Real-Time Optimization of Wastewater Treatment Plants via Constraint Adaptation
Abstract
:1. Introduction
- Parametric uncertainties can be handled by updating the uncertain model parameters using a so-called “two-step” approach. This works well in the case of parametric plant-model mismatch, that is, when the plant-model mismatch can be corrected by parameter adaptation [19]. In the case of structural mismatch, parameter estimation will not be able to adapt the model correctly, and the two-step scheme may not work well [20].
- Structural uncertainty can be handled by modifying the cost and constraints of the optimization problem. The first investigation in this direction is the method labeled integrated system optimization and parameter estimation (ISOPE) [21]. However, the parameter estimation step makes its implementation difficult in the presence of measurement noise and insufficient excitation in the data. Hence, it may be beneficial to skip the parameter estimation step and modify only the cost and constraints in the optimization framework. The corrections added to the cost and constraints are referred to as modifier terms, and the resulting RTO scheme is named modifier adaptation (MA) [22]. The correction of bias and gradients in the predicted cost and constraints are performed via so-called zeroth- and first-order modifiers, respectively.
- When only zeroth-order modifiers are used to compensate for plant-model mismatch, the RTO method is known as constraint adaptation (CA) [23]. Note that gradient estimation is difficult in practice, especially with a large number of inputs. CA does not involve gradient estimation and is often preferred over MA. It ensures feasible operation of the plant by driving it iteratively to a point where all constraints are met. However, this way, optimal plant operation can only be ensured when the number of inputs (or decision variables) is equal to the number of active plant constraints [18].
2. Materials and Methods
2.1. Wastewater Treatment Plant: Models and Controllers
2.1.1. Benchmark Simulation Model No. 1
2.1.2. 47th-Order Plant Adopted from BSM1
2.1.3. 20th-Order Model
2.1.4. Design of Controllers
2.2. RTO via Constraint Adaptation
2.2.1. Formulation of the Optimization Problem
2.2.2. CA Using Steady-State Measurements
- Initialize the filtered modifiers . Choose the filter matrix and the convergence threshold δ. Set .
- Solve the modified optimization problem Equation (9) to get the inputs .
- If , set ; otherwise stop.
- Apply the inputs to the plant, wait for steady state and take the measurements .
- Evaluate the modifiers Equation (8), apply the filter Equation (10) and return to Step 2.
2.2.3. Fast CA Using Transient Measurements
2.3. RTO Applied to WWTP
2.3.1. Plant Optimization Problem
2.3.2. Model Optimization Problem
2.3.3. Modified Optimization Problem
- Zeroth-order modifier for CA
- Zeroth-order modifier for fast CA
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Perfect Settler
- For the soluble matter (),
- For the particulate matter (),
Variables | Units | 147th-Order Model | 47th-Order Model | 147th-Order Model | 47th-Order Model | 147th-Order Model | 47th-Order Model |
---|---|---|---|---|---|---|---|
55,338 | 55,338 | 36,892 | 36,892 | 18,446 | 18,446 | ||
240 | 240 | 200 | 200 | 160 | 160 | ||
8.54 | 8.35 | 4.27 | 4.00 | 0.28 | 0.23 | ||
3.93 | 3.98 | 2.97 | 2.99 | 1.10 | 0.96 | ||
0.69 | 0.55 | 0.89 | 0.72 | 3.3 | 3.00 |
Appendix B
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | [M L−3 T−1] | |
---|---|---|---|---|---|---|---|---|---|---|---|
j | SS | XS | XB, H | XB, A | SO | SNO | SNH | SND | XND | ||
1 | Aerobic growth of heterotrophs | ||||||||||
2 | Anoxic growth of heterotrophs | ||||||||||
3 | Aerobic growth of autotrophs | ||||||||||
4 | ‘Decay’ of heterotrophs | ||||||||||
5 | ‘Decay’ of autotrophs | ||||||||||
6 | Ammonification of soluble organic nitrogen | ||||||||||
7 | ‘Hydrolysis’ of entrapped organics | ||||||||||
8 | Hydrolysis’ of entrapped organic nitrogen | ||||||||||
Observed conversion rates [M L−3 T−1] | |||||||||||
Stoichiometric Parameters: Heterotrophic yield: YH, Autotrophic yield: YA, Fraction of biomass yielding particulate products: fP, Mass N/Mass COD in biomass: iXB, Mass N/Mass COD in products from biomass: iXP | Readily biodegradable substrate [M (COD) L −3] | Slowly biodegradable substrate [M (COD) L −3] | Activate heterotrophic biomass [M (COD) L −3] | Activate autotrophic biomass [M (COD) L −3] | Oxygen (negative COD) [M (COD) L−3] | Nitrate and nitrite nitrogen [M (N) L−3] | NH+4 + NH3 nitrogen [M (N) L−3] | Soluble biodegradable organic nitrogen [M (N) L −3] | Particulate biodegradable organic nitrogen [M (N) L−3] | Kinetic Parameters: Heterotrophic growth and decay: , KS, KO, H, KNO, bH Autotrophic growth and decay: , KNH, KO, A, bA Correction factor for anoxic growth of heterotrophs: Ammonification: ka Hydrolysis: kh, KX Correction factor for anoxic hydrolysis: |
Appendix C
Appendix C.1. PI Controllers for the Plant
- 1.
