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Abstract: Vibration signals from centrifugal pumps are nonlinear, non-smooth, and possess implied
trend terms, which makes it difficult for traditional signal processing methods to accurately extract
their fault characteristics and details. With a view to rectifying this, we introduced empirical mode
decomposition (EMD) to extract the trend term signals. These were then refit using the least squares
(LS) method. The result (EMD-LS) was then combined with multi-fractal theory to form a new signal
identification method (EMD-LS-MFDFA), whose accuracy was verified with a binomial multi-fractal
sequence (BMS). Then, based on the centrifugal pump test platform, the vibration signals of shell
failures under different degrees of cavitation and separate states of loosened foot bolts were collected.
The signals’ multi-fractal spectra parameters were analyzed using the EMD-LS-MFDFA method,
from which five spectral parameters (∆α, ∆ f , α0, αmax, and αmin) were extracted for comparison and
analysis. The results showed EMD-LS-MFDFA’s performance was closer to the BMS theoretical value
than that of MFDFA, displayed high accuracy, and was fully capable of revealing the multiple fractal
characteristics of the centrifugal pump fault vibration signal. Additionally, the mean values of the
five types of multi-fractal spectral characteristic parameters it extracted were much greater than the
normal state values. This indicates that the parameters could effectively distinguish the normal state
and fault state of the centrifugal pump. Moreover, α0 and αmax had a smaller mean square than ∆α,
∆ f and αmin, and their stability was higher. Thus, compared to the feature parameters extracted by
MFDFA, our method could better realize the separation between the normal state, cavitation (whether
slight, moderate, or severe), and when the anchor bolt was loose. This can be used to characterize
centrifugal pump failure, quantify and characterize a pump’s different working states, and provide a
meaningful reference for the diagnosis and study of pump faults.

Keywords: centrifugal pump; feature extraction; multifractal; detrended fluctuation analysis;
empirical mode decomposition; least squares

1. Introduction

Pumps are a form of mechanical equipment widely used in industrial and agricultural
applications, and their operational safety and reliability have been the focus of many
researchers. It is generally believed that a pump’s vibration signal contains a large amount
of state information which can objectively reflect most of its operating conditions [1].
Therefore, studies concerning the application of signal analysis methods for pump fault
diagnosis, especially those based on spectral analysis, are increasing. For example, Li
Jing et al. [2] introduced wavelet packet characteristic frequency band analysis to extract
energy values to characterize cavitation signals, with test results demonstrating good
effects. Furthermore, Zhou et al. [3] used empirical modal decomposition combined with
the Hilbert transform to obtain modal energy ratios and successfully construct the fault
characteristics of centrifugal pump vibration signals. Moreover, Duan Xiangyang et al. [4]
applied slice bi-spectrum analysis to extract the relevant frequencies and fully classify fault
signals.
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However, because the actual operation of the pump is affected by, amongst other
considerations, various hydraulic, mechanical, electrical, and even control factors, its vibra-
tion signal is non-linear and non-stationary in character, and prone to changes in trends.
Although spectrum analysis and other methods can extract fault characteristics to a certain
extent, they nonetheless suffer from a number of inherent defects. For example, Fourier
transform is not suitable for non-smooth signals due to suitable wavelet base selection
difficulties, among other reasons. Therefore, the extracted results of fault characteristics
are usually inaccurate. Especially, when the fault signals are mixed and overlapping, the
time–frequency method does not always effectively extract results. The fractal method
provides new ideas for the identification of pump vibration signals. Logan and Purkait
et al. [5,6] showed the fractal nature of fault vibration signals, demonstrating that the use
of fractal methods could lead to a more accurate extraction of nonlinear non-stationary
signal features. For this reason, a lot of research has been conducted on fractals. Pertinent
to this investigation, the multiple fractal detrended fluctuation analysis method (MFDFA),
as proposed by Kantelhardt et al. [7], has been shown to describe the irregularity and
self-similarity of fault signals both locally and as a whole. Furthermore, the method can
quantitatively reflect the fractal characteristics of fault signals in different states, and thus
carry out fault diagnosis. Building upon this, Lin et al. [8] used this technique to effectively
extract gearbox fault features and achieve the separation of similar fault modes. Mean-
while, Li et al. [9] demonstrated how MFDFA could extract multiple fractal characteristics
of vibration signals, and used this method to effectively distinguish fault states. However,
MFDFA is disadvantaged by a local trend term which cannot be accurately removed. To
solve this problem, Martínez et al. [10], Lai et al. [11] and others introduced polynomial
trigonometric functions to improve the analysis of multiple fractal detrend fluctuations, and
achieved good results from this approach. Therefore, with a view to obtain more accurate
multi-fractal characteristics and to build on this previous work, this paper introduces the
EMD trend term’s automatic determination criterion for extraction from a fault signal. This
is combined with the least squares method to refit the trend term and accurately remove
it, upon which the multi-fractal analysis method of EMD-LS-MFDFA is proposed and its
accuracy verified using the binomial multi-fractal sequence (BMS) with theoretical values.
Five characteristic parameters of the multi-fractal spectra are extracted and analyzed for
centrifugal pump fault vibration signals containing normal operating conditions, slight
cavitation, moderate cavitation, severe cavitation, and a loose foot bolt. The results show
the multi-fractal spectra characteristic parameters extracted by this method could achieve
fault state separation and provide a new method for extracting fault features relevant to
centrifugal pumps.

