
Citation: Heo, J.P.; Im, C.G.; Ryu,

K.H.; Sung, S.W.; Yoo, C.; Yang, D.R.

Shallow Fully Connected Neural

Network Training by Forcing

Linearization into Valid Region and

Balancing Training Rates. Processes

2022, 10, 1157. https://doi.org/

10.3390/pr10061157

Academic Editor: Jie Zhang

Received: 14 May 2022

Accepted: 7 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Shallow Fully Connected Neural Network Training by Forcing
Linearization into Valid Region and Balancing Training Rates
Jea Pil Heo 1, Chang Gyu Im 1, Kyung Hwan Ryu 2,*, Su Whan Sung 1,* , Changkyoo Yoo 3 and Dae Ryook Yang 4

1 Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Korea;
fheod@knu.ac.kr (J.P.H.); tgi1945@knu.ac.kr (C.G.I.)

2 Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Korea
3 Department of Environmental Engineering, Kyung Hee University, Yongin 17104, Korea; ckyoo@khu.ac.kr
4 Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea;

dryang@korea.ac.kr
* Correspondence: khryu@scnu.ac.kr (K.H.R.); suwhansung@knu.ac.kr (S.W.S.)

Abstract: A new supervisory training rule for a shallow fully connected neural network (SFCNN) is
proposed in this present study. The proposed training rule is developed based on local linearization
and analytical optimal solutions for linearized SFCNN. The cause of nonlinearity in neural network
training is analyzed, and it is removed by local linearization. The optimal solution for the linearized
SFCNN, which minimizes the cost function for the training, is analytically derived. Additionally, the
training efficiency and model accuracy of the trained SFCNN are improved by keeping estimates
within a valid range of the linearization. The superiority of the proposed approach is demonstrated
by applying the proposed training rule to the modeling of a typical nonlinear pH process, Boston
housing prices dataset, and automobile mileage per gallon dataset. The proposed training rule shows
the smallest modeling error and the smallest iteration number required for convergence compared
with several previous approaches from the literature for the case study.

Keywords: neural network; training rule; local linearization; optimal solution; pH system modeling

1. Introduction

Artificial neural networks (ANNs) have been widely used in many research areas [1–18].
One of the most popular ANNs for modeling dynamic systems is the shallow fully con-
nected neural network (SFCNN). In theory, it is capable of describing any complex nonlinear
dynamics accurately using a sufficient number of hidden nodes [15]. Despite its capability,
its application is limited by a huge computational load and convergence problems during
supervisory training. Many researchers have developed a variety of supervisory train-
ing rules using gradient descent, Levenberg–Marquardt, quasi-Newton, and conjugate
direction methods [16–21].

Gradient descent is one of the most popular algorithms for performing optimizations
and is currently the most common method of training neural networks due to its effective-
ness in dealing with enormous data. However, it inherently requires a massive number of
learning iterations and has disadvantages in that it is vulnerable to getting stuck in saddle
points under non-convex optimization problems [19,22]. Some algorithms were proposed
to deal with this problem using momentum and adaptive learning rate, including the
Nesterov accelerated gradient (NAG) [20], root mean square propagation (RMSProp), and
adaptive moment estimation (ADAM) [21]. Although these approaches are widely used
in neural network training and have proven their performance, their slow convergence
remains a challenge for real-time applications [23]. An optimization method based on
Hessian of training loss (e.g., Newton’s method and the Levenberg–Marquardt method)
is free from slow convergence from massive iteration and getting stuck in a saddle point.
Nevertheless, difficulty in computing exact Hessian eigenvalues of a large size model [24]
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places a method outside the mainstream of neural network training. In order to get over
this hurdle, research teams proposed a diverse study focusing on computing a limited
number of eigenvalues [25–27] and estimating information (i.e., curvature, sharpness, etc.)
in the absence of sufficient information about an eigenvalue spectrum [28–34]. In our
previous study, a training method to reduce the searching space as much as the number
of the output weights in the high-dimensional nonlinear optimization problem has been
proposed to alleviate the computational load [35]. Although this approach shows remark-
able improvement compared with full-dimensional optimization approaches, much room
remains to be improved as it cannot analytically estimate the optimal input weights.

