
Citation: Heo, J.P.; Im, C.G.; Ryu,

K.H.; Sung, S.W.; Yoo, C.; Yang, D.R.

Shallow Fully Connected Neural

Network Training by Forcing

Linearization into Valid Region and

Balancing Training Rates. Processes

2022, 10, 1157. https://doi.org/

10.3390/pr10061157

Academic Editor: Jie Zhang

Received: 14 May 2022

Accepted: 7 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Shallow Fully Connected Neural Network Training by Forcing
Linearization into Valid Region and Balancing Training Rates
Jea Pil Heo 1, Chang Gyu Im 1, Kyung Hwan Ryu 2,*, Su Whan Sung 1,* , Changkyoo Yoo 3 and Dae Ryook Yang 4

1 Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Korea;
fheod@knu.ac.kr (J.P.H.); tgi1945@knu.ac.kr (C.G.I.)

2 Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Korea
3 Department of Environmental Engineering, Kyung Hee University, Yongin 17104, Korea; ckyoo@khu.ac.kr
4 Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea;

dryang@korea.ac.kr
* Correspondence: khryu@scnu.ac.kr (K.H.R.); suwhansung@knu.ac.kr (S.W.S.)

Abstract: A new supervisory training rule for a shallow fully connected neural network (SFCNN) is
proposed in this present study. The proposed training rule is developed based on local linearization
and analytical optimal solutions for linearized SFCNN. The cause of nonlinearity in neural network
training is analyzed, and it is removed by local linearization. The optimal solution for the linearized
SFCNN, which minimizes the cost function for the training, is analytically derived. Additionally, the
training efficiency and model accuracy of the trained SFCNN are improved by keeping estimates
within a valid range of the linearization. The superiority of the proposed approach is demonstrated
by applying the proposed training rule to the modeling of a typical nonlinear pH process, Boston
housing prices dataset, and automobile mileage per gallon dataset. The proposed training rule shows
the smallest modeling error and the smallest iteration number required for convergence compared
with several previous approaches from the literature for the case study.

Keywords: neural network; training rule; local linearization; optimal solution; pH system modeling

1. Introduction

Artificial neural networks (ANNs) have been widely used in many research areas [1–18].
One of the most popular ANNs for modeling dynamic systems is the shallow fully con-
nected neural network (SFCNN). In theory, it is capable of describing any complex nonlinear
dynamics accurately using a sufficient number of hidden nodes [15]. Despite its capability,
its application is limited by a huge computational load and convergence problems during
supervisory training. Many researchers have developed a variety of supervisory train-
ing rules using gradient descent, Levenberg–Marquardt, quasi-Newton, and conjugate
direction methods [16–21].

Gradient descent is one of the most popular algorithms for performing optimizations
and is currently the most common method of training neural networks due to its effective-
ness in dealing with enormous data. However, it inherently requires a massive number of
learning iterations and has disadvantages in that it is vulnerable to getting stuck in saddle
points under non-convex optimization problems [19,22]. Some algorithms were proposed
to deal with this problem using momentum and adaptive learning rate, including the
Nesterov accelerated gradient (NAG) [20], root mean square propagation (RMSProp), and
adaptive moment estimation (ADAM) [21]. Although these approaches are widely used
in neural network training and have proven their performance, their slow convergence
remains a challenge for real-time applications [23]. An optimization method based on
Hessian of training loss (e.g., Newton’s method and the Levenberg–Marquardt method)
is free from slow convergence from massive iteration and getting stuck in a saddle point.
Nevertheless, difficulty in computing exact Hessian eigenvalues of a large size model [24]

Processes 2022, 10, 1157. https://doi.org/10.3390/pr10061157 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10061157
https://doi.org/10.3390/pr10061157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-8958-8669
https://doi.org/10.3390/pr10061157
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10061157?type=check_update&version=1

Processes 2022, 10, 1157 2 of 12

places a method outside the mainstream of neural network training. In order to get over
this hurdle, research teams proposed a diverse study focusing on computing a limited
number of eigenvalues [25–27] and estimating information (i.e., curvature, sharpness, etc.)
in the absence of sufficient information about an eigenvalue spectrum [28–34]. In our
previous study, a training method to reduce the searching space as much as the number
of the output weights in the high-dimensional nonlinear optimization problem has been
proposed to alleviate the computational load [35]. Although this approach shows remark-
able improvement compared with full-dimensional optimization approaches, much room
remains to be improved as it cannot analytically estimate the optimal input weights.

In this paper, an improved supervisory training rule for an SFCNN using local lin-
earization and the analytic optimal solution of a linearized SFCNN is proposed. First, the
cause of nonlinearity in neural network training is analyzed, and it is locally linearized.
Next, the optimal solution is derived that minimizes the cost function for training. A new
cost function is proposed to keep the estimate within a valid domain of linearization. A new
training rule is finally derived based on the derived optimal solution. The performance of
the proposed approach is verified by applying the proposed training rule to the modeling
of a typical nonlinear pH process, Boston housing prices dataset, and automobile mileage
per gallon dataset. The proposed method is compared with four widely used methods:
the gradient descent with momentum, stochastic gradient descent, Levenberg–Marquardt
methods, and adaptive moment estimation. From the simulation results, it can be con-
firmed that the iteration number and the modeling error are the smallest when compared
to the existing approaches.

The remaining contents of this manuscript are represented as follows: In Section 2,
the proposed training method is introduced and derived based on local linearization
and analytical optimal solution. Section 3 presents the performance of the proposed
method compared with previous methods, including the gradient descent with momentum,
the stochastic gradient descent, the adaptive momentum algorithm, and the Levenberg–
Marquardt method. Finally, the conclusion and further extension of the proposed method
are discussed in Section 4.

