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Abstract: Multi-equipment multi-process frequent scheduling under complex constraints is at the
root of a large number of idle time fragments and transport waiting time in multi-equipment pro-
cesses. To improve equipment utilization and reduce idle transportation time, a production process
optimization scheduling algorithm with “minimum processing time and minimum transportation
time” is proposed. Taking into account factors such as product priority, equipment priority, process
priority, and overall task adjustment, the scheduling optimization is carried out through a hybrid
algorithm combining a one-dimensional search algorithm and a dual NSGA-II algorithm. Compared
with other algorithms, the scheduling algorithm proposed in this article not only shortens the mini-
mum processing time but also strives to maximize the utilization rate of each piece of equipment,
reducing the processing time of the enterprise by 8% or more, while also reducing the overall trans-
portation time and indirectly reducing costs. The superiority of this algorithm is verified through
practice, showing that that the complexity of the scheduling process is lower, and it is feasible in
actual operation.

Keywords: compound constraints; multi-equipment; collaborative operation; scheduling; hybrid
algorithm

1. Introduction

Optimization of complex and variable manufacturing processes is an important basis
for achieving Made in China 2025, carbon neutrality, and carbon peak targets [1–3]. Multi-
equipment collaborative (MEC) operation in manufacturing processes is an important
way to realize product diversification and small batch production. MEC operation is an
important form of production process, which has become an effective way to improve
equipment utilization ratios and reduce energy consumption [4,5].

For optimized scheduling of the production process, scholars have proposed many
genetic algorithms, including particle swarm algorithms, NSGA algorithms, super-heuristic
algorithms, hybrid algorithms, etc. [6–11]. Zhou et al. introduced new operators for dy-
namic programming based on the decomposed multi-objective evolution algorithm and
verified its superiority through experiments [12]. Zhu et al. proposed a multi-objective
optimal foraging algorithm based on fuzzy relative entropy to solve the scheduling prob-
lem for a workshop assembly line and compared it with various other algorithms [13].
Shao et al. proposed and verified an efficient iterative greedy algorithm that improves the
heuristic algorithm to solve the distributed workshop scheduling problem [14]. Li et al.
established an improved artificial immune system algorithm and validated the solution
process for flexible workshop scheduling [15]. Chen et al. studied and verified a multi-
objective dynamic flexible-operation workshop scheduling situation with regard to machine
faults, using an NSGA-II algorithm [16]. Rakovitis et al. added flexible coefficients to the
improved cell-specific temporal representation to solve flexible workshop scheduling prob-
lems and compared its advantages with other algorithms [17]. Gong et al. proposed an
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elite non-dominant ranking hybrid algorithm for solving the multi-objective shop tuning
problem [18]. Jiang et al. proposed an improved decomposition-based multi-objective
evolution algorithm for solving shop-floor green scheduling [19]. Xin et al. designed an
improved discrete whale swarm optimization algorithm to solve the problem of work-
shop scheduling [20]. Sun et al. proposed an effective hybrid co-evolution algorithm that
combines genetic algorithms with particle swarm optimization algorithms to solve the
flexible scheduling problem in manufacturing systems [21]. Zhang et al. used advanced
metaheuristics make dynamic job shop scheduling decisions [22]. Chen et al. proposed a
hyper-heuristic genetic algorithm for network-based physical systems and validated it in
steel production scheduling [23]. Gao et al. developed a hybrid genetic algorithm (hGA)
with an innovative local search procedure (bottleneck shifting) for job shop scheduling
problems [24]. Moin et al. proposed and verified a hybrid genetic algorithm with multi-
parent crossover for job shop scheduling problems [25]. Zhao et al. proposed a piecewise
cooperative genetic algorithm and solved multi-production-cell collaborative scheduling
problems in parallel manufacturing [26]. Peng et al. proposed a hybrid evolutionary
algorithm (HEA) for solving the multi-depot green vehicle routing problem [27,28].

A workshop schedule is carried out in a workshop, which is essentially different from
the MEC process. An MEC process may use a combination of equipment types in a single
workshop or the collaboration of multiple types of equipment in other workshops. A
hybrid algorithm combining a one-way search algorithm and a double NAGA-II algorithm
is proposed to solve the problem of large amounts of fragmentation time and transport
waiting caused by multi-equipment simultaneous use under complex constraints. It is
found that the proposed method can effectively improve the speed and accuracy of multi-
equipment cooperative operation.

2. MEC Process
2.1. MEC Collaborative Operation Process Analysis

The MEC process mainly involves the collaborative work of multiple items of equip-
ment that specifically undertake production tasks for different parts of the product within
a specific time. Multiple types of equipment are grouped or divided into tasks, according
to the production requirements [29–33].

2.2. Scheduling Requirements

The production task for each equipment item in multiple equipment processes may be
different, in the process of MEC operation. Daily tasks need to be planned independently,
whether they are the same or not. Multi-category products produced at the same time
require a number of equipment types to complete specific production tasks within a
specified time, and each equipment production process and processing method may be
different. MEC operation completes the task using different combinations. Each type of
equipment may undertake multiple operations in the process, and each operation may
involve the operator. Therefore, the joint operation of multiple types of equipment must
meet the following requirements.

Equipment.
MEC operation needs multiple items of equipment to complete combined tasks in the

specified or expected time.
FS ≥ F1 + F2 (1)

In this formula, FS is the specified time, F1 is the total processing time, and F2 is the
total transportation time.

According to the reality of production, the urgency of production tasks can be graded
such that the higher the level, the higher the priority.