In this paper, an improved supervisory training rule for an SFCNN using local lin-
earization and the analytic optimal solution of a linearized SFCNN is proposed. First, the
cause of nonlinearity in neural network training is analyzed, and it is locally linearized.
Next, the optimal solution is derived that minimizes the cost function for training. A new
cost function is proposed to keep the estimate within a valid domain of linearization. A new
training rule is finally derived based on the derived optimal solution. The performance of
the proposed approach is verified by applying the proposed training rule to the modeling
of a typical nonlinear pH process, Boston housing prices dataset, and automobile mileage
per gallon dataset. The proposed method is compared with four widely used methods:
the gradient descent with momentum, stochastic gradient descent, Levenberg–Marquardt
methods, and adaptive moment estimation. From the simulation results, it can be con-
firmed that the iteration number and the modeling error are the smallest when compared
to the existing approaches.

The remaining contents of this manuscript are represented as follows: In Section 2,
the proposed training method is introduced and derived based on local linearization
and analytical optimal solution. Section 3 presents the performance of the proposed
method compared with previous methods, including the gradient descent with momentum,
the stochastic gradient descent, the adaptive momentum algorithm, and the Levenberg–
Marquardt method. Finally, the conclusion and further extension of the proposed method
are discussed in Section 4.

2. Proposed Supervisory Training Rule for SFCNN

Let us consider the SFCNN structure represented in Figure 1. The neural network is
mathematically formulated as follows:

ẑj(q) =
m

∑
i=1

νj,iui(q), j = 1, 2, 3, · · · , l (1)

ĥj(q) =
1

1 + exp(−αẑj(q))
, j = 1, 2, 3, · · · , l (2)

ŷk(q) =
l

∑
j=1

wk,j ĥj(q), k = 1, 2, 3, · · · , n (3)

where νj,i and wk,j are the input weight and the output weight, respectively; ĥj(q) and ŷk(q)
denote the output of the j-th hidden node and the k-th output node, respectively; ui(q) is the
input of the i-th input node; q donates the q-th sampling of the process input and output.

We will now analyze the cause of the nonlinearity of the neural network. Note that
ẑj(q) of Equation (1) is linear with respect to the input weight. Meanwhile, ĥj(q) and
ŷk(q) of Equations (2) and (3) are nonlinear with respect to the input weight. It now
becomes apparent that the cause of the nonlinearity originates from the activation function
of Equation (2). Therefore, it can be concluded that the optimal weights for the training can
be analytically estimated if the activation function and the output layer are linearized.
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Figure 1. The considered SFCNN structure.

2.1. Derivation of the Proposed Training Rule

In the present study, the following linearization for the activation function is adopted for
the training. It is linearized at the estimates of the previous iteration in the supervisory training.

ĥj(q) ≈ ĥlin
j (q) =

dĥj

dẑj

∣∣∣∣∣
ẑj(q)=ẑiter−1

j (q)

(
ẑj(q)− ẑiter−1

j (q)
)
+ ĥiter−1

j (q) (4)

where a superscript iter is an iteration number in the supervisory training and the super-
script lin means a linearized function. The output layer is linearized by Equation (5):

ŷk(q) ≈ ŷlin
k (q) =

l

∑
j=1

((
wk,j − witer−1

k,j

)
ĥiter−1

j (q) + witer−1
k,j

(
ĥj(q)− ĥiter−1

j (q)
)
+ witer−1

k,j ĥiter−1
j (q)

)
(5)

In addition, the following cost function of the multi-objective quadratic programming
problem is used for supervisory training in this research. The proposed method will
estimate the input and output weights at each iteration number of iter by minimizing the
cost function based on the linearized SFCNN from the previous iteration number of iter− 1.

min
vj,i ,wj,i

Q = 0.5
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)2

+ 0.5Rh
N
∑

q=1

l
∑

j=1

(
ĥj(q)− ĥlin

j (q)
)2

+0.5Ry
N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)2

+ 0.5Rv
l

∑
j=1

m
∑

i=1

(
viter−1

j,i − vj,i

)2

+0.5Rw
n
∑

k=1

l
∑

j=1

(
witer−1

k,j − wk,j

)2

(6)

Here, yk(q) is the measurement of the process output, and ŷlin
k (q) is the model output

of the linearized SFCNN; ĥj(q) and ŷk(q) denote the output of the hidden node and that
of the output node of the SFCNN; ĥlin

j (q), ŷlin
k (q) denote the output of the hidden node

and that of the output node of the linearized SFCNN. The constants, Rh, Ry, Rv, and Rw
to balance the five terms of the right-hand side of the cost function are updated at each
iteration, as will be discussed later.