2. Proposed Supervisory Training Rule for SFCNN

Let us consider the SFCNN structure represented in Figure 1. The neural network is
mathematically formulated as follows:

ẑj(q) =
m

∑
i=1

νj,iui(q), j = 1, 2, 3, · · · , l (1)

ĥj(q) =
1

1 + exp(−αẑj(q))
, j = 1, 2, 3, · · · , l (2)

ŷk(q) =
l

∑
j=1

wk,j ĥj(q), k = 1, 2, 3, · · · , n (3)

where νj,i and wk,j are the input weight and the output weight, respectively; ĥj(q) and ŷk(q)
denote the output of the j-th hidden node and the k-th output node, respectively; ui(q) is the
input of the i-th input node; q donates the q-th sampling of the process input and output.

We will now analyze the cause of the nonlinearity of the neural network. Note that
ẑj(q) of Equation (1) is linear with respect to the input weight. Meanwhile, ĥj(q) and
ŷk(q) of Equations (2) and (3) are nonlinear with respect to the input weight. It now
becomes apparent that the cause of the nonlinearity originates from the activation function
of Equation (2). Therefore, it can be concluded that the optimal weights for the training can
be analytically estimated if the activation function and the output layer are linearized.

Processes 2022, 10, 1157 3 of 12Processes 2022, 10, x FOR PEER REVIEW 3 of 13

Figure 1. The considered SFCNN structure.

We will now analyze the cause of the nonlinearity of the neural network. Note that
ˆ ()jz q of Equation Error! Reference source not found. is linear with respect to the input

weight. Meanwhile, ˆ ()jh q and ˆ ()ky q of Equations Error! Reference source not found.
and Error! Reference source not found. are nonlinear with respect to the input weight. It
now becomes apparent that the cause of the nonlinearity originates from the activation
function of Equation Error! Reference source not found.. Therefore, it can be concluded
that the optimal weights for the training can be analytically estimated if the activation
function and the output layer are linearized.

2.1. Derivation of the Proposed Training Rule
In the present study, the following linearization for the activation function is

adopted for the training. It is linearized at the estimates of the previous iteration in the
supervisory training.

()
1

1 1

ˆ ˆ() ()

ˆ
ˆ ˆ ˆˆ ˆ() () () () ()

ˆ
iter

j j

jlin iter iter
j j j j j

j z q z q

dh
h q h q z q z q h q

dz
−

− −

=

≈ = − + (4)

where a superscript iter is an iteration number in the supervisory training and the su-
perscript lin means a linearized function. The output layer is linearized by Equation
Error! Reference source not found.:

() ()()1 1 1 1 1 1
, , , ,

1

ˆ ˆ ˆ ˆˆ ˆ() () () () () ()
l

lin iter iter iter iter iter iter
k k k j k j j k j j j k j j

j
y q y q w w h q w h q h q w h q− − − − − −

=

≈ = − + − + (5)

In addition, the following cost function of the multi-objective quadratic program-
ming problem is used for supervisory training in this research. The proposed method
will estimate the input and output weights at each iteration number of iter by mini-
mizing the cost function based on the linearized SFCNN from the previous iteration
number of 1iter − .

() ()
() ()

()

, ,

22

, 1 1 1 1

2 21
, ,

1 1 1 1

21
, ,

1 1

ˆ ˆˆmin 0.5 () () 0.5 () ()

ˆ ˆ0.5 () () 0.5

0.5

j i j i

N n N l
lin lin

k k h j jv w q k q j

N n l m
lin iter

y k k v j i j i
q k j i

n l
iter

w k j k j
k j

Q y q y q R h q h q

R y q y q R v v

R w w

= = = =

−

= = = =

−

= =

= − + −

+ − + −

+ −

 (6)

Figure 1. The considered SFCNN structure.

2.1. Derivation of the Proposed Training Rule

In the present study, the following linearization for the activation function is adopted for
the training. It is linearized at the estimates of the previous iteration in the supervisory training.

ĥj(q) ≈ ĥlin
j (q) =

dĥj

dẑj

∣∣∣∣∣
ẑj(q)=ẑiter−1

j (q)

(
ẑj(q)− ẑiter−1

j (q)
)
+ ĥiter−1

j (q) (4)

where a superscript iter is an iteration number in the supervisory training and the super-
script lin means a linearized function. The output layer is linearized by Equation (5):

ŷk(q) ≈ ŷlin
k (q) =

l

∑
j=1

((
wk,j − witer−1

k,j

)
ĥiter−1

j (q) + witer−1
k,j

(
ĥj(q)− ĥiter−1

j (q)
)
+ witer−1

k,j ĥiter−1
j (q)

)
(5)

In addition, the following cost function of the multi-objective quadratic programming
problem is used for supervisory training in this research. The proposed method will
estimate the input and output weights at each iteration number of iter by minimizing the
cost function based on the linearized SFCNN from the previous iteration number of iter− 1.

min
vj,i ,wj,i

Q = 0.5
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)2

+ 0.5Rh
N
∑

q=1

l
∑

j=1

(
ĥj(q)− ĥlin

j (q)
)2

+0.5Ry
N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)2

+ 0.5Rv
l

∑
j=1

m
∑

i=1

(
viter−1

j,i − vj,i

)2

+0.5Rw
n
∑

k=1

l
∑

j=1

(
witer−1

k,j − wk,j

)2

(6)

Here, yk(q) is the measurement of the process output, and ŷlin
k (q) is the model output

of the linearized SFCNN; ĥj(q) and ŷk(q) denote the output of the hidden node and that
of the output node of the SFCNN; ĥlin

j (q), ŷlin
k (q) denote the output of the hidden node

and that of the output node of the linearized SFCNN. The constants, Rh, Ry, Rv, and Rw
to balance the five terms of the right-hand side of the cost function are updated at each
iteration, as will be discussed later.

It should be noted that a number of important terms for more efficient training are
included in the cost function as follows: The first term on the right-hand side is the square
modeling error between the measurement of the process output(yk(q)) and the SFCNN
model output(ŷlin

k (q)). Most previous training methods train the SFCNN by minimizing
the modeling error term.

The second and third terms are to minimize the distance between the signals of the
SFCNN (ĥj(q) and ŷk(q)) and those of the linearized SFCNN (ĥlin

j (q) and ŷlin
k (q)) to keep

Processes 2022, 10, 1157 4 of 12

the training within the valid range of the linearization. If the cost function does not include
the second and the third term, the weights of the SFCNN obtained by minimizing the cost
function would be placed outside of the valid range of the linearization, causing problems,
such as the divergence and saturation phenomenon of the activation functions during
the training.

