Modification of Quaternary Clays Using Recycled Fines from Construction and Demolition Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quaternary Clays
2.2. Recycled Gypsum
2.3. Concrete Powder
2.4. Mix Design
2.5. Sample Preparation and Test Methods
2.5.1. XRD Analysis
2.5.2. Measurement of Potential of Hydrogen (pH)
2.5.3. Determination of Optimum Water Content
2.5.4. Direct Shear Test
2.5.5. The Oedometer Test
2.5.6. Unconfined Compressive Strength Test
3. Results and Discussion
3.1. Reactivity Potential
3.2. Physical Properties
3.3. Engineering Properties
3.4. Oedometer Modulus
3.5. Unconfined Compressive Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A | Amphiboles |
B | Bassanite |
BDS | Bulgarian State Standard |
c | Cohesion |
C-A-H | Calcium aluminate hydrate |
C-A-S-H | Calcium aluminate silicate hydrate |
C-CH | Calcite and portlandite |
CDW | Construction and demolition waste |
CH | Calcium hydroxide |
Cl | Clay |
C-S-H | Calcium silicates hydrate |
D | Dolomite |
DST | Direct shear tests |
E | Ettringite |
EN | European Standards |
Eoed | Oedometric modulus |
ϕ | Friction angle |
F | Feldspars |
G | Gypsum |
GHG | Greenhouse gases |
Ip | Plasticity index |
ISO | International Organization for Standardization |
M-IM | Mica, illite, montmorillonite |
n | Porosity |
OMC | Optimum moisture content |
pH | Potential of hydrogen |
Q | Quartz |
r | Bulk density |
rd | Dry density |
rd,max | Maximum dry density |
rS | Specific (true) density |
SiCl | Silty clay |
T | Tobermorite |
UCS | Unconfined compression strength |
WCP | Waste concrete powder |
WL | Liquid limit |
Wp | Plastic limit |
XRD | X-ray diffraction phase analysis |
ϕ | Internal friction angle |
References
- Donkova, Y.A. Quaternary Sediments in the Sofia Basin and their Connection with the Holocene Faults. Ph.D. Thesis, Bulgarian Academy of Sciences, Institute of Geology, Sofia, Bulgaria, 2018. (In Bulgarian). [Google Scholar]
- Ministry of Regional Development and Public Works of Bulgaria. Technical Specification of the Road Infrastructure Agency; Ministry of Regional Development and Public Works: Sofia, Bulgaria, 2014. [Google Scholar]
- Pu, S.; Zhu, Z.; Huo, W. Evaluation of engineering properties and environmental effect of recycled gypsum stabilized soil in geotechnical engineering: A comprehensive review. Resour. Conserv. Recycl. 2021, 174, 105780. [Google Scholar] [CrossRef]
- Wu, J.; Deng, Y.; Zhang, G.; Zhou, A.; Tan, Y.; Xiao, H.; Zheng, Q. A Generic Framework of Unifying Industrial By-products for Soil Stabilization. J. Clean. Prod. 2021, 321, 128920. [Google Scholar] [CrossRef]
- Bayraktar, O.Y.; Eshtewı, S.S.T.; Benli, A.; Kaplan, G.; Toklu, K.; Gunek, F. The impact of RCA and fly ash on the mechanical and durability properties of polypropylene fibre-reinforced concrete exposed to freeze-thaw cycles and MgSO4 with ANN modeling. Constr. Build. Mater. 2021, 313, 125508. [Google Scholar] [CrossRef]
- Rosado, L.P.; Vitale, P.; Penteado, C.S.G.; Arena, U. Life cycle assessment of construction and demolition waste management in a large area of São Paulo State, Brazil. Waste Manag. 2019, 85, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environment and waters of Republic of Bulgaria. National Strategic Plan on CDW Management 2010–2020; Ministry of Environment and Waters: Sofia, Bulgaria, 2011. [Google Scholar]
- Republic of Bulgaria, National Statistical Institute. National Statistical Institute. Available online: https://nsi.bg/bg/content/2558/%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D1%83%D0%B2%D0%B0%D0%BD%D0%B8-%D0%BE%D1%82%D0%BF%D0%B0%D0%B4%D1%8A%D1%86%D0%B8-%D0%BE%D1%82-%D0%B4%D0%B5%D0%B9%D0%BD%D0%BE%D1%81%D1%82%D1%82%D0%B0-%D0%BF%D0%BE-%D0%B8%D0%BA%D0%BE%D0%BD%D0%BE%D0 (accessed on 8 May 2022).