It should be noted that a number of important terms for more efficient training are
included in the cost function as follows: The first term on the right-hand side is the square
modeling error between the measurement of the process output(yk(q)) and the SFCNN
model output(ŷlin

k (q)). Most previous training methods train the SFCNN by minimizing
the modeling error term.

The second and third terms are to minimize the distance between the signals of the
SFCNN (ĥj(q) and ŷk(q)) and those of the linearized SFCNN (ĥlin

j (q) and ŷlin
k (q)) to keep
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the training within the valid range of the linearization. If the cost function does not include
the second and the third term, the weights of the SFCNN obtained by minimizing the cost
function would be placed outside of the valid range of the linearization, causing problems,
such as the divergence and saturation phenomenon of the activation functions during
the training.

The fourth and fifth terms are to minimize the distances between the optimal weights
of iter and the weights of iter− 1 to keep the training from changing the input and output
weights too much. These terms play an important role in preventing singularity problems
during the training using the Hessian matrix. In most cases, the number of the weights of
the SFCNN is huge (equivalent to overparameterization) and easily causes a singularity
problem. Therefore, it is a must then to include the fourth and fifth terms in the cost
function. The previous training rule using the Levenberg–Marquardt optimization method,
known as the fastest method, adds a small diagonal matrix to the Hessian matrix to prevent
a singularity problem during the training. The addition of the small diagonal matrix is
equivalent to adding the fourth and fifth penalty terms of Equation (6) in the cost function,
keeping the estimates from changing too much [36,37]. However, the Levenberg–Marquardt
method has no direct instruments to guarantee the validity of the linearization because it
does not consider the terms, such as the second and the third penalty terms, during the
training. Thus, it cannot overcome the potential problem that training goes too far because
of an unacceptable accuracy of linearization. This is one of the significant differences
between the proposed method and previous approaches.

Note, however, that the optimal solution of Equation (6) can be estimated analytically
because the activation function and the output layer are linearized as Equations (4) and (5).
In order to derive the analytic solution, consider the following equations derived from
Equations (1) and (4)–(6).

∂Q
∂va,b

= −
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂va,b
− Rv

N
∑

q=1

l
∑

j=1

(
ĥj(q)− ĥlin

j (q)
) ∂ĥlin

j (q)
∂va,b

−Rw
N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂va,b
+ A

A = −Rv
l

∑
j=1

m
∑

i=1
(viter−1

j,i − vj,i) if j = a and i = b, A = 0 if j 6= a or i 6= b

(7)

∂Q
∂wa,b

= −
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂wa,b
− Rw

N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂wa,b
+ B

B = −Rw
n
∑

k=1

l
∑

j=1

(
witer−1

k,j − wk,j

)
if k = 1 and j− b, B = 0 if k 6= a or j 6= b

(8)

∂2Q
∂va,b∂vc,d

= −
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)

∂2 ŷlin
k (q)

∂va,b∂vc,d
+

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂va,b

∂ŷlin
k (q)

∂vc,d

−Rv
N
∑

q=1

l
∑

j=1

(
ĥj(q)− ĥlin

j (q)
) ∂ĥlin

j (q)
∂va,b∂vc,d

+ Rv
N
∑

q=1

l
∑

j=1

∂ĥlin
j (q)

∂va,b

∂ĥlin
j (q)

∂vc,d

−Rw
N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂va,b∂vc,d
+ Rw

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂va,b

∂ŷlin
k (q)

∂vc,d
+ C

C = Rv if k = a = c and j = b = d, D = 0 if k 6= c, k 6= c, j 6= b, or j 6= d

(9)

∂2Q
∂wa,b∂wc,d

= −
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)

∂2 ŷlin
k (q)

∂wa,b∂wc,d
+

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂wa,b

∂ŷlin
k (q)

∂wc,d

−Rw
N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂wa,b∂wc,d
+ Rw

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂wa,b

∂ŷlin
k (q)

∂wc,d
+ D

D = Rw if k = a = c and j = b = d, D = 0 if k 6= a, k 6= c, j 6= b, or j 6= d

(10)
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∂2Q
∂va,b∂wc,d

= −
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)

∂2 ŷlin
k (q)

