
generates a momentum component parallel to the surface plane; however, in the case of
both droplets on top of the microstructure, the effect of the initial position has not been
studied. In addition, since the coalescence-induced droplet jumping can occur at different
surface locations with the random nature of nucleation, it is interesting to further study the
effect of initial droplet position on coalescence-induced droplet jumping when the droplet
scale is slightly larger than the surface roughness.

With intrinsic advantages in parameter and scale setting, a number of numerical
simulations have been performed to study the self-propelled droplet behavior [21–28]. For
example, Liao et al. [28] studied coalescence-induced droplet jumping on the surfaces of pe-
riodic strip-like wettability patterns using the molecular dynamics simulation method. The
effects of the surface wettability and the relative positions of the center of two droplets on
droplet jumping are analyzed. Tembely et al. [29] studied droplet impact on surfaces with
different contact angles using the volume of fluid (VOF) method. The lattice Boltzmann
method (LBM) as a mesoscopic approach has been widely applied to simulating multiphase
flows [30,31], heat transfer and phase change [32–36]. Abbassi et al. [33] studied nanofluid
magnetohydrodynamics (MHD) natural convection in an incinerator-shaped enclosure
and investigated the effect of different parameters, including nanoparticle volume fraction,
nanofluid flow and Rayleigh number. Safaei et al. [34] investigated the interaction between
thermal surface radiation and nanofluid free convection in a two-dimensional shallow
cavity. Mozaffari et al. [35] simulated convection heat transfer in an inclined microchannel
and found that the buoyancy caused by gravity can affect the hydrodynamic properties of
the flow. Liu et al. [21,22] adopted the multiphase relaxation time (MRT) method with a
modified equation of state and simulated the phenomenon of coalescence-induced droplet
jumping, which was found in good agreement with experimental observations. Moreover,
a variety of hydrophobic structures have been conducted by LBM in order to optimize
the droplet jumping ability [24,27,37]. Wang et al. [38] found that triangle microstruc-
tured surface can enhance the jumping ability of coalesced droplets during condensation.
Chen et al. [39] studied self-propelled jumping of non-equal-sized droplets and concluded
that non-equal-sized droplets are less efficient in transferring the released surface energy to
effective jumping kinetic energy than in the equal-sized case. In most numerical studies,
the droplet scale is often set much larger than the structure scale; thus, the position effect is
not considered. Given that droplet sizes vary widely in nature, it is still worth investigating
the influence of initial positions on coalescence-induced droplet jumping.

Here, by performing numerical simulations using a pseudopotential multiphase lat-
tice Boltzmann method (LBM), we demonstrate that droplet jumping is sensitive to the
initial position before coalescence when the droplet radii are close to the structure scale.
Specifically, for Cassie–Baxter state equally sized binary droplets residing on uniformly
microstructured surfaces, the variation of initial droplet positions governs the jumping
velocity and direction due to the different solid–liquid adhesion and uneven force of the
structural surface. Larger solid–liquid adhesion can lead to the failure of droplet departure
from the surface. In order to eliminate the influence of initial droplet position on droplet
jumping probability, we further designed a surface with pointed micropillars, which is
important for the enhancement of droplet condensation.

2. Methodology

In this paper, the pseudopotential multiphase LBM with MRT collision matrix is
applied [40,41]. We use the exact difference method (EDM) [21] in the forcing scheme and
incorporate the Peng–Robinson (P–R) equation of state [42] in the interaction potential.
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The equation of the density distribution function with MRT collision matrix to describe
particle evolution can be written as [41]

fi(x + eiδt, t + δt)− fi(x, t) = −Λ( f j(x, t)− f eq
j (x, t)) + ∆ fi(x, t) (1)

where fi(x, t) is the density distribution function at the spatial position x and time t, along
the discrete velocity direction i. Its equilibrium distribution function fieq(x, t) is given as

f eq
i (x, t) = wiρ

[
1 +

ei · u
c2

s
+

(ei · u)2

2c4
s
− u2

2c2
s

]
, (2)

where wi is the weights, ei is the discrete velocity, cs is the sound speed and u is the
macroscopic velocity vector. For D2Q9 discrete velocity model, wi and ei are given as [43]

wi =


4/9 (i= 0)
1/9 (i= 1, 2, 3, 4)
1/36 (i= 5, 6, 7, 8)

, (3)

ei =

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
(4)

The collision operator Λ in Equation (1) is given by Λ = M−1SM, where S is a diagonal
matrix written as

S = diag(s1, s2, s3, s4, s5, s4, s5, s6, s6), (5)

whose elements represent the inverse of the relaxation time. In this work, the elements are
chosen as s1 = s4 = 1.0, s2 = 0.8, s3 = 1.4, s5 = 1.6. s6 is related to the kinetic viscosity by
υ = c2

s (s
−1
6 − 0.5)δt.

