Physicochemical Study of Albumin Nanoparticles with Chlorambucil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of BSA NPs
2.3. Encapsulation Efficiency and Drug Release Study
2.4. Structural and Morphological Characterization of BSA NPs
2.5. Circular Dichroism (CD) Measurements
2.6. Emission Fluorescence and Absorption Measurements (Qualitative and Quantitative Studies)
2.7. Statistics
3. Results
3.1. Characterization of Nanoparticles, Determination of Encapsulation Efficiency and In Vitro Drug Release
3.2. Circular Dichroism (CD) Measurements
3.3. Emission Fluorescence and Absorption Spectra Measurements for Qualitative Research
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, C.; Huang, H.; Dong, Y.; Sui, X.; Jian, B.; Zhu, W. A Comparative Study of the Use of Mesoporous Carbon and Mesoporous Silica as Drug Carriers for Oral Delivery of the Water-Insoluble Drug Carvedilol. Molecules 2019, 24, 1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchonwanit, P.; Thammarucha, S.; Leerunyakul, K. Minoxidil and its use in hair disorders: A review. Drug Des. Devel. Ther. 2019, 13, 2777–2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El Hady, W.E.; Mohamed, E.A.; Soliman, O.A.E.; El-Sabbagh, H.M. In vitro-in vivo evaluation of chitosan-PLGA nanoparticles for potentiated gastric retention and anti-ulcer activity of diosmin. Int. J. Nanomed. 2019, 14, 7191–7213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.P.; Singh, B.G.; Kunwar, A.; Priyadarsini, K.I. Interaction of a Model Hydrophobic Drug Dimethylcurcumin with Albumin Nanoparticles. Protein J. 2019, 38, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe Nanoparticles: Are We There Yet? Int. J. Mol. Sci. 2020, 22, 385. [Google Scholar] [CrossRef]
- Seixas, N.; Ravanello, B.B.; Morgan, I.; Kaluđerović, G.N.; Wessjohann, L.A. Chlorambucil Conjugated Ugi Dendrimers with PAMAM-NH₂ Core and Evaluation of Their Anticancer Activity. Pharmaceutics 2019, 1, 59. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, H.; Li, P.; Liu, C.; Bai, Y.; Pang, J.; Wang, J.; Tian, W. A dual drug-based hyperbranched polymer with methotrexate and chlorambucil moieties for synergistic cancer chemotherapy. Polym. Chem. 2020, 11, 5810–5818. [Google Scholar] [CrossRef]
- Saufi, A.N.M.; Ridzwan, N.F.W.; Mohamad, S.B.; Tayyab, S.; Halim, A.A.A. Fluorometric and Docking Analysis of the Complex Formation between an Anti-Cancer Drug, Chlorambucil and Bovine Serum Albumin. Indian J. Pharm. Educ. Res. 2019, 53, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Dandrieux, J.R.; Noble, P.J.; Scase, T.J.; Cripps, P.J.; German, A.J. Comparison of a chlorambucil-prednisolone combination with an azathioprine-prednisolone combination for treatment of chronic enteropathy with concurrent protein-losing enteropathy in dogs: 27 cases (2007–2010). J. Am. Vet. Med. Assoc. 2013, 242, 1705–1714. [Google Scholar] [CrossRef]
- Piazzini, V.; Landucci, E.; D’Ambrosio, M.; Tiozzo Fasiolo, L.; Cinci, L.; Colombo, G.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Luceri, C.; Bergonzi, M.C. Chitosan coated human serum albumin nanoparticles: A promising strategy for nose-to-brain drug delivery. Int. J. Biol. Macromol. 2019, 129, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Ciepluch, K.; Biehl, R.; Bryszewska, M.; Arabski, M. Poly(propylene imine) dendrimers can bind to PEGylated albumin at PEG and albumin surface: Biophysical examination of a PEGylated platform to transport cationic dendritic nanoparticles. Biopolymers 2020, 111, 23386. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 2019, 34, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Quan, J.; Zhang, M.; Yung, B.C.; Cheng, X.; Liu, Y.; Lee, Y.B.; Ahn, C.H.; Kim, D.J.; Lee, R.J. Lipid-Albumin Nanoparticles (LAN) for Therapeutic Delivery of Antisense Oligonucleotide against HIF-1α. Mol. Pharm. 2016, 13, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Notabi, M.K.; Arnspang, E.C.; Andersen, M.Ø. Antibody conjugated lipid nanoparticles as a targeted drug delivery system for hydrophobic pharmaceuticals. Eur. J. Pharm. Sci. 2021, 161, 105777. [Google Scholar] [CrossRef]