∂va,b∂wc,d
+

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂va,b

∂ŷlin
k (q)

∂wc,d

−Rw
N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂va,b∂wc,d
+ Rw

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂va,b

∂ŷlin
k (q)

∂wc,d

(11)

∂ŷlin
k (q)

∂va,b
=

l

∑
j=1

witer−1
k,j

∂ĥlin
j (q)

∂va,b
(12)

∂ĥlin
j (q)

∂va,b
=

dĥj

dẑj

∣∣∣∣∣
ẑj(q)=ẑiter−1

j (q)

∂ẑlin
j (q)

∂va,b
(13)

∂ẑlin
j (q)

∂va,b
= ub(q) if j = a,

∂ẑlin
j (q)

∂va,b
= 0 if j 6= a (14)

∂ŷlin
k (q)

∂wa,b
=

ˆ
h

iter−1

b (q) if k = a,
∂ŷlin

k (q)
∂wa,b

= 0 if k 6= a (15)

From Equations (14) and (15), it is clear that the second derivatives of ẑlin
j (q) and

ŷlin
k (q) are zeros, which means that all the derivatives of Q more than twice are zeroes when

we consider Equations (7)–(13). Therefore, the cost function Q becomes a quadratic form in
terms of the input and output weights, resulting in the following quadratic equation:

∇Q = ∇2Q
∣∣∣
iter−1

(θ − θiter−1) + ∇Q|iter−1 (16)

where θ is a vector composed of the input and the output weights. The ∇Q and ∇2Q are
the gradient and Hessian matrix of Q, respectively. Finally, the analytic optimal solution
for the cost function of Equation (6) can be derived from Equation (16) by setting ∇Q = 0.
Then, the following training rule for the cost function is obtained from the optimal solution.

θiter = θiter−1 −
(
∇2Q

∣∣∣
iter−1

)−1
∇Q|iter−1 (17)

All the numerical problems in adopting the cost function of Equation (6) except
determining the constants of Rh, Ry, Rv, and Rw, are now solved.

2.2. Determining Hyperparameters

The constant, Rh, Ry, Rv, and Rw, are update each iteration by:

Rv,iter = Riter

i=iter
∑

i=0

(
‖∂Q/∂v‖2

F,iλ
iter−i

)
i=iter

∑
i=0

(
‖∂Q/∂w‖2

F,iλ
iter−i

)
+

i=iter
∑

i=0

(
‖∂Q/∂v‖2

F,iλ
iter−i

) (18)

Rw,iter = Riter

i=iter
∑

i=0

(
‖∂Q/∂w‖2

F,iλ
iter−i

)
i=iter

∑
i=0

(
‖∂Q/∂w‖2

F,iλ
iter−i

)
+

i=iter
∑

i=0

(
‖∂Q/∂v‖2

F,iλ
iter−i

) (19)

Rh,iter = Rv,iter (20)

Ry,iter = Rw,iter (21)

where ‖•‖F and λiter−i < 1 donate the Frobenius norm and a forgetting factor, respectively.
The subscript iter is the iteration number. Riter controls the overall speed of the convergence.
If Riter is larger, the convergence rate decreases and the robustness increases, and vice versa.
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In this research, Riter is updated as follows: if the modeling error of the iter iteration de-
creases compared to that of the iter−1 iteration, it decreases Riter by Riter = Riter−1/α, α > 1,
and updates θiter by Equation (17) to increase the convergence rate. Otherwise, it increases
Riter by Riter = βRiter−1, β > 1 to increase the robustness and does not update θiter as
θiter = θiter−1. This is similar to the Levenberg–Marquardt method. However, the update
of Rv,iter and Rw,iter is totally different. The update rule of Equations (18) and (19) play an
important role in equalizing the two gradients of the cost function with respect to the input
weights and the output weights. If the gradient for the output weights of ‖∂Q/∂w‖2

F is
bigger than the gradient for the input weights of ‖∂Q/∂v‖2

F, the proposed method adjusts
the weights toward equalizing the two gradients by penalizing the movements of the
output weights more than those of the input weights according to Equations (18)–(21). This
feature can improve the efficiency of the training significantly because unbalanced training
between the input weights and the output weights slows down the convergence rate and
causes saturation of the activation function, resulting in unacceptable local minima. This is
the other uniqueness of the proposed method. The previous training rules, such as gradient
descent and Levenberg–Marquardt, cannot incorporate this feature