The transformation matrix M in the collision operator is

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


, (6)

Through linear transformation, the density distribution function fi and its equilibrium
function fi

eq can be projected onto the moment space with m = Mf and meq = Mfeq. The
equilibrium distribution functions meq are given by

meq = ρ(1,−2 + 3|u|2, 1− 3|u|2, ux,−ux, uy,−uy, u2
x − u2

y, uxuy)
T

, (7)

Then the evolution equation of the density distribution function can be rewritten as

fi(x + eiδt, t + δt)− fi(x, t) = −M−1S(m−meq) + ∆ fi(x, t), (8)

where the force term ∆fi(x, t) is incorporated through the exact difference method (EDM) [44] as

∆ fi(x, t) = f eq
i (ρ(x, t), u + ∆u)− f eq

i (ρ(x, t), u), (9)
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where ∆u = F·δt/ρ is the velocity change due to the force term F during time step δt. The fluid
density and momentum in the velocity space can be obtained from the following equations

ρ = ∑
i

fi, ρu = ∑
i

ei fi +
δt

2
, (10)

The force term F = Fint + Fg + Fs consists of the fluid–fluid interaction force Fint,
the gravitational force Fg and the fluid–solid interaction force Fs. Considering that the
droplet size in the simulation is much smaller than the capillary length (2.7 mm for water)
and the droplet coalescence and jumping dynamics prior to departure are governed by
capillary forces and droplet–surface interaction [1], we ignore the effect of gravity and
Fg is therefore set to 0. In order to verify the statement, the droplet coalescence process
with and without gravity under the same condition is simulated. The velocity change
during droplet coalescence is shown in Figure S1 (see Supplementary Material). There is
no obvious difference between the two cases, and thus the gravity force can be neglected.
The fluid–fluid interaction force Fint is given by Gong and Cheng [43] as

Fint = −βψ(x)∑
i

G(x + ei)ψ(x + ei)ei −
1− β

2 ∑
i

G(x + ei)ψ
2(x + ei)ei, (11)

where β is the weighting factor depending on the specific equation of state, G(x + ei) mea-
sures the interaction strength, and ψ(x + ei) is the interaction potential which is determined
by the equation of state:

ψ(x, t) =

√
2(p− ρc2

s )

c0G
, (12)

where p can be solved from the equation of state, and c0 = 6.0 is determined by the lattice
structure [43].

The fluid–solid interaction force Fs is given by

Fs = −Gsψ(x)∑
i

ωis(x + eiδt)ei, (13)

where Gs is the interaction strength between solid and fluid for controlling the wetting
conditions (contact angles), and s(x) is an indicator function, which is equal to 1 for solid
and 0 for fluid.

In this study, we choose Peng–Robinson (P-R) equation of state with weighting factor
β = 1.16 in Equation (11) [42]. The P-R equation of state is given by

p =
ρRT

1− bρ
− aρ2α(T)

1 + 2bρ− b2ρ2 , (14)

where α(T) = [1 + (0.37464 + 1.54226ω− 0.26992ω2)(1−
√

T/Tc)]
2 and ω is the acentric

factor, which equals to 0.344 for water. In this paper, T = 0.85Tc, a = 3/49, b = 2/21 and
R = 1 are chosen.

3. Model Validation

To validate the hydrodynamic effects of the model, the Laplace law is checked. Then,
the scaling law relation is also examined by recording the growth of the liquid bridge during
the coalescence of two droplets to validate the collision process. Finally, the simulation
results of coalescence-induced droplet jumping are compared with the data from previous
experiments and simulations [1,22].
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For evaluating the Laplace law, a circular droplet surrounded by the vapor is initialized
in a gravity-free domain with the periodic boundary conditions applied all around. The 2D
Young–Laplace equation is given as

∆p =
γlv
r

, (15)

where ∆p is the pressure difference across the gas-liquid (2D) interface, γlv is the surface
tension and r is the droplet radius. It can be seen in Figure 1a that the pressure difference
across the interface is proportional to the reciprocal of the droplet radius, which is consistent
with the Laplace law.