- Petrov, B.Y.; Zaharieva, R.A. Recycling of concrete construction and demolition waste in alternative. IOP Conf. Ser. Mater. Sci. Eng. 2020, 951, 012008. [Google Scholar] [CrossRef]
- He, Z.-H.; Han, X.-D.; Zhang, M.-Y.; Yuan, Q.; Shi, J.-Y.; Zhan, P.-M. A novel development of green UHPC containing waste concrete powder derived from construction and demolition waste. Powder Technol. 2021, 398, 117075. [Google Scholar] [CrossRef]
- Shao, J.; Gao, J.; Zhao, Y.; Chen, X. Study on the pozzolanic reaction of clay brick powder in blended cement pastes. Constr. Build. Mater. 2019, 213, 209–215. [Google Scholar] [CrossRef]
- Barman, D.; Dash, S.K. Stabilization of expansive soils using chemical additives: A review. J. Rock Mech. Geotech. Eng. 2022. [Google Scholar] [CrossRef]
- Kancheva, Y.D.; Zaharieva, R.A. Recycling of concrete construction and demolition waste in alternative binders: Part 2—Environmental footprint. IOP Conf. Ser. Mater. Sci. Eng. 2020, 951, 012009. [Google Scholar] [CrossRef]
- He, Z.; Zhu, X.; Wang, J.; Mu, M.; Wang, Y. Comparison of CO2 emissions from OPC and recycled cement production. Constr. Build. Mater. 2019, 211, 965–973. [Google Scholar] [CrossRef]
- Evlogiev, D.; Zaharieva, R. Recovery of gypsum based construction and demolition waste. In Proceedings of the XXI International Scientific Conference on Construction and Arhitecture VSU’2021, Sofia, Bulgaria, 14–16 October 2021. [Google Scholar]
- Kuttah, D.; Sato, K. Review on the effect of gypsum content on soil behavior. Transp. Geotech. 2015, 4, 28–37. [Google Scholar] [CrossRef]
- Ahmed, A. Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite. Appl. Clay Sci. 2015, 104, 27–35. [Google Scholar] [CrossRef]
- Ahmed, A.; Ugai, K. Environmental effects on durability of soil stabilized with recycled gypsum. Cold Reg. Sci. Technol. 2011, 66, 84–92. [Google Scholar] [CrossRef]
- BDS EN ISO 17892-2:2015; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 2: Determination of Bulk Density. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2015.
- BDS EN ISO 17892-3:2016; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 3: Determination of Particle Density. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2016.
- BDS EN ISO 17892-1:2015; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 1: Determination of Water Content. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2015.
- BDS EN ISO 17892-12:2019; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 12: Determination of Liquid and Plastic Limits. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2019.
- BDS EN ISO 17892-4:2016; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 4: Determination of Particle Size Distribution. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2016.
- BDS EN 1097-2:2020; Tests for Mechanical and Physical Properties of Aggregates—Part 2: Methods for the Determination of Resistance to Fragmentation. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2020.
- BDS EN 933-1:2012; Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2012.
- BDS EN 1097-6:2022; Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2022.
- BDS EN 1097-1:2011; Tests for Mechanical and Physical Properties of Aggregates—Part 1: Determination of the Resistance to Wear (Micro-Deval). Bulgarian Institute for Standardization: Sofia, Bulgaria, 2011.
- Grigorova, E.; Tzvetkov, P.; Todorova, S.; Markov, P.; Spassov, T. Facilitated Synthesis of Mg2Ni Based Composites with Attractive Hydrogen Sorption Properties. Materials 2021, 14, 1936. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Ugai, K.; Kamei, T. Laboratory and Field Evaluations of Recycled Gypsum as a Stabilizer Agent in Embankment Construction. Soils Found. 2011, 51, 975–990. [Google Scholar] [CrossRef] [Green Version]
- BDS EN 13286-2:2011; Unbound and Hydraulically Bond Mixtures—Part 2: Test methods for Laboratory Reference Density and Water Content—Proctor Compaction. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2011.
- BDS EN ISO 17892-10:2019; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 10: Direct Shear Tests. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2019.
- BDS EN ISO 17892-5:2017; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 5: Incremental Loading Oedometer Test. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2017.