- Regulate the level of by manipulating .
- 2.
- Regulate the level of by manipulating .
Appendix C.2. PI Controller Equations for the Model
- 1.
- Regulate the level of by manipulating
- 2.
- Regulate the level of by manipulating
References
- Kumar, M.D.; Tortajada, C. Assessing Wastewater Management in India, 1st ed.; Springer: Singapore, 2020; pp. 53–58. [Google Scholar]
- Ozgun, H.; Cicekalan, B.; Akdag, Y.; Koyuncu, I.; Ozturk, I. Comparative evaluation of cost for preliminary and tertiary municipal wastewater treatment plants in Istanbul. Sci. Total Environ. 2021, 778, 146258. [Google Scholar] [CrossRef] [PubMed]
- Keerio, H.A.; Bae, W. Experimental Investigation of Substrate Shock and Environmental Ammonium Concentration on the Stability of Ammonia-Oxidizing Bacteria (AOB). Water 2020, 12, 223. [Google Scholar] [CrossRef] [Green Version]
- Capodaglio, A.G.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, J.; Remiszewska-Skwarek, A.; Duda, S.; Łagód, G. Aeration process in bioreactors as the main energy consumer in a wastewater treatment plant. Review of solutions and methods of process optimization. Processes 2019, 7, 311. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, J. Advanced supervisory control system implemented at full-scale WWTP—A case study of optimization and energy balance improvement. Water 2019, 11, 1218. [Google Scholar] [CrossRef] [Green Version]
- Borzooei, S.; Campo, G.; Cerutti, A.; Meucci, L.; Panepinto, D.; Ravina, M.; Riggio, V.; Ruffino, B.; Scibilia, G.; Zanetti, M. Optimization of the wastewater treatment plant: From energy saving to environmental impact mitigation. Sci. Total Environ. 2019, 691, 1182–1189. [Google Scholar] [CrossRef]
- Muoio, R.; Palli, L.; Ducci, I.; Coppini, E.; Bettazzi, E.; Daddi, D.; Fibbi, D.; Gori, R. Optimization of a large industrial wastewater treatment plant using a modeling approach: A case study. J. Environ. Manag. 2019, 249, 109436. [Google Scholar] [CrossRef]
- Elawwad, A.; Matta, M.; Abo-Zaid, M.; Abdel-Halim, H. Plant-wide modeling and optimization of a large-scale WWTP using BioWin’s ASDM model. J. Water Process Eng. 2019, 31, 100819. [Google Scholar] [CrossRef]
- Vergara-Araya, M.; Hilgenfeldt, V.; Peng, D.; Steinmetz, H.; Wiese, J. Modelling to lower energy consumption in a large WWTP in China while optimising nitrogen removal. Energies 2021, 14, 5826. [Google Scholar] [CrossRef]
- Caraman, S.; Luca, L.; Vasiliev, I.; Barbu, M. Optimal-setpoint-based control strategy of a wastewater treatment process. Processes 2020, 8, 1203. [Google Scholar] [CrossRef]
- El bahja, H.; Vega, P.; Revollar, S.; Francisco, M. One layer nonlinear economic closed-loop generalized predictive control for a wastewater treatment plant. Appl. Sci. 2018, 8, 657. [Google Scholar] [CrossRef] [Green Version]
- Sadeghassadi, M.; Macnab, C.J.B.; Gopaluni, B.; Westwick, D. Application of neural networks for optimal-setpoint design and MPC control in biological wastewater treatment. Comput. Chem. Eng. 2018, 115, 150–160. [Google Scholar] [CrossRef]
- Boruah, N.; Roy, B.K. Event triggered nonlinear model predictive control for a wastewater treatment plant. J. Water Process Eng. 2019, 32, 100887. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, J. Economic MPC of wastewater treatment plants based on model reduction. Processes 2019, 7, 682. [Google Scholar] [CrossRef] [Green Version]
- Revollar, S.; Vega, P.; Vilanova, R.; Francisco, M. Optimal control of wastewater treatment plants using economic-oriented model predictive dynamic strategies. Appl. Sci. 2017, 7, 813. [Google Scholar] [CrossRef]