The fourth and fifth terms are to minimize the distances between the optimal weights
of iter and the weights of iter− 1 to keep the training from changing the input and output
weights too much. These terms play an important role in preventing singularity problems
during the training using the Hessian matrix. In most cases, the number of the weights of
the SFCNN is huge (equivalent to overparameterization) and easily causes a singularity
problem. Therefore, it is a must then to include the fourth and fifth terms in the cost
function. The previous training rule using the Levenberg–Marquardt optimization method,
known as the fastest method, adds a small diagonal matrix to the Hessian matrix to prevent
a singularity problem during the training. The addition of the small diagonal matrix is
equivalent to adding the fourth and fifth penalty terms of Equation (6) in the cost function,
keeping the estimates from changing too much [36,37]. However, the Levenberg–Marquardt
method has no direct instruments to guarantee the validity of the linearization because it
does not consider the terms, such as the second and the third penalty terms, during the
training. Thus, it cannot overcome the potential problem that training goes too far because
of an unacceptable accuracy of linearization. This is one of the significant differences
between the proposed method and previous approaches.

Note, however, that the optimal solution of Equation (6) can be estimated analytically
because the activation function and the output layer are linearized as Equations (4) and (5).
In order to derive the analytic solution, consider the following equations derived from
Equations (1) and (4)–(6).

∂Q
∂va,b

= −
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂va,b
− Rv

N
∑

q=1

l
∑

j=1

(
ĥj(q)− ĥlin

j (q)
) ∂ĥlin

j (q)
∂va,b

−Rw
N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂va,b
+ A

A = −Rv
l

∑
j=1

m
∑

i=1
(viter−1

j,i − vj,i) if j = a and i = b, A = 0 if j 6= a or i 6= b

(7)

∂Q
∂wa,b

= −
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂wa,b
− Rw

N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂wa,b
+ B

B = −Rw
n
∑

k=1

l
∑

j=1

(
witer−1

k,j − wk,j

)
if k = 1 and j− b, B = 0 if k 6= a or j 6= b

(8)

∂2Q
∂va,b∂vc,d

= −
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)

∂2 ŷlin
k (q)

∂va,b∂vc,d
+

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂va,b

∂ŷlin
k (q)

∂vc,d

−Rv
N
∑

q=1

l
∑

j=1

(
ĥj(q)− ĥlin

j (q)
) ∂ĥlin

j (q)
∂va,b∂vc,d

+ Rv
N
∑

q=1

l
∑

j=1

∂ĥlin
j (q)

∂va,b

∂ĥlin
j (q)

∂vc,d

−Rw
N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂va,b∂vc,d
+ Rw

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂va,b

∂ŷlin
k (q)

∂vc,d
+ C

C = Rv if k = a = c and j = b = d, D = 0 if k 6= c, k 6= c, j 6= b, or j 6= d

(9)

∂2Q
∂wa,b∂wc,d

= −
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)

∂2 ŷlin
k (q)

∂wa,b∂wc,d
+

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂wa,b

∂ŷlin
k (q)

∂wc,d

−Rw
N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂wa,b∂wc,d
+ Rw

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂wa,b

∂ŷlin
k (q)

∂wc,d
+ D

D = Rw if k = a = c and j = b = d, D = 0 if k 6= a, k 6= c, j 6= b, or j 6= d

(10)

Processes 2022, 10, 1157 5 of 12

∂2Q
∂va,b∂wc,d

= −
N
∑

q=1

n
∑

k=1

(
yk(q)− ŷlin

k (q)
)

∂2 ŷlin
k (q)

∂va,b∂wc,d
+

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂va,b

∂ŷlin
k (q)

∂wc,d

−Rw
N
∑

q=1

n
∑

k=1

(
ŷk(q)− ŷlin

k (q)
)

∂ŷlin
k (q)

∂va,b∂wc,d
+ Rw

N
∑

q=1

n
∑

k=1

∂ŷlin
k (q)

∂va,b

∂ŷlin
k (q)

∂wc,d

(11)

∂ŷlin
k (q)

∂va,b
=

l

∑
j=1

witer−1
k,j

∂ĥlin
j (q)

∂va,b
(12)

∂ĥlin
j (q)

∂va,b
=

dĥj

dẑj

∣∣∣∣∣
ẑj(q)=ẑiter−1

j (q)

∂ẑlin
j (q)

∂va,b
(13)

∂ẑlin
j (q)

∂va,b
= ub(q) if j = a,

∂ẑlin
j (q)

∂va,b
= 0 if j 6= a (14)

∂ŷlin
k (q)

∂wa,b
=

ˆ
h

iter−1

b (q) if k = a,
∂ŷlin

k (q)
∂wa,b

= 0 if k 6= a (15)

From Equations (14) and (15), it is clear that the second derivatives of ẑlin
j (q) and

ŷlin
k (q) are zeros, which means that all the derivatives of Q more than twice are zeroes when

we consider Equations (7)–(13). Therefore, the cost function Q becomes a quadratic form in
terms of the input and output weights, resulting in the following quadratic equation:

∇Q = ∇2Q
∣∣∣
iter−1

(θ − θiter−1) + ∇Q|iter−1 (16)

where θ is a vector composed of the input and the output weights. The ∇Q and ∇2Q are
the gradient and Hessian matrix of Q, respectively. Finally, the analytic optimal solution
for the cost function of Equation (6) can be derived from Equation (16) by setting ∇Q = 0.
Then, the following training rule for the cost function is obtained from the optimal solution.

θiter = θiter−1 −
(
∇2Q

∣∣∣
iter−1

)−1
∇Q|iter−1 (17)

All the numerical problems in adopting the cost function of Equation (6) except
determining the constants of Rh, Ry, Rv, and Rw, are now solved.