2. A Review of the EMD-LS-MFDFA Method
2.1. EMD-LS Fitting Trend Terms

Although both EMD and LS can achieve trend term extraction [12,13], both of them
have their own shortcomings. Firstly, EMD cannot completely decompose signals, which
leads to problems including modal confusion and endpoint effects. Meanwhile, LS requires
certain prior knowledge and is more influenced by the original signal [14]. For these reasons,
this paper combines the two, using the EMD determination criterion [15] to obtain the trend
term and then perform a LS fitting. This process has the potential to overcome the defects
of modal aliasing and endpoint effects, as well as effectively avoid the original signal’s
influence on the accuracy of the LS fitting. For the original signal x(i)(i = 1, 2, · · · , N), the
fitting process of trend terms by EMD-LS can be expressed as:

x(i) =
n

∑
j=1

cj(i) + rn(i) (1)
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In Equation (1), n is the number of intrinsic mode functions (IMFs) decomposed out
of x(i) by EMD according to its own scale characteristics, cj(i) is the jth IMF component
(j = 1, 2, · · · , n), and rn(i) is the residual component of the signal.

Ideally, rn(i) is used as the final trend term of the original signal [16]. However, in
practice, it also contains some low-frequency IMF components, and if rn(i) is used as the
final trend term in isolation, there will be a large error. Therefore, if the residual component
is set as the last IMF component, given the trend term of the original signal may be the sum
of the IMF components (from Tth to the last), it can be expressed as follows:

M(i) =
n

∑
j=T

cj(i) (2)

For determining the value of T, an automatic criterion for EMD trend terms is intro-
duced, which can be written as follows:

Z =

n+1
∑

j=T

N
∑

i=0
cj(i)

N
∑

i=0
x(i)

(3)

According to the EMD theory, all means of IMF components are zero, so the theoretical
value of Z is equal to 1. Given the effect of accidental factors of actual signals, etc., a
confidence interval of 95% is taken, that is, the signals are divided into the effective IMF
components cj(i) (j = 1, 2, · · · , T − 1) and trend term M(i) by Z = 0.95. Furthermore,
M(i) is fitted into a K-ordered polynomial using the least squares theory:

w(i) =
K

∑
k=1

bkak (4)

In Equation (4), a = i/ f , bk is the trend term coefficient. To solve bk, the error function
is defined as follows, according to the least squares method:

E(h) =
N

∑
i=1

[x(i)− w(i)]2 =
N

∑
i=1

[
x(i)−

K

∑
k=0

bkak

] 2

(5)

The minimum of E(h) is solved by the principle of LS and, in Equation (5), the partial
derivative of bl(l = 0, 1, 2, · · · , K) is found and defined as 0. Then:

∂E
∂bl

=
N

∑
i=1

2

[
x(i)−

K

∑
k=0

bkak

][
−al

]
= 0 (6)

