Extraction of Polyphenols from Unripened Coffee (Coffea Arabica) Residues and Use as a Natural Coagulant for Removing Turbidity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Chemical Substances
2.2. Ultrasound Assisted Extraction
2.3. Determination of Total Phenols of the Extract
2.4. Sample Water
2.5. Coagulation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Extraction of Polyphenols
3.2. Effect of pH on the Removal of Turbidity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Briseño, H.; Rubiano, J. El servicio de agua potable para uso residencial en Colombia. Rev. UDCA Actual. Divulg. Científica 2018, 21, 235–242. [Google Scholar]
- Saritha, V.; Karnena, M.K.; Dwarapureddi, B.K. “Exploring natural coagulants as impending alternatives towards sustainable water clarification”—A comparative studies of natural coagulants with alum. J. Water Process Eng. 2019, 32, 100982. [Google Scholar] [CrossRef]
- Antov, M.G.; Vasić, V.M.; Prodanović, J.M.; Šćiban, M.B.; Đorđević, T.R.; Kukić, D.V.; Milošević, M.M. Common oak (Quercus robur) acorn as a source of natural coagulants for water turbidity removal. Ind. Crops Prod. 2018, 117, 340–346. [Google Scholar] [CrossRef]
- Oladoja, N.A. Headway on natural polymeric coagulants in water and wastewater treatment operations. J. Water Process Eng. 2015, 6, 174–192. [Google Scholar] [CrossRef]
- Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment; IWA Publishing: London, UK, 2016. [Google Scholar]
- Saleem, M.; Bachmann, R.T. A contemporary review on plant-based coagulants for applications in water treatment. J. Ind. Eng. Chem. 2019, 72, 281–297. [Google Scholar] [CrossRef]
- Chen, Y.S.; Ooi, C.W.; Show, P.L.; Hoe, B.C.; Chai, W.S.; Chiu, C.Y.; Wang, S.S.S.; Chang, Y.K. Removal of Ionic Dyes by Nanofiber Membrane Functionalized with Chitosan and Egg White Proteins: Membrane Preparation and Adsorption Efficiency. Membranes 2022, 12, 63. [Google Scholar] [CrossRef]
- Choy, S.Y.; Prasad, K.N.; Wu, T.Y.; Raghunandan, M.E.; Ramanan, R.N. Performance of conventional starches as natural coagulants for turbidity removal. Ecol. Eng. 2016, 94, 352–364. [Google Scholar] [CrossRef]
- Maroušek, J.; Stehel, V.; Vochozka, M.; Kolář, L.; Maroušková, A.; Strunecký, O.; Peterka, J.; Kopecký, M.; Shreedhar, S. Ferrous sludge from water clarification: Changes in waste management practices advisable. J. Clean. Prod. 2019, 218, 459–464. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsäläinen, M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef]
- Villaseñor-Basulto, D.L.; Astudillo-Sánchez, P.D.; del Real-Olvera, J.; Bandala, E.R. Wastewater treatment using Moringa oleifera Lam seeds: A review. J. Water Process Eng. 2018, 23, 151–164. [Google Scholar] [CrossRef]
- Chaibakhsh, N.; Ahmadi, N.; Zanjanchi, M.A. Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Ind. Crops Prod. 2014, 61, 169–175. [Google Scholar] [CrossRef]
- Oladoja, N.A. Advances in the quest for substitute for synthetic organic polyelectrolytes as coagulant aid in water and wastewater treatment operations. Sustain. Chem. Pharm. 2016, 3, 47–58. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W.; Benamor, A.; Hilal, N. Chitosan as natural coagulant in hybrid coagulation-nanofiltration membrane process for water treatment. J. Environ. Chem. Eng. 2016, 4, 4857–4862. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.R.; Kim, E.J.; Kim, Y.M.; Murugesan, K.; Kim, J.H.; Chang, Y.S. Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes. Chemosphere 2009, 77, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Heredia, J.; Sánchez-Martín, J.; Dávila-Acedo, M.A. Optimization of the synthesis of a new coagulant from a tannin extract. J. Hazard. Mater. 2011, 186, 1704–1712. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Fugate, E.; Oyanedel, V.; Smith, J.; Zimmerman, J. Toward Understanding the Efficacy and Mechanism of Opuntia spp. as a Natural Coagulant for Potential Application in Water Treatment. Environ. Sci. Technol. 2008, 42, 4274–4279. [Google Scholar] [CrossRef]