Then the collision process is validated. When two droplets touch together, a liquid
bridge is formed and widens rapidly over time. The growth of the liquid bridge should
satisfy the scaling law, which is given as

rb/r ≈ A0
√

t/ti, (16)

where rb is the bridge width and the merging time scale is defined as ti ≈
√

ρlr3/γlv. The
relationship between the width of the liquid bridge and time is shown in Figure 1b with the
slope A0 being 1.1298, which is in the experimental range from 1.03 to 1.29 [21]. Moreover,
the relationship between contact angle and the interaction strength Gs is shown in Figure S2
(see Supplementary Material).
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In order to match the results with the actual situation, the lattice units are converted
into physical units. The length scale is based on the consistency of the Ohnesorge num-
ber Oh = µl/

√
ρlγlvr, which represents the relationship between viscous force, inertial

force and surface tension, and the time scale is on the basis of the merging time scale
ti ≈

√
ρlr3/γlv. Then the length scale and the time scale can be derived as

l0 =
[µ2

l /(ρlγlv)]real
[µ2

l /(ρlγlv)]lu
, (17)

t0 = l1.5
0

[
√

ρl/γlv]real

[
√

ρl/γlv]lu
, (18)

where the subscript ‘real’ represents the physical units, ‘lu’ represents the lattice units,
(µl)lu = 0.0177 is the dynamic viscosity, (ρl)lu = 6.62 is the density of droplet and (γlv)lu = 0.159
is the surface tension. Then the velocity scale is determined as v0 = l0/t0.
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Finally, the simulation results of coalescence-induced droplet jumping are compared with
the data from other studies. The computational domain is chosen as 203 lattice × 200 lattice,
corresponding to 406 µm× 400 µm. Periodic boundary conditions are applied on both sides
and the bounce-back scheme is applied for both the bottom and the top boundary. The phe-
nomenon of coalescence-induced jumping is shown in Figure 2a, with the apparent contact
angle of the structured surface θa = 150◦. The simulated velocity u is nondimensionalized
by the following equation [1]

u∗ = u/ui (19)

where ui =
√

1.24γlv/(ρlr) is the inertial capillary velocity [1]. By adjusting the droplet
radius and the initial positions, the velocity range of the jumping droplet is achieved. As
shown in Figure 2b, the dimensionless velocity range for small droplets (r = 20 µm) obtained
by our simulation is large, containing both Liu and Cheng’s simulation results [22] and the
experimental data [1]. The main reason for the deviation is that the structure scale used
in our simulation is close to the droplet radius, which makes the droplet jumping more
sensitive to positions. For comparison, the droplet radius in Liu and Cheng’s simulation is
set much larger, about 7.5 times the structure scale. The further influence of initial droplet
position on velocity deviation will be explained in subsequent chapters. For r > 40 µm, our
simulation results agree well with the data from other studies. The comparison of simulated
jumping velocities after droplet coalescence with experimental results is shown in Figure S3
(see Supplementary Material). Since the droplet radius is only slightly larger than the
structure scale, it is easier for droplets to become trapped in the microstructure, which
increases solid–liquid contact area during coalescence; therefore, the jumping velocities are
basically lower than the experimental results. Overall, the droplet jumping can be divided
into four stages: (I) formation and expansion of the liquid bridge between two droplets;
(II) droplet deformation; (III) reduction in the contact area between merged droplet and sur-
face and droplet deformation; (IV) droplet jumping. The as-described droplet coalescence
and jumping dynamics are consistent with previous studies [21].
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4. Results and Discussion
4.1. Effects of Initial Droplet Position on Coalescence-Induced Jumping

To study the effects of initial droplet position, we simulated coalescence-induced
droplet jumping of binary equally sized droplets having different initial positions relative
to the surface textures. The schematic diagram of the periodic textured surface is shown in
Figure 3 with structure height h = 15 lattice, gap a = 7 lattice and pillar width w = 3 lattice,
corresponding to a roughness factor of 4 and solid fraction of 0.3. The intrinsic contact
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angle of the surface is assumed to be θ = 123◦ and the corresponding apparent contact
angle θa = 150◦. Two equally sized water droplets close to each other are placed on the
structured surface.