Solving the trend term coefficient matrix listed in Equation (6) allows the determination
of the value of bk, so we can obtain the fitting curve of the trend term. After that, the final
trend term extracted by EMD-LS can be stated:

R(i) = M(i)− w(i) (7)

2.2. EMD-LS-MFDFA Method

Here, EMD-LS ensures the trend terms of the vibration signal time series are accurately
obtained by MFDFA at different scales, thereby extracting the multi-fractal characteristics.
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Assuming the vibration signal time series is x(k), k = 1, 2, 3 · · · , N, the cumulative deviation
of vibration signal time series x(k) can be calculated to build a new series Y(i) as follows:

Y(i) =
i

∑
k=1

(x(k)− x) (8)

where x is the mean value of the time series.
Then, Y(i) is divided into subintervals of equal length. Said length can be expressed

as s(k + 2 ≤ s ≤ N/4), with a total of m = N/s subintervals (where N is the data length of
Y(i)). To ensure m is an integer, Y(i) is divided again from the opposite direction, that is, to
obtain 2m subintervals.

The EMD-LS method is used to fit the data of the vth subinterval to obtain Rv(i),
eliminate the vth subinterval’s local trend, and calculate the mean squared error of the vth
subinterval data with Rv(i).

When v = 1, 2 · · ·m, the mean squared error can be written as:

F2(s, v) =
1
s

s

∑
i=1
{Y[(v− 1)s + i]− Rv(i)}

2

(9)

and when v = m + 1, m + 2 · · · 2m, the mean squared error can be written as:

F2(s, v) =
1
s

s

∑
i=1
{Y[(N − (v−m))s + i]− Rv(i)}

2

(10)

For 2m intervals, find out the mean of the mean squared errors to obtain the q-order
wave function, as below:

Fq(s) =
{

1
2m

2m

∑
v=1

[F2(s, v)]
q/2
}1/q

(11)

Equation (11) has an intuitive physical definition in which different values of q describe
the effect of different degrees of volatility on the function Fq(s) [17]. The magnitude of
Fq(s) depends primarily on the fluctuation bias F2(s, v). Therefore, F2(s, v) can eliminate
the trend of each small segment by virtue of the fit of the trend term between each narrow
range, which is more conducive to the identification of the singularity of local fluctuations.

If the time series had self-similar characteristics, the wave function Fq(s) and s form
the power law relationship:

Fq(s)∝ sh(q) (12)

where h(q) is the generalized Hurst index. The resulting slope of the least squares fit
Fq(s) to the scale s is the value of h(q). When h(q) varies with the value of q, x(k) has a
multi-fractal characteristic. Otherwise, it is a single fractal characteristic.

After judging that the signals have multifractal characteristics, the relationship be-
tween the generalized Hurst index h(q) and the quality index τ(q) of signals is as follows:

τ(q) = qh(q)− 1 (13)

In addition, by using the Legendre transformation, the singularity index α and multi-
fractal spectrum f (α) describing the fractal characteristics of signals can be derived:

α = h(q) + q
dh(q)

dq
(14)

f (α) = q[α− h(q)] + 1 (15)
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3. Accuracy Analysis

The classical binomial multi-fractal sequence can be used to obtain results via the the-
oretical analytical formula [18–20]. Thus, for this work, the EMD-LS-MFDFA and MFDFA
methods were applied to process the sequence and a comparison of the computational
results verified the accuracy of the proposed technique. The classical binomial multi-fractal
sequence was generated from the following equation:

xi =

(
p

1− p

)n(i−1)

(1− p)nmax (16)

The main parameters for generating this sequence were nmax and p, while n(i) denoted
the number of 1′s in the binary representation of the ith indicator. In the next comparative
analysis, the parameters selected were p = 0.3 and nmax = 10, which generated a binomial
multi-fractal sequence of length 1024, while the length of the subintervals s was chosen
from within the range of 4 to 256.