2.2. Determining Hyperparameters

The constant, Rh, Ry, Rv, and Rw, are update each iteration by:

Rv,iter = Riter

i=iter
∑

i=0

(
‖∂Q/∂v‖2

F,iλ
iter−i

)
i=iter

∑
i=0

(
‖∂Q/∂w‖2

F,iλ
iter−i

)
+

i=iter
∑

i=0

(
‖∂Q/∂v‖2

F,iλ
iter−i

) (18)

Rw,iter = Riter

i=iter
∑

i=0

(
‖∂Q/∂w‖2

F,iλ
iter−i

)
i=iter

∑
i=0

(
‖∂Q/∂w‖2

F,iλ
iter−i

)
+

i=iter
∑

i=0

(
‖∂Q/∂v‖2

F,iλ
iter−i

) (19)

Rh,iter = Rv,iter (20)

Ry,iter = Rw,iter (21)

where ‖•‖F and λiter−i < 1 donate the Frobenius norm and a forgetting factor, respectively.
The subscript iter is the iteration number. Riter controls the overall speed of the convergence.
If Riter is larger, the convergence rate decreases and the robustness increases, and vice versa.

Processes 2022, 10, 1157 6 of 12

In this research, Riter is updated as follows: if the modeling error of the iter iteration de-
creases compared to that of the iter−1 iteration, it decreases Riter by Riter = Riter−1/α, α > 1,
and updates θiter by Equation (17) to increase the convergence rate. Otherwise, it increases
Riter by Riter = βRiter−1, β > 1 to increase the robustness and does not update θiter as
θiter = θiter−1. This is similar to the Levenberg–Marquardt method. However, the update
of Rv,iter and Rw,iter is totally different. The update rule of Equations (18) and (19) play an
important role in equalizing the two gradients of the cost function with respect to the input
weights and the output weights. If the gradient for the output weights of ‖∂Q/∂w‖2

F is
bigger than the gradient for the input weights of ‖∂Q/∂v‖2

F, the proposed method adjusts
the weights toward equalizing the two gradients by penalizing the movements of the
output weights more than those of the input weights according to Equations (18)–(21). This
feature can improve the efficiency of the training significantly because unbalanced training
between the input weights and the output weights slows down the convergence rate and
causes saturation of the activation function, resulting in unacceptable local minima. This is
the other uniqueness of the proposed method. The previous training rules, such as gradient
descent and Levenberg–Marquardt, cannot incorporate this feature

3. Results and Discussions

In order to verify the performance of the proposed training method, the study per-
formed three case studies, including a highly nonlinear pH process, the Boston house price
and automobile mileage per gasoline datasets, which are widely used in neural network
training problems. In the present study, the performances of four different training methods,
including the gradient descent with momentum (GDM), the Levenberg–Marquardt (LM),
the stochastic gradient descent (SGD), and the adaptive momentum (ADAM) algorithms,
are compared with the proposed method. All the neural network pieces of training are
conducted via MATLAB. In the present study, the learning rate scheduler with an initial
learning rate of 0.001, provided in the MATLAB embedded function, is used for the GDM,
SGD, and ADAM methods. For the LM and the proposed methods, the initial damping
parameter (R0) of 1.0 and the update factors, α and β of 1.2 and 10.0 are used, respectively.

3.1. A pH Process

A pH process known as one of the highly nonlinear chemical processes is simulated
to demonstrate the advantages of the proposed method compared with previous ones.
Figure 2 shows the pH process where the weak acid influent of phosphoric acid (H3PO4)
is treated by the strong base of sodium hydroxide (NaOH) in a continuously stirred tank
reactor. Here, the feed flow rate (F) and the reactor working volume (V) are 2 L/min and
10 L, respectively. The total concentrations of the phosphoric acid in the influent stream
and the sodium hydroxide in the titrating stream are 0.05 and 0.2 mol/L, respectively. The
initial total ion concentrations of the phosphoric acid and the sodium hydroxide in the
reactor are 0.05 and 0.05 mol/L, respectively. For the detailed material balance equations
and an equilibrium, equations are referred to previously published works [38].

The process is perturbed by the titrating stream (u) of uniformly distributed random
noises between 0 and 1 L/min, and the sampling time is 1 min. This study assumes that
the obtained pH data is corrupted by measurement noises of ±0.05. The data used in the
present study is represented in Figure 3. Moreover, u and pH data before the 525th samples
are used for training, and data after the 525th samples are used for validation. The input
nodes of the neural network consist of u(t − 1), u(t − 2), pH(t − 1)/12, pH(t − 2)/12, and
one bias. The output of the neural network is pH(t)/12. The number of hidden nodes
is 3 or 7. The training of a pH process is performed for 20 cases with randomly generated
input data to verify the performance of the proposed method more reliably.

Processes 2022, 10, 1157 7 of 12

Processes 2022, 10, x FOR PEER REVIEW 7 of 13

proposed method. The previous training rules, such as gradient descent and Leven-
berg–Marquardt, cannot incorporate this feature

3. Results and Discussions
In order to verify the performance of the proposed training method, the study per-

formed three case studies, including a highly nonlinear pH process, the Boston house
price and automobile mileage per gasoline datasets, which are widely used in neural
network training problems. In the present study, the performances of four different
training methods, including the gradient descent with momentum (GDM), the Leven-
berg–Marquardt (LM), the stochastic gradient descent (SGD), and the adaptive momen-
tum (ADAM) algorithms, are compared with the proposed method. All the neural net-
work pieces of training are conducted via MATLAB. In the present study, the learning
rate scheduler with an initial learning rate of 0.001, provided in the MATLAB embedded
function, is used for the GDM, SGD, and ADAM methods. For the LM and the proposed
methods, the initial damping parameter (0R) of 1.0 and the update factors, α and β of
1.2 and 10.0 are used, respectively.