According to the simulation results in Figure 2b, the initial position can play a significant
impact on droplet jumping when the droplet radii are less than 40 µm (droplet/structure scale
less than 2); therefore, the droplet radii before coalescence are set to match the length scale of
the surface structures, i.e., r = 15 lattice (corresponding to 30 µm), thus the droplets are large
enough to reside on the surface in the Cassie–Baxter state while small enough to reflect
the structure length scale effect [10]. The initial position of the droplet pair is indicated by
the mutual tangent of two droplets (red dotted line in Figure 3. By initializing the mutual
tangent line from position (i) to (ii) lattice by lattice and simulating, the characteristic of
coalescence-induced jumping on such a periodic textured surface can be fully described.
The exact configurations are shown in Figure S4 (see Supplementary Material). Six cases
are thus simulated in this part, namely Case Rj (j = 0, 1, 2, 3, 4, 5). The subscript j of Case Rj
(j = 0, 1, 2, 3, 4, 5) indicates the lattice-unit distance shifted to the right from the reference
position (i). We note R0 and R5 represent the cases with the minimized and maximized
liquid–solid contact areas, respectively, while Rj (j = 1, 2, 3, 4) represents the cases having
asymmetric droplet–surface contact with respect to the mutual tangent line. Here, a lattice
unit is used as the shift step to cover the majority of initial droplet conditions.

Figure 4 shows the simulation results of Case R0, Case R3 and Case R5. In this study,
the effect of gravity is ignored and the droplet velocity of each case has reached a plateau at
t = 0.515 ms. It can be clearly seen that initial positions can influence the jumping direction
and velocity of the coalesced droplet. In Case R0, the merged droplet jumps perpendicular
to the surface, while the droplet in Case R3 jumps upper left with the jumping angle from
the vertical θ ≈ 10◦. In Case R5, the coalesced droplet fails to jump from the surface because
of the greater interaction force between solid and liquid.

Processes 2022, 10, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. Schematic diagram of the periodic textured surface with flat-topped pillars (structure 

height h = 15 lattice, gap a = 7 lattice, pillar width w = 3 lattice). The initial position of the droplet 
pair is indicated by the mutual tangent of two droplets (red dotted line). The mutual tangent line is 

initialized from position (i) to (ii) in different cases. 

 

Figure 4. Simulation results with initial representative positions (the subscript j of Case Rj indicates 

the position of the mutual tangent of two droplets). 

Under the analysis by Wang et al. [45], the initial kinetic energy Ek equals the surface 

energy Es released during droplet coalescence minus the work of adhesion between the 

solid and liquid Ew, the increase in gravitational potential energy Eh and the viscosity 

dissipation Evis during the whole coalescence process, given as 

20.5k s w h visE mu E E E E= =  − − − , (20) 

In this study, the effect of gravity is ignored and Eh = 0. In order to explain the reason 

why the droplet fails to jump from the surface in Case R5, we compare the droplet 

morphology of the six cases at t = 0.0258 ms when the droplet is in full contact with the 

structured surface, as shown in Figure 5. It can be seen that the merged droplet in Case R0 

~ R3 covers five micropillars of the surface while Case R4 and R5 cover six. The droplet in 

Figure 3. Schematic diagram of the periodic textured surface with flat-topped pillars (structure height
h = 15 lattice, gap a = 7 lattice, pillar width w = 3 lattice). The initial position of the droplet pair
is indicated by the mutual tangent of two droplets (red dotted line). The mutual tangent line is
initialized from position (i) to (ii) in different cases.

Under the analysis by Wang et al. [45], the initial kinetic energy Ek equals the surface
energy ∆Es released during droplet coalescence minus the work of adhesion between the
solid and liquid Ew, the increase in gravitational potential energy ∆Eh and the viscosity
dissipation ∆Evis during the whole coalescence process, given as

Ek = 0.5mu2 = ∆Es − Ew − ∆Eh − ∆Evis, (20)