The quality index τ(q) of this sequence was related to the parameter p and order q, as
follows:

τ(q) = − ln(pq + (1− p)q)

ln 2
(17)

Among them, the generalized Hurst index h(q), the singularity index α, and multi-
fractal spectrum f (α) were calculated using Equations (13)–(15). The results of the theo-
retical values obtained from these calculations are shown in Figure 1, which shows the
differences between the Hurst and mass indices obtained by the two different algorithms.
It is clear the EMD-LS-MFDFA method results were closer to the zero point and therefore
were more accurate.
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Figure 1. The relationship between Hurst index and quality index and theoretical value:
(a) ∆h(q) ∼ q, (b) ∆τ(q) ∼ q.

The singular exponent α and multi fractal spectral function f (α) can be obtained
from the EMD-LS-MFDFA analysis of the vibration signals. From α and f (α), important
parameters [21] can be derived to accurately describe the dynamic behavior of multiple
fractal time series. These important parameters can be used as fault signature quantities to
extract signal fault characteristics, and are described as follows:

(1) When the singular exponent α corresponds to fmax(α), the extremum point α0 can
express the irregularity of the signal, and the larger α0 is, the greater the degree of
irregularity of the signal;

(2) The larger the width of the multi-fractal spectrum ∆α = αmax − αmin, the clearer
the multi-fractal characteristics of the signal and the more substantial the signal
fluctuations. Additionally, the left endpoint αmin and right endpoint αmax correspond
to the singular indices where the fluctuation is the largest and smallest, respectively;
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(3) The multiple fractal spectral difference ∆ f = f (αmax)− f (αmin) reflects the proportion
of the peak of the signal fluctuation to that of the fluctuation stationary, and the greater
the proportion, the greater the signal volatility.

4. Experimental Setup and Fault Data

The signal data of the centrifugal pump under different working conditions were
obtained by a PXI-4472B dynamic signal acquisition instrument in the testing device, as
shown in Figure 2. The rated speed of the centrifugal pump was 3000 r/min, designed
flow rate was 23.89 m3/h, with the hydraulic head at 11.2 m, and a rotational frequency of
50 Hz. A vibration sensor was arranged vertically in the pump and motor casings, a torque
sensor between the pump and motor themselves, and an oscillation sensor on the pump
shaft +X.
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Figure 2. Laboratory centrifugal circulating water pump device.

By changing the vacuum degree in the tank, the experiments simulated cavitation
phenomena under different inlet pressures so as to collect fault vibration signals under
different cavitation degrees. With a view to guarantee the effectiveness of the final analysis
of fault signals by EMD-LS-MFDFA, the net positive suction head at the pump inlet was
calculated by using the reading of a pump inlet pressure gauge [19,20]. According to the size
of the net-positive suction head, the cavitation was divided into vibration signals without
cavitation (normal state), slight cavitation, moderate cavitation, and severe cavitation, as
shown in Table 1.

Table 1. The degree of cavitation of the pump under different valve angles.

NPSHa (m) NPSHr (m) Working Condition

10.80

9.90

Normal state
10.66 Loosened ground bolt
9.91 Normal state
7.96 Slight cavitation
4.67 Moderate cavitation
1.21 Severe cavitation
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5. Case Analysis

Taking the pump casing vibration signal as an example, two sets of data (for slight
cavitation and moderate cavitation) were intercepted at different times. Their spectrum
analysis is shown in Figure 3. As can be seen, there was a degree of overlap between the
two spectra, and indeed the distinction was extremely poor, which was not conducive to
the accurate judgment of the base signal’s characteristics.
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Figure 3. Energy spectrum of centrifugal pump vibration sensor signals.