- Zhang, Y.; Monder, D.; Fraser Forbes, J. Real-time optimization under parametric uncertainty: A probability constrained approach. J. Process Control 2002, 12, 373–389. [Google Scholar] [CrossRef]
- Chachuat, B.; Srinivasan, B.; Bonvin, D. Adaptation strategies for real-time optimization. Comput. Chem. Eng. 2009, 33, 1557–1567. [Google Scholar] [CrossRef]
- Chen, C.Y.; Joseph, B. On-line optimization using a two-phase approach: An application study. Ind. Eng. Chem. Res. 1987, 26, 1924–1930. [Google Scholar] [CrossRef]
- Ahmad, A.; Singhal, M.; Gao, W.; Bonvin, D.; Engell, S. Enforcing Model Adequacy in Real-Time Optimization via Dedicated Parameter Adaptation. IFAC-Pap. 2018, 51, 49–54. [Google Scholar] [CrossRef]
- Roberts, P.D. Coping with model-reality differences in industrial process optimisation—A review of integrated system optimisation and parameter estimation (ISOPE). Comput. Ind. 1995, 26, 281–290. [Google Scholar] [CrossRef]
- Marchetti, A.; Chachuat, B.; Bonvin, D. Modifier-adaptation methodology for real-time optimization. Ind. Eng. Chem. Res. 2009, 48, 6022–6033. [Google Scholar] [CrossRef] [Green Version]
- Chachuat, B.; Marchetti, A.; Bonvin, D. Process optimization via constraints adaptation. J. Process Control 2008, 18, 244–257. [Google Scholar] [CrossRef]
- Alex, J.; Benedetti, L.; Copp, J.; Gernaey, K.; Jeppsson, U.; Nopens, I.; Pons, M.-N.; Steyer, J.-P.; Vanrolleghem, P. Benchmark Simulation Model No. 1 (BSM1); University of Lund: Lund, Sweden, 2008. [Google Scholar]
- Karia, G.L.; Christian, R.A. Wastewater Treatment: Concepts and Design Approach; Prentice-Hall of India Pvt. Ltd.: New Delhi, India, 2013; pp. 1–11. [Google Scholar]
- Tejaswini, E.S.S.; Panjwani, S.; Seshagiri Rao, A. Design of Hierarchical Control Strategies for Biological Wastewater Treatment Plants to Reduce Operational Costs. Chem. Eng. Res. Des. 2020, 161, 197–205. [Google Scholar] [CrossRef]
- Zhang, A.; Yin, X.; Liu, S.; Zeng, J.; Liu, J. Distributed Economic Model Predictive Control of Wastewater Treatment Plants. Chem. Eng. Res. Des. 2019, 141, 144–155. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, W. Dynamic Multi-Objective Optimization Control for Wastewater Treatment Process. Neural Comput. Appl. 2016, 29, 1261–1271. [Google Scholar] [CrossRef]
- Han, H.-G.; Zhang, L.; Liu, H.-X.; Qiao, J.-F. Multiobjective Design of Fuzzy Neural Network Controller for Wastewater Treatment Process. Appl. Soft Comput. 2018, 67, 467–478. [Google Scholar] [CrossRef]
- Morales-Rodelo, K.; Francisco, M.; Alvarez, H.; Vega, P.; Revollar, S. Collaborative Control Applied to BSM1 for Wastewater Treatment Plants. Processes 2020, 8, 1465. [Google Scholar] [CrossRef]
- Henze, M.; Grady, C.P.L., Jr.; Gujer, W.; Marais, G.V.R.; Matsuo, T. Activated Sludge Model no 1; IAWPRC: London, UK, 1987. [Google Scholar]
- Takács, I.; Patry, G.G.; Nolasco, D. A dynamic model of the clarification-thickening process. Water Res. 1991, 25, 1263–1271. [Google Scholar] [CrossRef]
- Waller, K.V.; Makila, P.M. Chemical reaction invariants and variants and their use in reactor modeling, simulation, and control. Ind. Eng. Chem. Process Des. Dev. 1981, 20, 1–11. [Google Scholar] [CrossRef]
- Seborg, D.E.; Edgar, T.F.; Mellichamp, D.A.; Doyle, F.J., III. Process Dynamics and Control, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 9780470128671. [Google Scholar]
- Biegler, L.T. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010; pp. 181–212. [Google Scholar]