3. Results and Discussions

In order to verify the performance of the proposed training method, the study per-
formed three case studies, including a highly nonlinear pH process, the Boston house price
and automobile mileage per gasoline datasets, which are widely used in neural network
training problems. In the present study, the performances of four different training methods,
including the gradient descent with momentum (GDM), the Levenberg–Marquardt (LM),
the stochastic gradient descent (SGD), and the adaptive momentum (ADAM) algorithms,
are compared with the proposed method. All the neural network pieces of training are
conducted via MATLAB. In the present study, the learning rate scheduler with an initial
learning rate of 0.001, provided in the MATLAB embedded function, is used for the GDM,
SGD, and ADAM methods. For the LM and the proposed methods, the initial damping
parameter (R0) of 1.0 and the update factors, α and β of 1.2 and 10.0 are used, respectively.

3.1. A pH Process

A pH process known as one of the highly nonlinear chemical processes is simulated
to demonstrate the advantages of the proposed method compared with previous ones.
Figure 2 shows the pH process where the weak acid influent of phosphoric acid (H3PO4)
is treated by the strong base of sodium hydroxide (NaOH) in a continuously stirred tank
reactor. Here, the feed flow rate (F) and the reactor working volume (V) are 2 L/min and
10 L, respectively. The total concentrations of the phosphoric acid in the influent stream
and the sodium hydroxide in the titrating stream are 0.05 and 0.2 mol/L, respectively. The
initial total ion concentrations of the phosphoric acid and the sodium hydroxide in the
reactor are 0.05 and 0.05 mol/L, respectively. For the detailed material balance equations
and an equilibrium, equations are referred to previously published works [38].

The process is perturbed by the titrating stream (u) of uniformly distributed random
noises between 0 and 1 L/min, and the sampling time is 1 min. This study assumes that
the obtained pH data is corrupted by measurement noises of ±0.05. The data used in the
present study is represented in Figure 3. Moreover, u and pH data before the 525th samples
are used for training, and data after the 525th samples are used for validation. The input
nodes of the neural network consist of u(t − 1), u(t − 2), pH(t − 1)/12, pH(t − 2)/12, and
one bias. The output of the neural network is pH(t)/12. The number of hidden nodes
is 3 or 7. The training of a pH process is performed for 20 cases with randomly generated
input data to verify the performance of the proposed method more reliably.
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Figures 3 and 4 show one of the training results. As illustrated in Figure 3c, the
proposed method has a higher modeling accuracy for the pH process under training and
validation results. The comparison result between the proposed method and previous
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methods is represented in Figure 4. As confirmed in Figure 4, the mean square error (MSE)
values of the previous approach (except the LM method) after 200 iterations are much bigger
than those of the proposed method after just 10 iterations. The study multiply performs
neural network training for the pH process in order to verify a reliable performance. The
results of training error, the number of iterations to converge, and the computation time
obtained from the repeated simulation (20 times with different datasets generated from
simulations with randomly generated input values) are summarized in Tables 1 and 2. As
enumerated in Table 1, the proposed method shows an outstanding modeling performance
when comparing the training errors after 100,000 iterations. In order to make a reasonable
comparison of the convergence rate between the diverse methods, this study compares
the number of iterations and computational time for the convergence of reaching within
±1.0% of the MSE value in Table 1. The required number of iterations and computation
time (except ADAM) is smaller than the previous methods, as represented in Table 2.
Despite the fact that ADAM can compute many iterations in a very short time, it has a very
poor modeling performance compared to the proposed method. Consequently, it can be
concluded that the proposed method provides the fastest convergence rate and the smallest
modeling error compared to all the previous approaches.
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Figure 4. Error convergences of the proposed training method and the previous methods (GDM:
gradient descent with momentum, SDG: stochastic gradient descent, ADAM: adaptive moment
estimation, and LM: Levenberg–Marquardt) up to 200 iterations: (a) with 3 hidden nodes and
(b) 7 hidden nodes.

Table 1. Training performance for the pH process after 100,000 iterations—training errors (mean
squared error; MSE).