- Beltrán-Heredia, J.; Sánchez-Martín, J. Municipal wastewater treatment by modified tannin flocculant agent. Desalination 2009, 249, 353–358. [Google Scholar] [CrossRef]
- Hameed, Y.T.; Idris, A.; Hussain, S.A.; Abdullah, N. A tannin-based agent for coagulation and flocculation of municipal wastewater: Chemical composition, performance assessment compared to Polyaluminum chloride, and application in a pilot plant. J. Environ. Manag. 2016, 184, 494–503. [Google Scholar] [CrossRef]
- Suja, F.; Hussain, S.A.; Abdullah, N.; Man, H.C.; Idris, A.; Hameed, Y.T. A tannin–based agent for coagulation and flocculation of municipal wastewater as a pretreatment for biofilm process. J. Clean. Prod. 2018, 182, 198–205. [Google Scholar]
- Ibrahim, A.; Yaser, A.Z. Colour removal from biologically treated landfill leachate with tannin-based coagulant. J. Environ. Chem. Eng. 2019, 7, 103483. [Google Scholar] [CrossRef]
- Panusa, A.; Petrucci, R.; Lavecchia, R.; Zuorro, A. UHPLC-PDA-ESI-TOF/MS metabolic profiling and antioxidant capacity of arabica and robusta coffee silverskin: Antioxidants vs phytotoxins. Food Res. Int. 2017, 99, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.; Mullen, W.; Nemzer, B.; Combet, E.; Stalmach, A. Polyphenolic and Hydroxycinnamate Contents of Whole Coffee Fruits from China, India, and Mexico. J. Agric. Food Chem. 2013, 61, 5298–5309. [Google Scholar]
- Farah, A.; Donangelo, C.M. Phenolic compounds in coffee—Minireview. Braz. J. Plant Physiol. 2006, 18, 23–36. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Ramirez, M.J.; Orrego, C.E.; Teixeira, J.A.; Mussatto, S.I. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem. 2017, 237, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanakis, C.M. Handbook of Coffee Processing By-Products: Sustainable Applications; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Mourtzinos, I.; Goula, A. Polyphenols in Agricultural Byproducts and Food Waste. In Polyphenols in Plants; Academic Press: Cambridge, MA, USA, 2019; pp. 23–44. [Google Scholar]
- Galanakis, C.M. Food Waste Recovery: Prospects and Opportunities. In Sustainable Food Systems from Agriculture to Industry; Academic Press: Cambridge, MA, USA, 2018; pp. 401–419. [Google Scholar]
- Cuesta-Parra, D.; Correa-Mahecha, F. Obtención de fenoles a partir de granos verdes de café. Rev. Ion 2018, 31, 31–35. [Google Scholar] [CrossRef]
- Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Hussain, S.; Ghouri, A.S.; Ahmad, A. Pine cone extract as natural coagulant for purification of turbid water. Heliyon 2019, 5, e01420. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Yu, H.; Gao, B.; Rong, H.; Dong, H.; Ma, D.; Li, R.; Zhao, S. Coagulation performance and floc characteristics of aluminum sulfate with cationic polyamidine as coagulant aid for kaolin-humic acid treatment. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 476–484. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, H.; Qu, J. Effect of pH on the aluminum salts hydrolysis during coagulation process: Formation and decomposition of polymeric aluminum species. J. Colloid Interface Sci. 2009, 330, 105–112. [Google Scholar] [CrossRef]