3.1. A pH Process
A pH process known as one of the highly nonlinear chemical processes is simulated

to demonstrate the advantages of the proposed method compared with previous ones.
Figure 2 shows the pH process where the weak acid influent of phosphoric acid (H3PO4)
is treated by the strong base of sodium hydroxide (NaOH) in a continuously stirred tank
reactor. Here, the feed flow rate (F) and the reactor working volume (V) are 2 L/min and
10 L, respectively. The total concentrations of the phosphoric acid in the influent stream
and the sodium hydroxide in the titrating stream are 0.05 and 0.2 mol/L, respectively. The
initial total ion concentrations of the phosphoric acid and the sodium hydroxide in the
reactor are 0.05 and 0.05 mol/L, respectively. For the detailed material balance equations
and an equilibrium, equations are referred to previously published works [38].

Figure 2. Schematic diagram of the pH process.

The process is perturbed by the titrating stream (u) of uniformly distributed random
noises between 0 and 1 L/min, and the sampling time is 1 min. This study assumes that
the obtained pH data is corrupted by measurement noises of ±0.05. The data used in the
present study is represented in Figure 3. Moreover, u and pH data before the 525th sam-
ples are used for training, and data after the 525th samples are used for validation. The
input nodes of the neural network consist of u(t − 1), u(t − 2), pH(t − 1)/12, pH(t − 2)/12, and
one bias. The output of the neural network is pH(t)/12. The number of hidden nodes is 3
or 7. The training of a pH process is performed for 20 cases with randomly generated
input data to verify the performance of the proposed method more reliably.

Figure 3 and Figure 4 show one of the training results. As illustrated in Figure 3c, the
proposed method has a higher modeling accuracy for the pH process under training and

Figure 2. Schematic diagram of the pH process.

Processes 2022, 10, x FOR PEER REVIEW 8 of 13

validation results. The comparison result between the proposed method and previous
methods is represented in Figure 4. As confirmed in Figure 4, the mean square error
(MSE) values of the previous approach (except the LM method) after 200 iterations are
much bigger than those of the proposed method after just 10 iterations. The study mul-
tiply performs neural network training for the pH process in order to verify a reliable
performance. The results of training error, the number of iterations to converge, and the
computation time obtained from the repeated simulation (20 times with different da-
tasets generated from simulations with randomly generated input values) are summa-
rized in Tables 1 and 2. As enumerated in Table 1, the proposed method shows an out-
standing modeling performance when comparing the training errors after 100,000 itera-
tions. In order to make a reasonable comparison of the convergence rate between the
diverse methods, this study compares the number of iterations and computational time
for the convergence of reaching within ±1.0% of the MSE value in Table 1. The required
number of iterations and computation time (except ADAM) is smaller than the previous
methods, as represented in Table 2. Despite the fact that ADAM can compute many iter-
ations in a very short time, it has a very poor modeling performance compared to the
proposed method. Consequently, it can be concluded that the proposed method provides
the fastest convergence rate and the smallest modeling error compared to all the previ-
ous approaches.

Figure 3. Process data and performance: (a) process output and model output obtained from neural
network with 7 hidden nodes, (b) process input, and (c) absolute error between measured and
predicted values.

Figures 3 and 4 show one of the training results. As illustrated in Figure 3c, the
proposed method has a higher modeling accuracy for the pH process under training and
validation results. The comparison result between the proposed method and previous

Processes 2022, 10, 1157 8 of 12

methods is represented in Figure 4. As confirmed in Figure 4, the mean square error (MSE)
values of the previous approach (except the LM method) after 200 iterations are much bigger
than those of the proposed method after just 10 iterations. The study multiply performs
neural network training for the pH process in order to verify a reliable performance. The
results of training error, the number of iterations to converge, and the computation time
obtained from the repeated simulation (20 times with different datasets generated from
simulations with randomly generated input values) are summarized in Tables 1 and 2. As
enumerated in Table 1, the proposed method shows an outstanding modeling performance
when comparing the training errors after 100,000 iterations. In order to make a reasonable
comparison of the convergence rate between the diverse methods, this study compares
the number of iterations and computational time for the convergence of reaching within
±1.0% of the MSE value in Table 1. The required number of iterations and computation
time (except ADAM) is smaller than the previous methods, as represented in Table 2.
Despite the fact that ADAM can compute many iterations in a very short time, it has a very
poor modeling performance compared to the proposed method. Consequently, it can be
concluded that the proposed method provides the fastest convergence rate and the smallest
modeling error compared to all the previous approaches.

Processes 2022, 10, x FOR PEER REVIEW 9 of 13

Figure 3. Process data and performance: (a) process output and model output obtained from neural
network with 7 hidden nodes, (b) process input, and (c) absolute error between measured and
predicted values.

Figure 4. Error convergences of the proposed training method and the previous methods (GDM:
gradient descent with momentum, SDG: stochastic gradient descent, ADAM: adaptive moment
estimation, and LM: Levenberg–Marquardt) up to 200 iterations: (a) with 3 hidden nodes and (b) 7
hidden nodes.

Table 1. Training performance for the pH process after 100,000 iterations—training errors (mean
squared error; MSE).

Method
Hidden Layer with 3 Nodes Hidden Layer with 7 Nodes

Mean
Standard
Deviation Mean

Standard
Deviation

GDM 7.319 × 10−3 4.417 × 10−4 4.046 × 10−3 1.529 × 10−4
SGD 1.697 × 10−3 7.664 × 10−5 1.681 × 10−3 7.235 × 10−5

ADAM 1.668 × 10−3 7.142 × 10−5 1.668 × 10−3 7.142 × 10−5
LM 1.201 × 10−3 3.603 × 10−4 3.068 × 10−4 6.079 × 10−5

Proposed 1.140 × 10−3 3.284 × 10−4 2.825 × 10−4 4.940 × 10−5

Table 2. Training performance for the pH process after 100,000 iterations—number of iterations
and computation time of hidden layer with 7 nodes.

