Experimental Test and Feasibility Analysis of Hydraulic Cylinder Position Control Based on Pressure Detection
Abstract
:1. Introduction
2. Working Principle of Hydraulic Cylinder System
2.1. Analysis of the Electro-Hydraulic Control Directional Valve Model
2.2. Test System of Valve-Controlled Cylinder
3. Results and Discussion
3.1. Verification of the Directional Valve Model
3.2. Analysis of System Flow and Inlet and Outlet Pressure of the Experiment Data
3.3. Data Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.; Liu, F.; Pang, Y.; Ren, H.; Ma, Y. Coal mine intellectualization: The core technology of high quality development. J. China Coal Soc. 2019, 44, 349–357. [Google Scholar] [CrossRef]
- Wang, G.; Du, Y.; Ren, H.; Fan, J.; Wu, Q. Top level design and practice of smart coal mines. J. China Coal Soc. 2020, 45, 1909–1924. [Google Scholar]
- Marina, R.; Dmitriy, R.; Dmitriy, K.; Tyulenev, M.; Zhironkin, S.; Khoreshok, A. Intelligent mining engineering systems in the structure of industry 4.0. E3s Web Conf. 2017, 21, 01032. [Google Scholar]
- Li, J.; Zhan, K. Intelligent mining technology for an underground metal mine based on unmanned equipment. Engineering 2018, 4, 381–391. [Google Scholar] [CrossRef]
- Yan, S.; Xu, G.; Fan, Z. Development course and prospect of the 50 years’comprehensive mechanized coal mining in China. Coal Sci. Technol. 2021, 49, 1–9. [Google Scholar]
- Song, Z. Application of LASC technology in mine’s automatic mining of fully mechanized mining face. Shenhua Sci. Technol. 2018, 16, 26–29. [Google Scholar]
- Li, S. Measurement & control and localisation for fully-mechanized working face alignment based on inertial naviga tion. Coal Sci. Technol. 2019, 47, 169–174. [Google Scholar]
- Zhong, Q.; Zhang, B.; Yang, H.Y.; Ma, J.E.; Fung, R.F. Performance analysis of a high-speed on/off valve based on an intelligent pulse-width modulation control. Adv. Mech. Eng. 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Bruno, N.; Zhu, Y.; Liu, C.; Gao, Q.; Li, Y. Development of a piezoelectric high speed on/off valve and its application to pneumatic closed-loop position control system. J. Mech. Sci. Technol. 2019, 33, 2747–2759. [Google Scholar] [CrossRef]
- Gao, Q. Nonlinear Adaptive Control with Asymmetric Pressure Difference Compensation of a Hydraulic Pressure Servo System Using Two High Speed On/Off Valves. Machines 2022, 10, 66. [Google Scholar] [CrossRef]
- Zhou, G.R.; Liu, S.Q.; Sang, Y.J.; Wang, X.D.; Jia, X.P.; Niu, E.Z. LPV robust servo control of aircraft active side-sticks. Aircr. Eng. Aerosp. Technol. 2020, 92, 599–609. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S. Intelligent Fault Identification of Hydraulic Pump Using Deep Adaptive Normalized CNN and Synchrosqueezed Wavelet Transform. Reliab. Eng. Syst. Saf. 2022, 224, 108560. [Google Scholar] [CrossRef]
- Deng, Z.Y.; Liu, X.R.; Zhou, X.H.; Yang, Q.H.; Chen, P.; de la Fuente, A.; Ren, L.X.; Du, L.B.; Han, Y.F.; Xiong, F.; et al. Main engineering problems and countermeasures in ultra-long-distance rock pipe jacking project: Water pipeline case study in Chongqing. Tunn. Undergr. Space Technol. 2022, 123, 104420. [Google Scholar] [CrossRef]