In this study, the effect of gravity is ignored and ∆Eh = 0. In order to explain the
reason why the droplet fails to jump from the surface in Case R5, we compare the droplet
morphology of the six cases at t = 0.0258 ms when the droplet is in full contact with the
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structured surface, as shown in Figure 5. It can be seen that the merged droplet in Case
R0~R3 covers five micropillars of the surface while Case R4 and R5 cover six. The droplet in
Case R4 and R5 needs to overcome more adhesion work before leaving the surface, making
them more difficult to leave the surface. The coalesced droplet of Case R5 even fails to jump
from the surface. In summary, the jumping ability, including jumping velocity and jumping
probability, for a droplet with a radius close to the structure scale is greatly affected by the
solid–liquid adhesion. Specifically, if the small droplet contacts more micropillars in the
process of droplet merging, it is more difficult to jump from the structural surface and may
lead to jumping failure.
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To further investigate the effects of initial positions on jumping direction, we calculated
the overall velocity of the droplet throughout the whole process by

udrop =
∑ ρ(x, t)u(x, t)

∑ ρ(x, t)
, (21)

where udrop is the droplet velocity, ρ is the local fluid density and u is the local velocity
defined in Equation (10) Figure 6a,b show the horizontal and vertical velocity (ux and uy)
change over time in Case R3. At the beginning of coalescence (stage I), as the merging
droplet is under the adhesion force, uy increases downward until the droplet’s base fully
conforms to the structural surface. Horizontally, the liquid mass of two droplets moves
to each other due to the curvature difference between the droplet and liquid bridge and
the overall velocity uy remains basically unchanged. During stage II, the droplet is in
complete contact with the surface structure and starts to move upwards. At the same
time, the horizontal velocity ux also continuously increases under the leftward force of the
substrate. At stage III, the contact area reduces gradually and the velocity decreases and
fluctuates. Specifically, each time the droplet leaves a pair of micropillars (process B–C and
D–E), the velocity decreases. When the droplet deforms without leaving micropillars, the
velocity increases briefly (process C–D). At stage IV, the droplet totally detaches from the
surface and the velocity decrease slightly because of the viscosity dissipation. It can be
observed that the horizontal velocity mainly increases during stages II and III; therefore, it
is necessary to compare the droplet morphology at different moments of stages II and III.
As shown in Figure 6c, the left end of the droplet base is attached to a micropillar while the
right end is not in contact with a corresponding micropillar. As the coalescence continues,
the liquid mass in the right of the droplet is easier to transport to the upper left while the
left side is adhered to by the pillar and deforms slower. In order to observe the liquid flow
inside the droplet, the relative local velocity u′i is calculated by

u′(x, t) = u(x, t)− udrop, (22)

and the velocity of the surrounding vapor is set to be 0. The droplet vector diagram also
corroborates the interpretation, in which the lower right liquid inside the droplet transports
more vigorously to the upper left resulting in the upper left jumping. In conclusion, the
main factor that decides the jumping direction is the asymmetric solid–liquid interaction,
which makes the liquid mass inside the droplet transport asymmetrical, resulting in the
oblique jumping of the coalesced droplet.

4.2. Refined Structures for Enhanced Coalescence-Induced Jumping

As analyzed above, the coalescence-induced jumping ability of a small droplet is
greatly affected by the solid–liquid adhesion; therefore, adjusting the solid–liquid contact
state during coalescence is of great importance to prevent droplet jumping failure. Since
the droplet only touches the top of micropillars, it can be achieved by turning the top of the
pillar into a tip, which is also consistent with some surface structures in nature [46]. The
schematic diagram of the refined textured surface is shown in Figure 7, with parameters
the same as the original structure. The vertex angle of the pillar is set to 90◦. The simulation
results are shown in Figure S5 (see Supplementary Material), where the initial position of
Case Rj’ (j = 0, 1, 2, 3, 4, 5) corresponds to Case Rj. It can be observed that the coalesced
droplet of Case R5’ successfully jumps up from the new surface compared with Case R5.