Method
Number of Iterations to Converge

Computation Time to Converge
(sec)

Mean
Standard
Deviation Mean

Standard
Deviation

GDM 94,494 843.1 130.4 16.4
SGD 6318.3 2815.3 29.0 12.5

ADAM 637.57 180.25 3.82 1.23
LM 145.55 63.79 8.68 3.74

Proposed 107.40 44.99 7.94 3.30

3.2. Representative Datasets for Neural Network Training: Boston Housing Price and Automobile
Mileage Per Gallon

To ensure the general performance of the proposed method, the study performs
SFCNN training with the Boston housing prices [39] dataset and automobile mileage per
gallon (MPG) [40] dataset, which are commonly used datasets for testing neural network
training. This study uses 75% and 25% of the dataset as the training set and validation set,

Figure 4. Error convergences of the proposed training method and the previous methods (GDM:
gradient descent with momentum, SDG: stochastic gradient descent, ADAM: adaptive moment
estimation, and LM: Levenberg–Marquardt) up to 200 iterations: (a) with 3 hidden nodes and
(b) 7 hidden nodes.

Table 1. Training performance for the pH process after 100,000 iterations—training errors (mean
squared error; MSE).

Method
Hidden Layer with 3 Nodes Hidden Layer with 7 Nodes

Mean Standard
Deviation Mean Standard

Deviation

GDM 7.319 × 10−3 4.417 × 10−4 4.046 × 10−3 1.529 × 10−4

SGD 1.697 × 10−3 7.664 × 10−5 1.681 × 10−3 7.235 × 10−5

ADAM 1.668 × 10−3 7.142 × 10−5 1.668 × 10−3 7.142 × 10−5

LM 1.201 × 10−3 3.603 × 10−4 3.068 × 10−4 6.079 × 10−5

Proposed 1.140 × 10−3 3.284 × 10−4 2.825 × 10−4 4.940 × 10−5

Processes 2022, 10, 1157 9 of 12

Table 2. Training performance for the pH process after 100,000 iterations—number of iterations and
computation time of hidden layer with 7 nodes.

Method
Number of Iterations to Converge Computation Time to Converge (s)

Mean Standard
Deviation Mean Standard

Deviation

GDM 94,494 843.1 130.4 16.4
SGD 6318.3 2815.3 29.0 12.5

ADAM 637.57 180.25 3.82 1.23
LM 145.55 63.79 8.68 3.74

Proposed 107.40 44.99 7.94 3.30

3.2. Representative Datasets for Neural Network Training: Boston Housing Price and Automobile
Mileage Per Gallon

To ensure the general performance of the proposed method, the study performs
SFCNN training with the Boston housing prices [39] dataset and automobile mileage per
gallon (MPG) [40] dataset, which are commonly used datasets for testing neural network
training. This study uses 75% and 25% of the dataset as the training set and validation
set, respectively. Data for training and validation are randomly selected. The used neural
network takes 20 nodes into account. The training results of both the Boston housing prices
and automobile MPG are depicted in Figure 5.

Processes 2022, 10, x FOR PEER REVIEW 10 of 13

respectively. Data for training and validation are randomly selected. The used neural
network takes 20 nodes into account. The training results of both the Boston housing
prices and automobile MPG are depicted in Figure 5.

Figure 5. Training error convergences of the proposed training method and the previous methods:
(a) Boston housing prices dataset and (b) automobile mileage per gallon dataset.

As represented in Figure 5 of both cases, the proposed training method shows the
fastest and most stable convergence. The proposed method can achieve a better result
than the final results of GDM, SDG, and ADAM just within 10 iterations. In order to an-
alyze the reliability of the training performance, the training is performed with 20 cases
obtained from a randomly chosen training dataset. The average and standard deviation
values of the training error and the number of iterations required for convergence are
summarized in Tables 3 and 4. The case study uses early stopping, where training stops
at the point where the validation performance starts to degrade continuously over 15 it-
erations. It can be confirmed that the proposed approach shows overwhelming training
performances, especially compared with GDM, SGD, and ADAM.

Table 3. Boston housing prices and automobile MPG training performances using early stopping
(validation patient of 15)—training errors (MSE).

Method
Boston Housing Prices Automobile MPG

Mean Standard
Deviation

Mean Standard
Deviation

GDM Not converge Not converge Not converge Not converge
SGD 1.127 × 10−3 1.066 × 10−3 1.405 × 10−3 1.215 × 10−3

ADAM 5.858 × 10−4 4.368 × 10−4 6.417 × 10−4 7.005 × 10−5
LM 1.001 × 10−4 2.653 × 10−5 2.477 × 10−4 4.010 × 10−5

Proposed 7.393 × 10−5 1.649 × 10−5 2.407 × 10−4 2.990 × 10−5

Table 4. Boston housing prices and automobile MPG training performances using early stopping
(validation patient of 15)—number of iterations.

Method
Boston Housing Prices Automobile MPG

Mean
Standard
Deviation Mean

Standard
Deviation

GDM Not converge Not converge Not converge Not converge
SGD 4330 5123 2833 4437

ADAM 4097 2579 3156 5506
LM 29.9 2.4 30.7 3.3

Figure 5. Training error convergences of the proposed training method and the previous methods:
(a) Boston housing prices dataset and (b) automobile mileage per gallon dataset.

As represented in Figure 5 of both cases, the proposed training method shows the
fastest and most stable convergence. The proposed method can achieve a better result than
the final results of GDM, SDG, and ADAM just within 10 iterations. In order to analyze the
reliability of the training performance, the training is performed with 20 cases obtained
from a randomly chosen training dataset. The average and standard deviation values of
the training error and the number of iterations required for convergence are summarized
in Tables 3 and 4. The case study uses early stopping, where training stops at the point
where the validation performance starts to degrade continuously over 15 iterations. It can
be confirmed that the proposed approach shows overwhelming training performances,
especially compared with GDM, SGD, and ADAM.

Processes 2022, 10, 1157 10 of 12

Table 3. Boston housing prices and automobile MPG training performances using early stopping
(validation patient of 15)—training errors (MSE).

Method
Boston Housing Prices Automobile MPG

Mean Standard
Deviation Mean Standard

Deviation

GDM Not converge Not converge Not converge Not converge
SGD 1.127 × 10−3 1.066 × 10−3 1.405 × 10−3 1.215 × 10−3

ADAM 5.858 × 10−4 4.368 × 10−4 6.417 × 10−4 7.005 × 10−5

LM 1.001 × 10−4 2.653 × 10−5 2.477 × 10−4 4.010 × 10−5

Proposed 7.393 × 10−5 1.649 × 10−5 2.407 × 10−4 2.990 × 10−5

Table 4. Boston housing prices and automobile MPG training performances using early stopping
(validation patient of 15)—number of iterations.