- BDS EN 13286-41:2021; 2021 Unbound and Hydraulically Bound Mixtures Test Method for the Determination of the Compressive Strength of Hydraulically Bound Mixtures. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2021.
- Sun, Z.; Bian, H.; Wang, C.; Zhang, S.; Qiu, X. Direct Shear Test of Silty Clay Based on Corrected Calculating Model. In Proceedings of the 2019 International Conference on Oil & Gas Engineering and Geological Sciences, Dalian, China, 28–29 September 2019. [Google Scholar] [CrossRef]
No | Parameter | Unit | Method | Value |
---|---|---|---|---|
1 | Bulk density, ρ | (Mg/m3) | BDS EN ISO 17892-2:2015 [19] | 2.03 |
2 | Dry density, ρd | (Mg/m3) | BDS EN ISO 17892-2:2015 [19] | 1.71 |
3 | Specific density, ρS | (Mg/m3) | BDS EN ISO 17892-3:2016 [20] | 2.65 |
4 | Porosity, n | (%) | Calculation based on parameters determined as per BDS EN ISO 17892-1, 2, 3 [19,20,21] | 35.6 |
5 | Plastic limit, Wp | (%) | BDS EN ISO 17892-12:2019 [22] | 23.1 |
6 | Liquid limit, WL | (%) | BDS EN ISO 17892-12:2019 [22] | 42.5 |
7 | Plasticity index, Ip | (%) | BDS EN ISO 17892-12:2019 [22] | 19.5 |
8 | Passing sieve 0.063 mm | % | BDS EN ISO 17892-4:2016 [23] | 58.5 |
No | Mix Designation | Quaternary Clays, %wt | Recycled Gypsum, %wt | WCP, %wt |
---|---|---|---|---|
1 | Cl100 | 100 | 0 | 0 |
2 | Cl95-G5 | 95 | 5 | 0 |
3 | Cl90-G10 | 90 | 10 | 0 |
4 | Cl80-G20 | 80 | 20 | 0 |
5 | Cl85-G10-WCP5 | 85 | 10 | 5 |
6 | Cl90-G5-WCP5 | 90 | 5 | 5 |
7 | Cl95-WCP5 | 95 | 0 | 5 |
Ingredient/Mix | pH, H+ |
---|---|
Quaternary clay (Cl100) | 7.77 ± 0.21 |
Gypsum | 7.32 ± 0.24 |
WCP | 11.78 ± 0.20 |
Water | 6.02 ± 0.12 |
Cl95-G5 | 7.13 ± 0.16 |
Cl90-G10 | 7.10 ± 0.22 |
Cl80-G20 | 7.17 ± 0.16 |
Cl85-G10-WCP5 | 9.16 ± 0.21 |
Cl90-G5-WCP5 | 9.33 ± 0.15 |
Cl95-WCP5 | 9.74 ± 0.13 |
Components/Mixes | Main Identified Phases, %wt | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q | F | A | M-IM | D | B | G | T | C-CH | E | |
Recycled Gypsum | - | - | - | - | - | 3.8 | 92.3 | - | 3.9 | - |
WCP | 28.3 | 33 | 0.0 | 9.9 | 15.0 | - | - | 10.1 | 4.2 | - |
Cl100 | 43.9 | 41 | 7.4 | 7.8 | - | - | - | - | - | - |
Cl95-G5 | 44.1 | 34 | 11.2 | 5.2 | - | - | 5.6 | - | - | - |
Cl90-G10 | 30.2 | 47 | 4.6 | 5.2 | - | - | 12.5 | - | - | - |
Cl80-G20 | 24.9 | 34 | 8.9 | 7.5 | - | - | 24.7 | - | - | - |
Cl85-G10-WCP5 | 38.0 | 24 | 5.7 | 14.5 | - | - | 13.1 | 3.4 | - | 1.3 |
Cl90-G5-WCP5 | 46.6 | 27 | 9.0 | 8.2 | - | - | 5.0 | 2.8 | - | 1.3 |
Cl95-WCP5 | 50.7 | 33 | 4.1 | 8.1 | 2.1 | - | - | 0.8 | 1.0 | - |
No | Characteristic | Method | Cl100 | Cl95-G5 | Cl90-G10 | Cl80-G20 |
---|---|---|---|---|---|---|
1 | Specific density, ρS,max, Mg/m3 | BDS EN ISO 17892-3:2016 [20] | 2.65 | 2.63 | 2.61 | 2.57 |
2 | Maximum dry density, ρd,max, Mg/m3 | BDS EN 13286-2:2011 [30] | 1.68 | 1.64 | 1.62 | 1.53 |