For this reason, a set of five fault vibration signals covering a range of conditions
(normal state, slight cavitation, moderate cavitation, severe cavitation, and with a loosened
ground bolt) were collected from a centrifugal circulation pump device. The EMD-LS-
MFDFA analysis was performed for each type of fault vibration signal with a data length of
1024. To ensure the effectiveness of removing the trend term and the stability of the wave
function, the value of s was taken from the range of 4 to 256 in steps of 8 and, likewise, q was
selected from the range of−10 to 10 with steps of 0.5. The analyses of five kinds of vibration
signals of centrifugal pumps obtained by EMD-LS-MFDFA are shown in Figures 4–6.
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Figure 4 shows the relationship between the mass index τ(q) and the order of the
wave function q for the five vibration signals. As can be seen, when the centrifugal pump
was in the normal state, the nonlinear relationship between the mass index τ(q) and q
was poor. When there was a fault (whether from a state of cavitation or the foot bolt was
loosened), there was an obvious turning point between the mass index τ(q) and q, and
the nonlinear relationship became much more apparent. This highlights the multi-fractal
characteristics of the centrifugal pump in varying states. It can also be seen in Figure 4
that the multi-fractal characteristics in each fault state were stronger when there was a
fault than when in the normal state. The multiple fractal characteristics were stronger
when the foot bolt was loose than when the pump experienced some state of cavitation
and, as expected, the contrast was obvious among the varying levels of cavitation. This
demonstrates the EMD-LS-MFDFA method’s ability to directly distinguish the operating
condition of centrifugal pumps.

The relationship between the q-order-generalized Hurst indexes of the five vibration
signals is represented in Figure 5. It can be surmised from the figure that the variation
in the intrinsic dynamics of the centrifugal pump in different operating conditions led
to substantial divergences in the generalized Hurst index h(q) among the signals. Since
the generalized Hurst index h(q) was plotted as a curve with a value which decreased
as q increased, the experimental findings further prove the five vibration signals had
multi-fractal characteristics.
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Figure 6 shows the vibration signals’ multi-fractal spectra for the five types of cen-
trifugal pump. It illustrates the different shapes, positions, and value ranges which exist
among the signals from the centrifugal pump in its numerous states. The singularity index
α varies, lying across a wide range, and the multi-fractal spectrum f (α) is a single-peaked
curve which fluctuates with the singularity index α. This further indicates that the vibration
signal has multi-fractal characteristics, displaying the strongest fluctuation characteristics
when the centrifugal pump was in the state of loose foot bolts.

Based on the analysis provided by Figures 4–6, the signal characteristics which were
derived can be described by the parameters of the singularity index α, the width of the
multi-fractal spectrum ∆α, and the difference of the multi-fractal spectrum ∆ f . As per
Table 2, when the centrifugal pump was in the normal state, the values of ∆α, ∆ f , α0, αmax
and αmin were at their lowest. These values were significantly higher when there was a fault
than in the normal state. Therefore, the five extracted characteristic parameters can be used
to effectively distinguish between the normal state and the fault states of the centrifugal
pump.

Table 2. Characteristic parameters of the vibration signals of the centrifugal pump.

Characteristic
Parameter

Normal
State

Slight
Cavitation

Moderate
Cavitation

Severe
Cavitation

Loosened
Ground Bolt

∆α 0.0531 0.1207 0.1094 0.1313 0.2363
∆ f 0.1058 0.1868 0.1966 0.2516 0.3347
α0 0.0680 0.1094 0.1378 0.1951 0.2013

αmax 0.1050 0.1958 0.2178 0.3032 0.3828
αmin 0.0519 0.0751 0.1084 0.1719 0.1465

In order to verify the accuracy and stability of the five characteristic parameters of
the fault diagnosis of centrifugal pump cavitation and foot bolt loosening, ten segments
from each of the five states of centrifugal pump data were selected for further analysis.
Each segment was numbered (denoted by L), had a length of 1024, and their characteristic
parameters were obtained by using EMD-LS-MFDFA. The results are shown in Figure 7,
and the mean values and mean square deviations are provided in Table 3.

Table 3. Statistical data of the characteristic parameters of the centrifugal pump vibration signals.