- Amighi, F.; Emam-Djomeh, Z.; Labbafi-Mazraeh-Shahi, M. Effect of different cross-linking agents on the preparation of bovine serum albumin nanoparticles. J. Iran. Chem. Soc. 2020, 17, 1223–1235. [Google Scholar] [CrossRef]
- Delrue, I.; Verzele, D.; Madder, A.; Nauwynck, H.J. Inactivated virus vaccines from chemistry to prophylaxis: Merits, risks and challenges. Expert Rev. Vaccines 2012, 11, 695–719. [Google Scholar] [CrossRef] [Green Version]
- Dreis, S.; Rothweiler, F.; Michaelis, M.; Cinatl, J., Jr.; Kreuter, J.; Langer, K. Preparation, characterization and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int. J. Pharm. 2007, 341, 207–214. [Google Scholar] [CrossRef]
- Mazzaferro, E.M.; Edwards, T. Update on Albumin Therapy in Critical Illness. Vet. Clin. N. Am. Small Anim. Pract. 2020, 50, 1289–1305. [Google Scholar] [CrossRef]
- Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; von Briesen, H.; Schubert, D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 2003, 12, 169–180. [Google Scholar] [CrossRef]
- Yedomon, B.; Fessi, H.; Charcosset, C. Preparation of Bovine Serum Albumin (BSA) nanoparticles by desolvation using a membrane contactor: A new tool for large scale production. Eur. J. Pharm. Biopharm. 2013, 85, 398–405. [Google Scholar] [CrossRef]
- Bruschi, M.L. Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Kutchukian, P.S.; Yang, J.S.; Verdine, G.L.; Shakhnovich, E.I. All-atom model for stabilization of alpha-helical structure in peptides by hydrocarbon staples. J. Am. Chem. Soc. 2009, 131, 4622–4627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onafuye, H.; Pieper, S.; Mulac, D.; Cinatl, J., Jr.; Wass, M.N.; Langer, K.; Michaelis, M. Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein J. Nanotechnol. 2019, 14, 1707–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kufleitner, J.; Worek, F.; Kreuter, J. Incorporation of obidoxime into human serum albumin nanoparticles: Optimization of preparation parameters for the development of a stable formulation. J. Microencapsul. 2010, 27, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Cao, S.; Yang, Z.; Zhang, S.; Zhang, Q.; Jiang, X. Preparation,-Characterization and Anti-Glioma Effects of Docetaxel-Incorporated Albumin-Lipid Nanoparticles. J. Biomed. Nanotechnol. 2015, 11, 2137–2147. [Google Scholar] [CrossRef]
- Kufleitner, J.; Wagner, S.; Worek, F.; von Briesen, H.; Kreuter, J. Adsorption of obidoxime onto human serum albumin nanoparticles: Drug loading, particle size and drug release. J. Microencapsul. 2010, 27, 506–513. [Google Scholar] [CrossRef]
- Kim, B.; Seo, B.; Park, S.; Lee, C.; Kim, J.O.; Oh, K.T.; Lee, E.S.; Choi, H.G.; Youn, Y.S. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers. Colloids Surf. B Biointerfaces 2017, 158, 157–166. [Google Scholar] [CrossRef]
- Ma, P.; Mumper, R.J. Paclitaxel Nano-Delivery Systems: A Comprehensive Review. J. Nanomed. Nanotechnol. 2013, 4, 1000164. [Google Scholar] [CrossRef] [Green Version]
- Yellepeddi, V.K.; Joseph, A.; Nance, E. Pharmacokinetics of nanotechnology-based formulations in pediatric populations. Adv. Drug Deliv. Rev. 2019, 151, 44–55. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/comments/overview-comments-received-pegylated-liposomal-doxorubicin-hydrochloride-concentrate-solution-2-mg/ml-product-specific-bioequivalence-guidance-ema/chmp/800775/2017_en.pdf (accessed on 1 April 2022).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/product-information/optison-epar-product-information_en.pdf (accessed on 1 April 2022).