3 | OMC, Wopt, % | BDS EN 13286-2:2011 [30] | 17.1 | 17.8 | 19.4 | 22.0 |
4 | Porosity, n, % | Calculation based on parameters determined as per BDS EN ISO 17892-1, 2, 3 [19,20,21] | 38.8 | 39.1 | 41.1 | 39.7 |
5 | Internal friction angle, ϕ, ° | BDS EN ISO 17892-10:2019 [31] | 29 | 27 | 27 | 31 |
6 | Cohesion, c, kPa | BDS EN ISO 17892-10:2019 [31] | 34 | 61 | 79 | 60 |
7 | Oedometric modulus, Eoed100, kPa | BDS EN ISO 17892-5:2017 [32] | 3700 | 4000 | 4100 | 4800 |
8 | Oedometric modulus, E oed200, kPa | BDS EN ISO 17892-5:2017 [32] | 10,843 | 9090 | 10,748 | 15,171 |
9 | Oedometric modulus, E oed300, kPa | BDS EN ISO 17892-5:2017 [32] | 17,461 | 13,796 | 17,030 | 23,649 |
10 | UCS, kPa | BDS EN 13286-41:2021 [33] | 224 | 236 | 210 | 177 |
№ | Characteristic | Method | Cl100 | Cl85-G10-WCP5 | Cl90-G5-WCP5 | Cl95-WCP5 |
---|---|---|---|---|---|---|
1 | Specific density, rS,max, Mg/m3 | BDS EN ISO 17892-3:2016 [20] | 2.65 | 2.61 | 2.63 | 2.65 |
2 | Maximum dry density, rd,max, Mg/m3 | BDS EN 13286-2:2011 [30] | 1.68 | 1.62 | 1.66 | 1.69 |
3 | OMC Wopt, % | BDS EN 13286-2:2011 [30] | 17.1 | 20.5 | 19.5 | 18.3 |
4 | Porosity, n, % | Calculation based on parameters determined as per BDS EN ISO 17892-1, 2, 3 [19,20,21] | 38.8 | 40.5 | 31.9 | 26.1 |
5 | Internal friction angle, ϕ, ° | BDS EN ISO 17892-10:2019 [31] | 29 | 27 | 24 | 28 |
6 | Cohesion, c, kPa | BDS EN ISO 17892-10:2019 [31] | 34 | 78 | 96 | 82 |
7 | Oedometric modulus, Eoed100, kPa | BDS EN ISO 17892-5:2017 [32] | 3716 | 3920 | 5220 | 5679 |
8 | Oedometric modulus, E oed200, kPa | BDS EN ISO 17892-5:2017 [32] | 10,843 | 11,144 | 13,796 | 11,128 |
9 | Oedometric modulus, E oed300, kPa | BDS EN ISO 17892-5:2017 [32] | 17,461 | 17,082 | 20,091 | 14,863 |
10 | UCS, kPa | BDS EN 13286-41:2021 [33] | 224 | 305 | 309 | 331 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaharieva, R.; Evlogiev, D.; Kerenchev, N.; Stanimirova, T. Modification of Quaternary Clays Using Recycled Fines from Construction and Demolition Waste. Processes 2022, 10, 1062. https://doi.org/10.3390/pr10061062
Zaharieva R, Evlogiev D, Kerenchev N, Stanimirova T. Modification of Quaternary Clays Using Recycled Fines from Construction and Demolition Waste. Processes. 2022; 10(6):1062. https://doi.org/10.3390/pr10061062
Chicago/Turabian StyleZaharieva, Roumiana, Daniel Evlogiev, Nikolay Kerenchev, and Tsveta Stanimirova. 2022. "Modification of Quaternary Clays Using Recycled Fines from Construction and Demolition Waste" Processes 10, no. 6: 1062. https://doi.org/10.3390/pr10061062
APA StyleZaharieva, R., Evlogiev, D., Kerenchev, N., & Stanimirova, T. (2022). Modification of Quaternary Clays Using Recycled Fines from Construction and Demolition Waste. Processes, 10(6), 1062. https://doi.org/10.3390/pr10061062