Signal Type
Characteristic Parameter

∆α ∆f α0 αmax αmin

Normal state
Mean value 0.0327 0.1457 0.0723 0.1045 0.0734

Mean square error 0.0198 0.0653 0.0116 0.0105 0.0282

Slight cavitation Mean value 0.1199 0.2298 0.1110 0.2005 0.0806
Mean square error 0.0157 0.0353 0.0054 0.0054 0.0141

Moderate cavitation
Mean value 0.0863 0.2821 0.1293 0.2066 0.1202

Mean square error 0.0124 0.0772 0.0122 0.0141 0.0212

Severe cavitation
Mean value 0.1502 0.3117 0.1615 0.2820 0.1317

Mean square error 0.0399 0.0772 0.0198 0.0363 0.0272

Loosened ground bolt Mean value 0.2588 0.4385 0.1990 0.4089 0.1502
Mean square error 0.0358 0.0623 0.0068 0.0363 0.0085
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As can be seen from Figure 7 and Table 3, the mean values of the five multiple fractal
spectra characteristic parameters of the centrifugal pump vibration signal were much
higher than their normal state equivalents. Notably, the mean values of ∆α, ∆ f , α0, αmax,
and αmin were higher than the values of the varying cavitation states, and the signal was
more irregular when the pump was in the state defined by a loose foot bolt and could be
distinguished. For each fault state of the centrifugal pump, the characteristic parameters
∆α, ∆ f and αmin produced large oscillations and displayed poor stability, resulting in poor
differentiation. For α0 and αmax, they had a smaller mean square deviation, meaning they
demonstrated less volatility and possessed better stability than the other parameters.

Figure 8 illustrates the contrast between the MFDFA and EMD-LS-MFDFA methods
in terms of selecting and distinguishing the five vibration signals of centrifugal pumps,
focusing on the parameters α0 and αmax. As per Figure 8a,b, α0 and αmax of the MFDFA
method can identify the normal and fault state vibration signals, but cannot effectively do
the same for the various fault states, while from Figure 8c,d, it can be seen that for different
state vibration signals, the contrast generated by α0 using the EMD-LS-MFDFA method
was the best. However, there was partial overlap between the αmax values when there was
slight and moderate cavitation, and the difference between αmax values was only 0.0061
at its minimum, which will have had some effect on the distinction between slight and
moderate cavitation. Nevertheless, the αmax of the EMD-LS-MFDFA method still achieved
a better level of distinction between the normal and fault states compared to the MFDFA
method. In summary, the multiple fractal spectrum parameters ∆α, ∆ f , α0, αmax and αmin
obtained by the EMD-LS-MFDFA method have been demonstrated to be very sensitive to
the changes of centrifugal pump fault states, and can effectively discern normal and fault
operating states. Of these parameters, α0 and αmax performed better than the remainder in
terms of separating the different fault states. Consequently, these parameters (α0 and αmax)
can be selected to determine the fault characteristic quantities of centrifugal pumps.
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Figure 8. Classification and comparison of centrifugal pump vibration signals by α0 and αmax of
different methods: (a) α0 from MFDFA, (b) αmax from MFDFA, (c) α0 from EMD-LS-MFDFA, (d) αmax

from EMD-LS-MFDFA.

6. Conclusions

As has been detailed thus far, the EMD-LS-MFDFA method was proposed in this study
as an alternative for processing pump vibration signals, and the reported results led to the
following conclusions:

(1) Compared to the MFDFA method, the EMD-LS-MFDFA method produced results
closer to the multiple fractal characteristics of BMS theory, and had more accurate
analysis capabilities;

(2) All centrifugal pump vibration signals showed multiple fractal characteristics. Normal
vibration signals were relatively stable and irregularity in them was low, while signals
associated with severe cavitation and anchor bolt loosening fault vibration were more
intense, and irregularity was higher. Of these types, the loose foot bolt fault signal was
the most irregular of all, so the multiple fractal characteristics of this fault state were
notably stronger than those of the normal state, and its multiple fractal characteristics
were also stronger than those of a state of cavitation, irrespective of degree.

(3) The multiple fractal spectral characteristic parameters ∆α, ∆ f , α0, αmax, and αmin
effectively distinguished between the normal and fault states of a centrifugal pump.
When the stability of α0 and αmax was better, compared to the α0 and αmax parameters
extracted by MFDFA, they were able to separate the different fault states of centrifugal
pumps more accurately, so the EMD-LS-MFDFA method can be used as a new means
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of extracting centrifugal pump fault features. The extracted feature parameters can
be used as fault characteristics to quantify the different working states of centrifugal
pumps.
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