- Wilson, B.; Ambika, T.V.; Patel, R.D.; Jenita, J.L.; Priyadarshini, S.R. Nanoparticles based on albumin: Preparation, characterization and the use for 5-flurouracil delivery. Int. J. Biol. Macromol. 2012, 51, 874–878. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Niu, Y.; Zhu, W.; Zhang, Y.; Yu, L.; Li, X. Liposomes assembled from a dual drug-tailed phospholipid for cancer therapy. Chem. Asian. J. 2015, 10, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Paladugu, L.; Priyadarshini, S.R.; Jenita, J.J. Development of albumin-based nanoparticles for the delivery of abacavir. Int. J. Biol. Macromol. 2015, 81, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Tong, H.H.Y.; Chow, S.F. In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of a Novel Method. Pharmaceutics 2020, 12, 732. [Google Scholar] [CrossRef]
- Modi, S.; Anderson, B.D. Determination of Drug Release Kinetics from Nanoparticles: Overcoming Pitfalls of the Dynamic Dialysis Method. Mol. Pharm. 2013, 10, 3076–3089. [Google Scholar] [CrossRef]
- Yao, H.; Wynendaele, E.; Xu, X.; Kosgei, A.; De Spiegeleer, B. Circular dichroism in functional quality evaluation of medicines. J. Pharm. Biomed. Anal. 2018, 5, 50–64. [Google Scholar] [CrossRef]
- Morozova, O.V.; Pavlova, E.R.; Bagrov, D.V.; Barinov, N.A.; Prusakov, K.A.; Isaeva, E.I.; Podgorsky, V.V.; Basmanov, D.V.; Klinov, D.V. Protein nanoparticles with ligand-binding and enzymatic activities. Int. J. Nanomed. 2018, 13, 6637–6646. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, C.; Maiti, S.; Mustafi, M.; Kuchlyan, J.; Banik, D.; Kundu, N.; Dhara, D.; Sarkar, N. Effect of Encapsulation of Curcumin in Polymeric Nanoparticles: How Efficient to Control ESIPT Process? Langmuir 2014, 30, 10834–10844. [Google Scholar] [CrossRef]
- Banerjee, C.; Ghosh, S.; Mandal, S.; Kuchlyan, J.; Kundu, N.; Sarkar, N. Exploring the Photophysics of Curcumin in Zwitterionic Micellar System: An Approach to Control ESIPT Process in the Presence of Room Temperature Ionic Liquids (RTILs) and Anionic Surfactant. J. Phys. Chem. B 2014, 118, 3669–3681. [Google Scholar] [CrossRef]
- Adhikary, R.; Carlson, P.J.; Kee, T.W.; Petrich, J.W. Excited-State Intramolecular Hydrogen Atom Transfer of Curcumin in Surfactant Micelles. J. Phys. Chem. B 2010, 114, 2997–3004. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.G.; de Melo-Diogo, D.; Lima-Sousa, R.; Correia, I.J. IR780 loaded sulfobetaine methacrylate-functionalized albumin nanoparticles aimed for enhanced breast cancer phototherapy. Int. J. Pharm. 2020, 30, 119346. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Liu, S.; Cao, S.; Yin, S.; Zhou, C.; Gao, S.; Jia, C.; Ji, Y.; Liu, Y. Self-assembled bovine serum albumin nanoparticles as pesticide delivery vectors for controlling trunk-boring pests. J. Nanobiotechnol. 2020, 18, 165. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xiao, Q.R.; Wang, Y.; Jiang, Y. Roles of alcohol desolvating agents on the size control of bovine serum albumin nanoparticles in drug delivery system. J. Drug Deliv. Sci. Technol. 2018, 47, 193–199. [Google Scholar] [CrossRef]
- Bronze-Uhle, E.S.; Costa, B.C.; Ximenes, V.F.; Lisboa-Filho, P.N. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol. Sci. Appl. 2016, 10, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Owczarzy, A.; Zięba, A.; Pożycka, J.; Kulig, K.; Rogóż, W.; Szkudlarek, A.; Maciążek-Jurczyk, M. Spectroscopic Studies of Quinobenzothiazine Derivative in Terms of the In Vitro Interaction with Selected Human Plasma Proteins. Part 1. Molecules 2021, 26, 4776. [Google Scholar] [CrossRef]