Furthermore, the droplet jumping velocity for Case Rj and Case Rj’ at t = 0.515 ms is
compared in Figure 8a,b, where the vertical jumping velocity of each case also represents the
magnitude of kinetic energy. It can be seen that the improved surface can markedly reduce
the influence of the initial position on droplet kinetic energy (Figure 8a), while the vertical
velocity for Case Rj (j = 4 and 5) on the original surface drops sharply because of the increase
in the contact area; however, the vertical jumping velocity on the improved surface in Case
Rj’ (j = 0–3) is slightly less than that on the original surface. By comparing the droplet
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velocity–time evolution in Case R2 and Case R2’ (Figure S6, see Supplementary Material), it
can be observed that the vertical velocity mainly varies during droplet deformation without
detaching micropillars when only under the counteractive force from the pillars. The larger
vertical solid–liquid counteractive force from the flat pillars allows the droplet to gain
greater velocity.
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On the other hand, the maximum horizontal velocity in Case Rj’ (0.066 m/s) is about
1.4 times higher than that in Case Rj (0.048 m/s) (Figure 8b), indicating a slight increase in
the deviation between the jumping direction and the normal direction. In order to explain
the reasons for the result, the time evolution of the droplet velocity in Case R4 and Case
R4’ are compared in Figure 8c,d. The vertical droplet velocity in Case R4 and Case R4’
varies mainly before leaving the surface (Figure 8c) when the droplet only touches the very
top of the structure. Although the flat pillar can provide greater vertical counteractive
force, the droplets also need to overcome greater adhesion force from the very top of the
pillars. Droplets are easier to detach from the top of pointed pillars with less flat contact
area. For Case R4’ and R5’, although the solid–liquid counteractive force decreases, the
reduction in adhesion work predominates and prevents the failure of droplet jumping. As
shown in Figure 8d, the difference in horizontal velocity mainly happens in the dashed box,
namely stage (II). According to the morphology of point b and point b’ at t = 0.0232 ms,
it can be drawn that the pointed pillars make it easier for droplets to become trapped in
the microstructure, which increases both lateral solid–liquid contact area and the droplet
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asymmetry. In conclusion, the new surface can effectively prevent droplet jumping failure,
but the uncertainty of droplet jumping direction is slightly increased.
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Figure 8. (a,b) Comparison of droplet jumping velocity at t = 0.515 ms. (c,d) Comparison of droplet
velocity–time evolution in Case R4 and Case R4’.

By finely tuning the initial droplet positions, different jumping velocities and di-
rections have been observed on the same structured surface. To explore the influence
of the droplet/structure scale on droplet jumping, cases with different droplet radii are
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further simulated under the same adjustment of the initial conditions mentioned above.
The simulation results are shown in Figure 9, where the jumping velocity is taken the
instant the droplet leaves the surface. The droplet radii are set to 30 µm, 40 µm, 50 µm
and 60 µm, respectively. By adjusting the initial position of the droplet, the maximum
velocity and minimum velocity with different radii are obtained. It can be observed that
the influence of initial conditions on droplet jumping velocity weakens with the increase in
droplet radius. The deviation of jumping velocity on the flat-topped surface reduces from
~0.34 m/s (r = 30 µm) to ~0.02 m/s (r = 60 µm). As analyzed above, the adhesion work plays
a key role in the deviation of droplet jumping ability. With the increase in droplet size, the
proportion of liquid–solid adhesion work to the excess surface energy decreases, resulting
in the deviation reduction. Furthermore, it can also be drawn that droplet jumping on the
refined surface is less sensitive to the initial positions compared with that on the flat-topped
surface. For r = 60 µm (droplet/structure scale ~3), the deviation of jumping velocity has
been reduced to ~0.008 m/s and the effect of initial conditions on coalescence-induced
droplet jumping can be ignored. On the other hand, as the influence of initial positions
on the deviation of jumping direction is no longer obvious even for cases of 40 µm, the
jumping direction change is not discussed here.
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Figure 9. (a) Deviation of droplet jumping velocity on the original surface. (b) Deviation of droplet
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position of the droplet.

4.3. Discussion

Our study indicates that for coalesced droplets having radii close to the structure
length scale, the variation of initial droplet positions leads to a significant deviation of
jumping velocity and direction due to the asymmetric droplet–structure adhesion and
interaction. By adjusting the top of pillars to sharp tips, droplet jumping probability is
improved and droplet jumping failure can be effectively prevented.

Different from local pinning-induced oblique jumping as observed in previous stud-
ies [10], the non-perpendicular jumping demonstrated in the results of our simulations from
the asymmetric droplet–surface adhesion due to the surface structures. It will be interesting
to couple the structure-mediated and local defect-mediated adhesion asymmetry in future
simulation work.