Method
Boston Housing Prices Automobile MPG

Mean Standard
Deviation Mean Standard

Deviation

GDM Not converge Not converge Not converge Not converge
SGD 4330 5123 2833 4437

ADAM 4097 2579 3156 5506
LM 29.9 2.4 30.7 3.3

Proposed 26.6 2.0 29.1 2.3

4. Conclusions

A novel supervisory training rule for shallow, fully connected neural networks
(SFCNN) using local linearization and an analytic optimal solution for a linearized SFCNN
is proposed. The proposed cost function includes a number of important terms to keep the
training within a valid region of the linearization and to prevent the training from changing
the input and output weights too much, solving problems, such as divergence, singular-
ity, and the saturation phenomenon of the activation functions. The performance of the
proposed approach is verified by applying it to a highly nonlinear pH process, the Boston
housing price dataset, and the automobile mileage per gallon dataset. It shows a superior
modeling performance with the smallest modeling error and the smallest iteration number
required for convergence compared with the previous approaches for the case study.

This research took a shallow neural network with just one hidden layer into account
for developing the training methods. Currently, the research area of machine learning is
expanding to various fields, such as computer vision and natural language processing. In
accordance with this purpose, a deep neural network with a large number of hidden layers
is generally used. Thus, as a future work, the proposed method will be extended to DNN.

Author Contributions: Conceptualization, C.Y., D.R.Y. and S.W.S.; methodology, J.P.H. and S.W.S.;
formal analysis, J.P.H. and C.G.I.; writing—original draft preparation, K.H.R. and S.W.S.; writing—
review and editing, K.H.R. and S.W.S.; supervision, K.H.R. and S.W.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Processes 2022, 10, 1157 11 of 12

References
1. Bhat, N.V.; Minderman, P.A.; McAvoy, T.; Wang, N.S. Modeling chemical process systems via neural computation. IEEE Control

Syst. Mag. 1990, 10, 24–30. [CrossRef]
2. Bhat, N.; McAvoy, T.J. Use of neural nets for dynamic modeling and control of chemical process systems. Comput. Chem. Eng.

1990, 14, 573–582. [CrossRef]
3. Chen, S.; Billings, S.A.; Grant, P.M. Non-linear system identification using neural networks. Int. J. Control 1990, 51, 1191–1214.

[CrossRef]
4. Fukuda, T.; Shibata, T. Theory and applications of neural networks for industrial control systems. IEEE Trans. Ind. Electron. 1992,

39, 472–489. [CrossRef]
5. Ydstie, B.E. Forecasting and control using adaptive connectionist networks. Comput. Chem. Eng. 1990, 14, 583–599. [CrossRef]
6. Savković-Stevanović, J. Neural networks for process analysis and optimization: Modeling and applications. Comput. Chem. Eng.

1994, 18, 1149–1155. [CrossRef]
7. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2,

359–366. [CrossRef]
8. Henrique, H.M.; Lima, E.L.; Seborg, D.E. Model structure determination in neural network models. Chem. Eng. Sci. 2000, 55,

5457–5469. [CrossRef]
9. Boozarjomehry, R.B.; Svrcek, W.Y. Automatic design of neural network structures. Comput. Chem. Eng. 2001, 25, 1075–1088.

[CrossRef]
10. Derks, E.; Buydens, L.M.C. Aspects of network training and validation on noisy data: Part 1. Training aspects. Chemom. Intell.

Lab. Syst. 1998, 41, 171–184. [CrossRef]
11. Pan, Y.; Sung, S.W.; Lee, J.H. Data-based construction of feedback-corrected nonlinear prediction model using feedback neural

networks. Control Eng. Pract. 2001, 9, 859–867. [CrossRef]
12. Lee, D.S.; Jeon, C.O.; Park, J.M.; Chang, K.S. Hybrid neural network modeling of a full-scale industrial wastewater treatment

process. Biotechnol. Bioeng. 2002, 78, 670–682. [CrossRef] [PubMed]
13. Dogan, E.; Sengorur, B.; Koklu, R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural

network technique. J. Environ. Econ. Manag. 2009, 90, 1229–1235. [CrossRef] [PubMed]
14. Heo, S.; Lee, J.H. Parallel neural networks for improved nonlinear principal component analysis. Comput. Chem. Eng. 2019,

127, 1–10. [CrossRef]
15. Jawad, J.; Hawari, A.H.; Zaidi, S.J. Artificial neural network modeling of wastewater treatment and desalination using membrane

processes: A review. Chem. Eng. J. 2021, 419, 129540. [CrossRef]
16. Li, Y.; Jia, M.; Han, X.; Bai, X.-S. Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial

neural network (ANN) with genetic algorithm (GA). Energy 2021, 225, 120331. [CrossRef]
17. Bakay, M.S.; Ağbulut, Ü. Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning,

support vector machine and artificial neural network algorithms. J. Clean. Prod. 2021, 285, 125324. [CrossRef]
18. Cui, Z.; Wang, L.; Li, Q.; Wang, K. A comprehensive review on the state of charge estimation for lithium-ion battery based on

neural network. Int. J. Energy Res. 2022, 46, 5423–5440. [CrossRef]
19. Dauphin, Y.N.; Pascanu, R.; Gulcehre, C.; Cho, K.; Ganguli, S.; Bengio, Y. Identifying and attacking the saddle point problem in

high-dimensional non-convex optimization. Adv. Neural Inf. Process. Syst. 2014, 27, 1–9.
20. Nesterov, Y. A method for unconstrained convex minimization problem with the rate of convergence O (1/k2). Dokl. Acad. Sci.