- Maciążek-Jurczyk, M.; Morak-Młodawska, B.; Jeleń, M.; Kopeć, W.; Szkudlarek, A.; Owczarzy, A.; Kulig, K.; Rogóż, W.; Pożycka, J. The Influence of Oxidative Stress on Serum Albumin Structure as a Carrier of Selected Diazaphenothiazine with Potential Anticancer Activity. Pharmaceuticals 2021, 14, 285. [Google Scholar] [CrossRef]
Sample Name | Encapsulation Efficiency (%) |
---|---|
BSA CLB-0.25 NPs | 95.23 ± 1.16 |
BSA CLB-0.5 NPs | 90.08 ± 0.86 |
BSA CLB-1 NPs | 99.68 ± 0.06 |
BSA CLB-1.5 NPs | 97.63 ± 0.03 |
BSA CLB-2 NPs | 98.85 ± 0.16 |
Zero-Order Model | First-Order Model | Korsmeyer–Peppas Model | |||||
---|---|---|---|---|---|---|---|
R2 | K | R2 | K | R2 | K | n | |
BSA CLB-0.25 NPs | 0.917 | 2.840 | 0.647 | 0.569 | 0.843 | 24.465 | 0.31 |
BSA CLB-0.5 NPs | 0.945 | 4.135 | 0.996 | 0.338 | 0.977 | 21.503 | 0.61 |
BSA CLB-1 NPs | 0.991 | 3.530 | 0.959 | 0.655 | 0.999 | 2.404 | 1.19 |
BSA CLB-1.5 NPs | 0.999 | 4.625 | 0.970 | 0.543 | 0.998 | 4.785 | 0.98 |
BSA CLB-2 NPs | 0.986 | 12.809 | 0.997 | 0.436 | 0.780 | 3.707 | 1.05 |
Sample Name | Diameter (nm) * | Median (nm) |
---|---|---|
BSA NPs | 199.6 ± 481.0 | 196 |
BSA CLB-0.25 NPs | 329.1 ± 242.0 | 302 |
BSA CLB-0.5 NPs | 346.5 ± 335.1 | 334.0 |
BSA CLB-1 NPs | 382.6 ± 401.8 | 384.5 |
BSA CLB-1.5 NPs | - ** | - ** |
BSA CLB-2 NPs | - ** | - ** |
λmin (nm) | ΘMRW (deg × cm2 × dmol−1) | λmin (nm) | ΘMRW (deg × cm2 × dmol−1) | |
---|---|---|---|---|
BSA | 208.0 | −16,304.5 | 219.0 | −15,269.0 |
CLB–BSA | 209.0 | −36,787.1 | 220.0 | −34,050.2 |
BSA NPs | - | - | - | - |
BSA CLB-0.25 NPs | 210.8 | −355.9 | 221.6 | −888.5 |
BSA CLB-0.5 NPs | 209.6 | −4688.9 | 221.2 | −4831.8 |
BSA CLB-1 NPs | 209.0 | −15,587.3 | 220.0 | −14,306.7 |
BSA CLB-1.5 NPs | 210.0 | −49.7 | 220.2 | −58.7 |
BSA CLB-2 NPs | 210.0 | −1807.7 | 221.4 | −2015.3 |
CLB | - | - | - | - |
% α-Helix | % β-Sheet | % Turn | % Random | |
---|---|---|---|---|
BSA | 36.8 | 13.2 | 21.0 | 29.1 |
CLB–BSA | 37.5 | 13.1 | 21.9 | 29.3 |
BSA NPs | 0.0 | 4.0 | 41.4 | 54.4 |
BSA CLB-0.25 NPs | 100.0 | 0.0 | 0.0 | - |
BSA CLB-0.5 NPs | 45.8 | 0.0 | 25.0 | 29.2 |
BSA CLB-1 NPs | 36.7 | 13.2 | 21.5 | 28.7 |
BSA CLB-1.5 NPs | 20.0 | 0.0 | 80.0 | 0.0 |
BSA CLB-2 NPs | 61.7 | 0.0 | 17.2 | 21.1 |
CLB | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulig, K.; Ziąbka, M.; Pilarczyk, K.; Owczarzy, A.; Rogóż, W.; Maciążek-Jurczyk, M. Physicochemical Study of Albumin Nanoparticles with Chlorambucil. Processes 2022, 10, 1170. https://doi.org/10.3390/pr10061170
Kulig K, Ziąbka M, Pilarczyk K, Owczarzy A, Rogóż W, Maciążek-Jurczyk M. Physicochemical Study of Albumin Nanoparticles with Chlorambucil. Processes. 2022; 10(6):1170. https://doi.org/10.3390/pr10061170
Chicago/Turabian StyleKulig, Karolina, Magdalena Ziąbka, Kacper Pilarczyk, Aleksandra Owczarzy, Wojciech Rogóż, and Małgorzata Maciążek-Jurczyk. 2022. "Physicochemical Study of Albumin Nanoparticles with Chlorambucil" Processes 10, no. 6: 1170. https://doi.org/10.3390/pr10061170
APA StyleKulig, K., Ziąbka, M., Pilarczyk, K., Owczarzy, A., Rogóż, W., & Maciążek-Jurczyk, M. (2022). Physicochemical Study of Albumin Nanoparticles with Chlorambucil. Processes, 10(6), 1170. https://doi.org/10.3390/pr10061170