Method
Hidden Layer with 3 Nodes Hidden Layer with 7 Nodes

Mean Standard
Deviation Mean Standard

Deviation

GDM 7.319 × 10−3 4.417 × 10−4 4.046 × 10−3 1.529 × 10−4

SGD 1.697 × 10−3 7.664 × 10−5 1.681 × 10−3 7.235 × 10−5

ADAM 1.668 × 10−3 7.142 × 10−5 1.668 × 10−3 7.142 × 10−5

LM 1.201 × 10−3 3.603 × 10−4 3.068 × 10−4 6.079 × 10−5

Proposed 1.140 × 10−3 3.284 × 10−4 2.825 × 10−4 4.940 × 10−5
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Table 2. Training performance for the pH process after 100,000 iterations—number of iterations and
computation time of hidden layer with 7 nodes.

Method
Number of Iterations to Converge Computation Time to Converge (s)

Mean Standard
Deviation Mean Standard

Deviation

GDM 94,494 843.1 130.4 16.4
SGD 6318.3 2815.3 29.0 12.5

ADAM 637.57 180.25 3.82 1.23
LM 145.55 63.79 8.68 3.74

Proposed 107.40 44.99 7.94 3.30

3.2. Representative Datasets for Neural Network Training: Boston Housing Price and Automobile
Mileage Per Gallon

To ensure the general performance of the proposed method, the study performs
SFCNN training with the Boston housing prices [39] dataset and automobile mileage per
gallon (MPG) [40] dataset, which are commonly used datasets for testing neural network
training. This study uses 75% and 25% of the dataset as the training set and validation
set, respectively. Data for training and validation are randomly selected. The used neural
network takes 20 nodes into account. The training results of both the Boston housing prices
and automobile MPG are depicted in Figure 5.
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As represented in Figure 5 of both cases, the proposed training method shows the
fastest and most stable convergence. The proposed method can achieve a better result than
the final results of GDM, SDG, and ADAM just within 10 iterations. In order to analyze the
reliability of the training performance, the training is performed with 20 cases obtained
from a randomly chosen training dataset. The average and standard deviation values of
the training error and the number of iterations required for convergence are summarized
in Tables 3 and 4. The case study uses early stopping, where training stops at the point
where the validation performance starts to degrade continuously over 15 iterations. It can
be confirmed that the proposed approach shows overwhelming training performances,
especially compared with GDM, SGD, and ADAM.
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Table 3. Boston housing prices and automobile MPG training performances using early stopping
(validation patient of 15)—training errors (MSE).

Method
Boston Housing Prices Automobile MPG

Mean Standard
Deviation Mean Standard

Deviation

GDM Not converge Not converge Not converge Not converge
SGD 1.127 × 10−3 1.066 × 10−3 1.405 × 10−3 1.215 × 10−3

ADAM 5.858 × 10−4 4.368 × 10−4 6.417 × 10−4 7.005 × 10−5

LM 1.001 × 10−4 2.653 × 10−5 2.477 × 10−4 4.010 × 10−5

Proposed 7.393 × 10−5 1.649 × 10−5 2.407 × 10−4 2.990 × 10−5

Table 4. Boston housing prices and automobile MPG training performances using early stopping
(validation patient of 15)—number of iterations.

Method
Boston Housing Prices Automobile MPG

Mean Standard
Deviation Mean Standard

Deviation

GDM Not converge Not converge Not converge Not converge
SGD 4330 5123 2833 4437

ADAM 4097 2579 3156 5506
LM 29.9 2.4 30.7 3.3

Proposed 26.6 2.0 29.1 2.3

4. Conclusions

A novel supervisory training rule for shallow, fully connected neural networks
(SFCNN) using local linearization and an analytic optimal solution for a linearized SFCNN
is proposed. The proposed cost function includes a number of important terms to keep the
training within a valid region of the linearization and to prevent the training from changing
the input and output weights too much, solving problems, such as divergence, singular-
ity, and the saturation phenomenon of the activation functions. The performance of the
proposed approach is verified by applying it to a highly nonlinear pH process, the Boston
housing price dataset, and the automobile mileage per gallon dataset. It shows a superior
modeling performance with the smallest modeling error and the smallest iteration number
required for convergence compared with the previous approaches for the case study.

This research took a shallow neural network with just one hidden layer into account
for developing the training methods. Currently, the research area of machine learning is
expanding to various fields, such as computer vision and natural language processing. In
accordance with this purpose, a deep neural network with a large number of hidden layers
is generally used. Thus, as a future work, the proposed method will be extended to DNN.
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