USSR 1983, 269, 543–547.
21. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
22. d’Ascoli, S.; Refinetti, M.; Biroli, G. Optimal learning rate schedules in high-dimensional non-convex optimization problems.

arXiv 2022, arXiv:2202.04509.
23. Van Der Smagt, P.P. Minimisation methods for training feedforward neural networks. Neural Netw. 1994, 7, 1–11. [CrossRef]
24. Begum, K.G.; Rao, A.S.; Radhakrishnan, T.K. Enhanced IMC based PID controller design for non-minimum phase (NMP)

integrating processes with time delays. ISA Trans. 2017, 68, 223–234. [CrossRef]
25. Sagun, L.; Evci, U.; Guney, V.U.; Dauphin, Y.; Bottou, L. Empirical analysis of the hessian of over-parametrized neural networks.

arXiv 2017, arXiv:1706.04454.
26. Yao, Z.; Gholami, A.; Lei, Q.; Keutzer, K.; Mahoney, M.W. Hessian-based analysis of large batch training and robustness to

adversaries. Adv. Neural Inf. Process. Syst. 2018, 31, 1–11.
27. Oymak, S.; Soltanolkotabi, M. Toward moderate overparameterization: Global convergence guarantees for training shallow

neural networks. IEEE J. Sel. Areas Inf. Theory 2020, 1, 84–105. [CrossRef]
28. Keskar, N.S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.; Tang, P.T.P. On large-batch training for deep learning: Generalization

gap and sharp minima. arXiv 2016, arXiv:1609.04836.
29. Li, C.; Farkhoor, H.; Liu, R.; Yosinski, J. Measuring the intrinsic dimension of objective landscapes. arXiv 2018, arXiv:1804.08838.
30. Li, H.; Xu, Z.; Taylor, G.; Studer, C.; Goldstein, T. Visualizing the loss landscape of neural nets. Adv. Neural Inf. Process. Syst. 2018,

31, 1–11.
31. Draxler, F.; Veschgini, K.; Salmhofer, M.; Hamprecht, F. Essentially no barriers in neural network energy landscape. In Proceedings

of the International Conference on Machine Learning PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1309–1318.

http://doi.org/10.1109/37.55120
http://doi.org/10.1016/0098-1354(90)87028-N
http://doi.org/10.1080/00207179008934126
http://doi.org/10.1109/41.170966
http://doi.org/10.1016/0098-1354(90)87029-O
http://doi.org/10.1016/0098-1354(94)E004H-Z
http://doi.org/10.1016/0893-6080(89)90020-8
http://doi.org/10.1016/S0009-2509(00)00170-6
http://doi.org/10.1016/S0098-1354(01)00680-9
http://doi.org/10.1016/S0169-7439(98)00053-7
http://doi.org/10.1016/S0967-0661(01)00050-8
http://doi.org/10.1002/bit.10247
http://www.ncbi.nlm.nih.gov/pubmed/11992532
http://doi.org/10.1016/j.jenvman.2008.06.004
http://www.ncbi.nlm.nih.gov/pubmed/18691805
http://doi.org/10.1016/j.compchemeng.2019.05.011
http://doi.org/10.1016/j.cej.2021.129540
http://doi.org/10.1016/j.energy.2021.120331
http://doi.org/10.1016/j.jclepro.2020.125324
http://doi.org/10.1002/er.7545
http://doi.org/10.1016/0893-6080(94)90052-3
http://doi.org/10.1016/j.isatra.2017.03.005
http://doi.org/10.1109/JSAIT.2020.2991332

Processes 2022, 10, 1157 12 of 12

32. Ghorbani, B.; Krishnan, S.; Xiao, Y. An investigation into neural net optimization via hessian eigenvalue density. In Proceedings
of the International Conference on Machine Learning PMLR, Long Beach, CA, USA, 10–15 June 2019; pp. 2232–2241.

33. Granziol, D.; Garipov, T.; Vetrov, D.; Zohren, S.; Roberts, S.; Wilson, A.G. Towards understanding the true loss surface of deep
neural networks using random matrix theory and iterative spectral methods. In Proceedings of the International Conference on
Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

34. Gilmer, J.; Ghorbani, B.; Garg, A.; Kudugunta, S.; Neyshabur, B.; Cardoze, D.; Dahl, G.E.; Nado, Z.; Firat, O. A Loss Curvature
Perspective on Training Instabilities of Deep Learning Models. In Proceedings of the International Conference on Learning
Representations, Virtual, 25 April 2022.

35. Sung, S.W.; Lee, T.; Park, S. Improved training rules for multilayered feedforward neural networks. Ind. Eng. Chem. Res. 2003,
42, 1275–1278. [CrossRef]

36. Sung, S.W.; Lee, J.; Lee, I.-B. Process Identification and PID Control; John Wiley & Sons: Hoboken, NJ, USA, 2009;
ISBN 978-0-470-82410-8.

37. Yoo, C.K.; Sung, S.W.; Lee, I.-B. Generalized damped least squares algorithm. Comput. Chem. Eng. 2003, 27, 423–431. [CrossRef]
38. Sung, S.W.; Lee, I.-B.; Yang, D.R. pH Control using an identification reactor. Ind. Eng. Chem. Res. 1995, 34, 2418–2426. [CrossRef]
39. Harrison, D., Jr.; Rubinfeld, D.L. Hedonic housing prices and the demand for clean air. J. Environ. Econ. Manag. 1978, 5, 81–102.

[CrossRef]
40. Quinlan, J.R. Combining instance-based and model-based learning. In Proceedings of the Tenth International Conference on

Machine Learning, Amherst, MA, USA, 27–29 July 1993; pp. 236–243.

http://doi.org/10.1021/ie020663k
http://doi.org/10.1016/S0098-1354(02)00219-3
http://doi.org/10.1021/ie00046a025
http://doi.org/10.1016/0095-0696(78)90006-2

	Introduction
	Proposed Supervisory Training Rule for SFCNN
	Derivation of the Proposed Training Rule
	Determining Hyperparameters

	Results and Discussions
	A pH Process
	Representative Datasets for Neural Network Training: Boston Housing Price and Automobile Mileage Per Gallon

	Conclusions
	References