- Luo, S.Q.; Cheng, M.; Ding, R.Q.; Wang, F.; Xu, B.; Chen, B.K. Human-Robot Shared Control Based on Locally Weighted Intent Prediction for a Teleoperated Hydraulic Manipulator System. In IEEE-Asme Transactions on Mechatronics; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Cheng, M.; Han, Z.N.; Ding, R.Q.; Zhang, J.H.; Xu, B. Development of a redundant anthropomorphic hydraulically actuated manipulator with a roll-pitch-yaw spherical wrist. Front. Mech. Eng. 2021, 16, 698–710. [Google Scholar] [CrossRef]
- Gao, Q.; Zhu, Y.; Liu, J.H. Dynamics Modelling and Control of a Novel Fuel Metering Valve Actuated by Two Binary-Coded Digital Valve Arrays. Machines 2022, 10, 55. [Google Scholar] [CrossRef]
- Zhong, Q.; Wang, X.; Zhou, H.; Xie, G.; Hong, H.; Li, Y.; Chen, B.; Yang, H. Investigation Into the Adjustable Dynamic Characteristic of the High-Speed on/off Valve With an Advanced Pulsewidth Modulation Control Algorithm. In IEEE/ASME Transactions on Mechatronics; IEEE: New York, NY, USA, 2021; pp. 1–14. [Google Scholar]
- Zhou, R.; Li, S.; Wei, W.; Zhang, L.; Wang, W. Study on coupling mechanism of pressure and flow in following hydraulic system of mining face. Coal Sci. Technol. 2020, 48, 129–136. [Google Scholar]
- Zhou, R.; Meng, L.; Yuan, X.; Qiao, Z. Research and experimental analysis of hydraulic cylinder position control mechanism based on pressure detection. Machines 2021, 10, 1. [Google Scholar] [CrossRef]
- Yang, H.; Guo, Y.; Zhang, H.; Wang, X.; Lin, B.; Dang, Y. Development of the hydraulic cylinder position control system based on electromagnetic directional valve. Mach. Des. Manuf. Eng. 2020, 49, 101–104. [Google Scholar]
- Venkata, S.K.; Rao, S. Fault Detection of a Flow Control Valve Using Vibration Analysis and Support Vector Machine. Electronics 2019, 8, 1062. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Ruan, J. A new kind of digital on-off valve with high flow rate. J. Zhejiang Univ. Technol. 2017, 45, 137–141. [Google Scholar]
- Zhou, C.; Wen, G.; Qing, X. Study of electro-hydraulic position control system using solenoid directional valve. Eng. J. Wuhan Univ. 2017, 50, 760–765. [Google Scholar]
- Jin, L. Study on the Precise Position Control of Hydraulic Cylinder Using Solenoid Operated Directional Control valve; Zhejiang University: Hangzhou, China, 2019. [Google Scholar]
- Pan, M.; Plummer, A.; El Agha, A. Theoretical and Experimental Studies of a Switched Inertance Hydraulic System in a Four-Port High-Speed Switching Valve Configuration. Energies 2017, 10, 780. [Google Scholar] [CrossRef] [Green Version]
- Masood, K.; Dauptain, X.; Zoppi, M.; Molfino, R. Hydraulic Pressure-Flow Rate Control of a Pallet Handling Robot for an Autonomous Freight Delivery Vehicle. Electronics 2020, 9, 1370. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, W.; Zhu, X. Theory Model of Dynamic Bulk Modulus of Aerated Hydraulic Fluid. Chin. J. Mech. Eng. 2022. [Google Scholar] [CrossRef]
Symbol | Name | Unit | Remark |
---|---|---|---|
Sealing cross-sectional area | mm2 | ||
Area of inlet valve spool liquid through holes | mm2 | ||
Spring pre-compression force | N | ||