- Krishnamoorthy, D.; Foss, B.; Skogestad, S. Steady-state real-time optimization using transient measurements. Comput. Chem. Eng. 2018, 115, 34–45. [Google Scholar] [CrossRef]
- De Avila Ferreira, T.; Wuillemin, Z.; Marchetti, A.G.; Salzmann, C.; Van Herle, J.; Bonvin, D. Real-time optimization of an experimental solid-oxide fuel-cell system. J. Power Sources 2019, 429, 168–179. [Google Scholar] [CrossRef]
- De Avila Ferreira, T.; François, G.; Marchetti, A.G.; Bonvin, D. Use of transient measurements for static real-time optimization. IFAC-Pap. 2017, 50, 5737–5742. [Google Scholar] [CrossRef]
- Zamouche, R.; Bencheikh-Lehocine, M.; Meniai, A.-H. Oxygen transfer and energy savings in a pilot-scale batch reactor for domestic wastewater treatment. Desalination 2007, 206, 414–423. [Google Scholar] [CrossRef]
- Marchetti, A.; François, G.; Faulwasser, T.; Bonvin, D. Modifier adaptation for real-time optimization—Methods and applications. Processes 2016, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A Software Framework for Nonlinear Optimization and Optimal Control. Math. Program. Comput. 2018, 11, 1–36. [Google Scholar] [CrossRef]
- Arismendy, L.; Cárdenas, C.; Gómez, D.; Maturana, A.; Mejía, R.; Quintero, M.C.G. Intelligent System for the Predictive Analysis of an Industrial Wastewater Treatment Process. Sustainability 2020, 12, 6348. [Google Scholar] [CrossRef]
- Wang, D.; Thunéll, S.; Lindberg, U.; Jiang, L.; Trygg, J.; Tysklind, M.; Souihi, N. A Machine Learning Framework to Improve Effluent Quality Control in Wastewater Treatment Plants. Sci. Total Environ. 2021, 784, 147138. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Y.; Lian, Q.; Yin, H.; Peng, J.; Sheng, M.; Wang, Y. Enhancing Real-Time Prediction of Effluent Water Quality of Wastewater Treatment Plant Based on Improved Feedforward Neural Network Coupled with Optimization Algorithm. Water 2022, 14, 1053. [Google Scholar] [CrossRef]
Variables | |||||||
---|---|---|---|---|---|---|---|
Values | 69.5 | 202.32 | 28.17 | 31.56 | 6.95 | 10.59 | 18,446 |
Units | g COD·m−3 | g COD·m−3 | g COD·m−3 | g N·m−3 | g N·m−3 | g N·m−3 | m3/d |
Control Parameters | ||||
---|---|---|---|---|
Plant controllers | 294 | 0.0069 | 4.7 | 0.066 |
Model controllers | 122.8 | 0.0035 | 0.024 |
Variables | ||||||
---|---|---|---|---|---|---|
Plant SS values | 0.5 | 0.81 | 4 | 34,460.9 | 153.81 | 2872.2 |
Units | g N·m−3 | g COD·m−3 | g N·m−3 | m3/d | 1/d | kWh/d |
Variables | ||||||
---|---|---|---|---|---|---|
Model SS values | 0.5 | 0.76 | 4 | 20,321.5 | 159.32 | 2913.6 |
Units | g N·m−3 | g COD·m−3 | g N·m−3 | m3/d | 1/d | kWh/d |
Variables | ||||||
---|---|---|---|---|---|---|
Plant SS values | 0.5 | 0.76 | 4.65 | 38,636.3 | 151.53 | 2848.4 |
Units | g N·m−3 | g COD·m−3 | g N·m−3 | m3/d | 1/d | kWh/d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, A.; Srinivasan, B.; Bonvin, D. Real-Time Optimization of Wastewater Treatment Plants via Constraint Adaptation. Processes 2022, 10, 990. https://doi.org/10.3390/pr10050990
Haq A, Srinivasan B, Bonvin D. Real-Time Optimization of Wastewater Treatment Plants via Constraint Adaptation. Processes. 2022; 10(5):990. https://doi.org/10.3390/pr10050990
Chicago/Turabian StyleHaq, Ahteshamul, Babji Srinivasan, and Dominique Bonvin. 2022. "Real-Time Optimization of Wastewater Treatment Plants via Constraint Adaptation" Processes 10, no. 5: 990. https://doi.org/10.3390/pr10050990
APA StyleHaq, A., Srinivasan, B., & Bonvin, D. (2022). Real-Time Optimization of Wastewater Treatment Plants via Constraint Adaptation. Processes, 10(5), 990. https://doi.org/10.3390/pr10050990