- Korolev, V.A.; Nesterov, D.S. Regulation of clay particles charge for design of protective electrokinetic barriers. J. Hazard. Mater. 2018, 358, 165–170. [Google Scholar] [CrossRef]
- Nordmark, B.A.; Przybycien, T.M.; Tilton, R.D. Effect of humic acids on the kaolin coagulation performance of Moringa oleifera proteins. J. Environ. Chem. Eng. 2018, 6, 4564–4572. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. Gas and Liquid Phase Acidity of Natural Antioxidants. J. Agric. Food Chem. 2006, 54, 3078–3085. [Google Scholar] [CrossRef] [PubMed]
- Bouaouine, O.; Bourven, I.; Khalil, F.; Baudu, M. Reuse of olive mill wastewater as a bioflocculant for water treatment processes. J. Clean. Prod. 2019, 246, 119031. [Google Scholar] [CrossRef]
- Taş, N.G.; Gökmen, V. Phenolic compounds in natural and roasted nuts and their skins: A brief review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- Katayon, S.; Noor, M.J.M.M.; Asma, M.; Ghani, L.A.A.; Thamer, A.M.; Azni, I.; Ahmad, J.; Khor, B.C.; Suleyman, A.M. Effects of storage conditions of Moringa oleifera seeds on its performance in coagulation. Bioresour. Technol. 2006, 97, 1455–1460. [Google Scholar] [CrossRef]
- Ramavandi, B. Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata. Water Resour. Ind. 2014, 6, 36–50. [Google Scholar] [CrossRef] [Green Version]
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Relationship between pH and turbidity removal | 0.00101906 | 1 | 0.00101906 | 2.42830421 | 0.15359017 |
Intra pH and turbidity removal ratio | 0.94753023 | 9 | 0.10528114 | 250.873741 | 1.0251 × 10−09 |
Pure error | 0.00377692 | 9 | 0.00041966 | ||
Cor total | 0.95232621 | 19 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Sample | 0.05208757 | 3 | 0.01736252 | 53.038351 | 1.6178 × 10−12 |
Polyphenol doses | 0.65558436 | 3 | 0.21852812 | 667.551032 | 6.4239 × 10−29 |
Relationship between pH and turbidity removal | 0.18626541 | 9 | 0.02069616 | 63.2217978 | 77438 × 10−18 |
Intra pH and turbidity removal ratio | 0.01047545 | 32 | 0.00032736 | ||
Cor total | 0.9044128 | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuesta-Parra, D.M.; Correa-Mahecha, F.; Rodríguez-Miranda, J.P.; Salcedo-Parra, O.J.; Rivas-Trujillo, E. Extraction of Polyphenols from Unripened Coffee (Coffea Arabica) Residues and Use as a Natural Coagulant for Removing Turbidity. Processes 2022, 10, 1105. https://doi.org/10.3390/pr10061105
Cuesta-Parra DM, Correa-Mahecha F, Rodríguez-Miranda JP, Salcedo-Parra OJ, Rivas-Trujillo E. Extraction of Polyphenols from Unripened Coffee (Coffea Arabica) Residues and Use as a Natural Coagulant for Removing Turbidity. Processes. 2022; 10(6):1105. https://doi.org/10.3390/pr10061105
Chicago/Turabian StyleCuesta-Parra, Diana Marcela, Felipe Correa-Mahecha, Juan Pablo Rodríguez-Miranda, Octavio José Salcedo-Parra, and Edwin Rivas-Trujillo. 2022. "Extraction of Polyphenols from Unripened Coffee (Coffea Arabica) Residues and Use as a Natural Coagulant for Removing Turbidity" Processes 10, no. 6: 1105. https://doi.org/10.3390/pr10061105
APA StyleCuesta-Parra, D. M., Correa-Mahecha, F., Rodríguez-Miranda, J. P., Salcedo-Parra, O. J., & Rivas-Trujillo, E. (2022). Extraction of Polyphenols from Unripened Coffee (Coffea Arabica) Residues and Use as a Natural Coagulant for Removing Turbidity. Processes, 10(6), 1105. https://doi.org/10.3390/pr10061105