Outer hole area of inlet valve spool | mm2 | ||
Inner hole area of inlet valve spool | mm2 | ||
Inlet pressure | MPa | ||
Working port load pressure | MPa | ||
Control port pressure | MPa | ||
Transition pressure | MPa | ||
Coaxial angle of liquid inlet direction | ° | Degree | |
Valve port flow coefficient | 1 | ||
Inlet flow | L/min | ||
Valve spool displacement | mm |
Equipment | Parameter | Model |
---|---|---|
Pump | Nominal flow 200 L/min, nominal pressure 37.5 MPa | BRW200/37.5 |
Pressure sensor | Measurement range 0–40 MPa, measurement accuracy 0.25% | HDA4846-A-400-000 |
Return circuit breaker | Nominal flow 200 L/min, nominal pressure 16 MPa | FD200/16 |
Directional valve | Nominal flow 200 L/min, nominal pressure 31.5 MPa | FHS200/31.5 |
Hydraulic control check valve | Nominal flow 200 L/min, nominal pressure 50 MPa | FDYA200/31.5 |
Laser displacement sensor | Measurement 1600 mm, precision ±1 mm | DAN-10-150 |
Hydraulic cylinder | Cylinder/rod diameter 180/120 mm, stroke 900 mm | TMQTC(180/120*900) |
System Pressure (MPa) | System Flow (L/min) | Square Root of Pressure Drop (MPa) | |
---|---|---|---|
Ordinary Valve | Differential Valve | ||
6 | 21.57 | 1.37 | 0.37 |
10.5 | 41.50 | 1.36 | 0.51 |
17 | 64.20 | 0.88 | 0.64 |
21.4 | 72.99 | 1.11 | 0.68 |
26.8 | 83.81 | 1.16 | 0.73 |
31 | 92.48 | 0.79 | 0.77 |
System Pressure (MPa) | System Flow (L/min) | Square Root of Pressure Drop (MPa) | |
---|---|---|---|
Ordinary Valve | Differential Valve | ||
6 | 20.62 | 1.31 | 0.36 |
10.5 | 35.08 | 1.32 | 0.47 |
17 | 49.94 | 1.23 | 0.56 |
21.4 | 56.65 | 1.40 | 0.60 |
26.8 | 64.84 | 1.61 | 0.64 |
31 | 70.23 | 1.75 | 0.67 |
System Pressure (MPa) | 5 | 10 | 15 | 20 | 25 | 30 | |
---|---|---|---|---|---|---|---|
Hydraulic cylinder extends under DN10 pipeline | Actual flow (L/min) | 20.62 | 35.08 | 49.94 | 56.65 | 64.84 | 70.23 |
Fitting flow (L/min) | 23.16 | 39.04 | 49.89 | 56.15 | 62.90 | 67.72 | |
Relative error (%) | 12.32 | 11.29 | 0.11 | 0.88 | 2.99 | 3.57 | |
Hydraulic cylinder retracts under DN10 pipeline | Actual flow (L/min) | 21.57 | 41.5 | 64.2 | 72.99 | 83.81 | 92.48 |
Fitting flow (L/min) | 25.894 | 47.234 | 64.53 | 72.656 | 81.738 | 87.952 | |
Relative error (%) | 20.05 | 13.82 | 0.51 | 0.46 | 2.47 | 4.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Meng, L.; Yuan, X. Experimental Test and Feasibility Analysis of Hydraulic Cylinder Position Control Based on Pressure Detection. Processes 2022, 10, 1167. https://doi.org/10.3390/pr10061167
Zhou R, Meng L, Yuan X. Experimental Test and Feasibility Analysis of Hydraulic Cylinder Position Control Based on Pressure Detection. Processes. 2022; 10(6):1167. https://doi.org/10.3390/pr10061167
Chicago/Turabian StyleZhou, Rulin, Lingyu Meng, and Xiaoming Yuan. 2022. "Experimental Test and Feasibility Analysis of Hydraulic Cylinder Position Control Based on Pressure Detection" Processes 10, no. 6: 1167. https://doi.org/10.3390/pr10061167
APA StyleZhou, R., Meng, L., & Yuan, X. (2022). Experimental Test and Feasibility Analysis of Hydraulic Cylinder Position Control Based on Pressure Detection. Processes, 10(6), 1167. https://doi.org/10.3390/pr10061167