Previous studies reveal that cone-shaped structures lead to a minimum droplet jump-
ing size (~500 nm) [47], consistent with our simulations for structures having sharp tips
in which jumping probability is enhanced compared to flat-top structures. More work
is needed to explore the effects of tip geometry on droplet jumping. Furthermore, al-
though our work is based on microdroplets/microstructures, the initial position-dependent
droplet–structure adhesion and interaction play a more significant role in coalescence-
induced jumping of smaller droplets on nanostructures, where work of adhesion dissipates
a larger portion of excessive surface energy [10,16]. As droplet jumping failure can oc-
cur at a certain initial position, it is important to improve the surface structure from the
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viewpoint of initial position influence. Our study provides guidelines for the design of
micro/nanostructures to prevent droplet jumping failure, which is of great importance for
enhancing dropwise condensation heat transfer. The analysis of initial droplet position, sur-
face structure and droplet/structure scale on droplet jumping behavior help to understand
the irregular jumping of droplets and to further study controllable droplet jumping used
for water harvesting.

5. Conclusions

In this paper, coalescence-induced droplet jumping on a microstructured surface with
different initial droplet positions was numerically investigated by the pseudopotential
multiphase LBM with an MRT collision matrix. The initial droplet position is taken into
consideration, which is often overlooked in numerical simulations. The effects of ini-
tial droplet position, surface structure and droplet/structure scale on droplet jumping
behavior were studied. We demonstrate that droplet jumping is sensitive to the initial
positions of droplets prior to coalescence. Specifically, for Cassie–Baxter state equally sized
binary droplets residing on uniformly microstructured surfaces, variation of initial droplet
positions governs the jumping velocity and direction due to the different solid–liquid
adhesion and uneven force of the structural surface. Larger solid–liquid adhesion can
lead to the failure of droplet departure from the surface. In order to enhance the jumping
probability, we change the top of the micropillar to a sharp tip. By comparing the droplet
jumping velocity at t = 0.515 ms on different surfaces, it is observed that the new struc-
ture can effectively prevent droplet jumping failure. On the other hand, the maximum
horizontal velocity in Case Rj’ (0.066 m/s) is about 1.4 times higher than that in Case Rj
(0.048 m/s), indicating a slight increase in the deviation between the jumping direction
and the normal direction. Finally, the influence of the droplet/structure scale on droplet
jumping is analyzed by adjusting the initial droplet radii. It is found that the influence of
initial position on droplet jumping velocity weakens with the increase in droplet radius.
The deviation of jumping velocity on the flat-topped surface reduces from ~0.34 m/s
(r = 30 µm) to ~0.02 m/s (r = 60 µm). With the increase in droplet size, the proportion of
liquid–solid adhesion work to the excess surface energy decreases, leading to the deviation
reduction. For r = 60 µm (droplet/structure scale ~3), the deviation of jumping velocity on
the new surface has been reduced to ~0.008 m/s; therefore, the effect of initial position on
coalescence-induced droplet jumping of Cassie–Baxter state equally sized binary droplets
from the refined surface can be ignored. Our study provides guidelines for the rational
design of micro/nanostructures with enhanced droplet self-shedding for energy and heat
transfer applications.
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Nomenclature

a constant in P-R equation of state
b constant in P-R equation of state
c lattice speed (m·s−1)
cs lattice sound speed (m·s−1)
ei lattice velocity vector (m·s−1)
Ew adhesion between solid and liquid (J)
Eh gravity potential energy (J)
Ek kinetic energy (J)
Es surface energy (J)
∆Evis viscosity dissipation (J)
F force vector (N)
f density distribution function
G the interaction strength
l0 length scale (m·lu−1)
m distribution function in the moment space
M transformation matrix
Oh Ohnesorge number
p pressure (Pa)
r radius (m)
R constant in P-R equation of state
s(x) indicator function
S diagonal matrix
t time (s)
t0 time scale (s·ts−1)
ti the merging time scale (s)
T temperature (K)
u velocity vector (m·s−1)
ui velocity of liquid lattice (m·s−1)
ν0 velocity scale
wi weighting coefficients in D2Q9 lattice
x, y coordinates (m)
Greek symbol
β weighting factor of the interaction force
ω acentric factor in P-R equation of state
υ kinetic viscosity (m2·s−1)
ρ density (kg·m−3)
µ dynamic viscosity (Pa·s)
δt time spacing (s)
Λ collision operator
ψ interaction potential
γlv surface tension (N·m−1)
Subscripts or Superscripts
b bridge
c critical
eq equilibrium
l liquid
s solid
v vapor
w wall
x, y coordinates
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