T1〉T2〉T3......〉Tn (2)
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Here, T1, T2, . . . . . . . Tn represents the production task level and Ta, Tb, . . . . . . Tz is a
specific task.

Overall utilization of equipment.

0 ≤ U ≤ 1 (3)

We assume that during a fixed period of time, the same tasks for the same number of
items of equipment for the same workpiece processing the same process requirements are
consistent. The procedure’s resource requirements are MR1, MR2, ....., MRn. Then:

MR1 = MR2, ..... = MRn (4)

Suppose Task Ta is arranged in multi-equipment group A, with n sets of equipment
M1, M2, .....Mn, and suppose the task Ta is completed by pa, where p is the single-equipment
estimated time for the production quantity, the earliest unused equipment is M1, and pa〉p.
Then, pa ⊂ M1, M2, ......MN , and the task output pm for each item of equipment is shown
in Equation (5).

pm =
pa
n

(5)

When the output of a processing task is less than the capacity of a single item of equip-
ment, the task is assigned to the earliest idle item of equipment in the production group:

pa〈p, then pa ⊂ M1 (6)

2.3. Scheduling Model

The manufacturing enterprise scheduling objective mainly includes time, energy
consumption, carbon emissions, cost, etc. In this study, the product total completion
time and total transportation time are chosen as the objective for multiple equipment
collaborative scheduling. The objective function is as follows:

min f1 = min
n

∑
i=1

Fijm,x (7)

min f2 =
n

∑
i=1

S−1

∑
j=1

Xi

∑
x=1

Vall

∑
v=1

Ti,j(j+1),x,v × (FTi,j(j+1),x,v − STi,j(j+1),x,v) (8)

The objective function score f1 is the total completion time, and Fijm,x is the completion
time of the assumed process on machine M. The objective function f 2 is the transportation
time, and (FTi,j(j+1),x,v, STi,j(j+1),x,v) is the difference between the start transportation time
and the completion transportation time [34,35].

The objective function is subject to the following constraints:

(1) The completion time of the process on the machine is not less than the transportation
time from the previous process to this process, the change of tool time, and the
processing time of this process on the equipment.

FTi,j(j+1),x,v + Seti,(j+1),m,x + Pi,(j+1),m,x′Fi,(j+1),m,x′ when
Xi,(j+1),m,x′ Ti,(j+1),x,v = 1, ∀i, j, x ∈ Xi, m ∈ Mi,j+1

(9)

Among FTi,j(j+1),x,v, for transport equipment v, the whole batch of workpieces Oi,x
will be moved from stage j to stage j + 1 by the transportation completion time. Seti,(j+1),m,x
for Oi,j+1,x is the process time for machine m’s tool change, and Pi,(j+1),m,x for the whole
batch of workpieces Oi,x in stage j + 1 is the processing time on machine m, where Pi,(j+1),m,x
is the processing time on machine m for a single workpiece in stage j + 1. Fi,(j+1),m,x is the
Oi,j+1,x process completion time on machine m and Xi,j(j+1),m,x is the 0–1 decision variable:
if this is 1, the whole batch of workpieces Oi,x is in stage j + 1 processing on machine m
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(Ti,j(j+1),x,v for the 0–1 decision variable) and if it is 1, Oi,j,x is in the process of shipping
from stage j to stage j + 1 by transport equipment v. Xi represents the workpiece Oi in the
batch set and Mi,j+1 represents the workpiece Oi,x in the stage j + 1 optional machining
machine set.

(2) Any process processing time is greater than or equal to zero.

Pijm,Pijm,x . . . 0, x ∈ {1, 2, . . . , Xi}, m ∈ Mij, ∀i, j (10)

(3) All workpieces can be processed from time 0.

Sijm,x, . . . , 0, x ∈ {1, 2, . . . , Xi}, m ∈ Mij, ∀i, j (11)

3. Implementation Algorithm of Collaborative MEC Operation under Composite
Constraint
3.1. Collaborative Operation Steps of Multiple Equipments under Compound Constraints

In the scheduling process for MEC operation under compound constraints, multiple
types of equipment and each kit cycle are planned to realize production tasks as soon as
possible with limited resources and processing time. The collaborative operation procedure
is shown in Figure 1.

Figure 1. Flow chart for MEC operation steps.

3.2. MEC Grouping Algorithm

Multi-equipment groups are grouped according to equipment capacity differences,
production capacity, progress, etc., and searched using a one-dimensional algorithm. The
first step of the multi-equipment collaborative grouping algorithm is to determine whether
the multi-equipment grouping is optimal, including the multi-equipment preliminary
grouping, and to calculate whether the equipment is in full-time operation or not. The
algorithm determines the working state of multiple equipment items in one-dimensional
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space and uses searching to establish the equipment working status trend. Once the
equipment is about to become idle, it will be regrouped [36–41]. Flow chart for MEC packet
is shown in Figure 2.

Figure 2. Flow chart for MEC packet.

3.3. Design of the NSGA-II Algorithm in Multi-Equipment Group

A multi-equipment group is required to complete a set of tasks in accordance with
production objectives within a specified time frame. In essence, equipment scheduling
within a multi-equipment group is a multi-objective optimization problem. There are many
algorithms to solve multi-objective optimization problems. In this study, we chose the
widely used NSGA-II algorithm to solve the problem [42,43]. Flow chart for NSGA-II
algorithm is shown in Figure 3.

Figure 3. Flow chart for NSGA-II algorithm.
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The specific steps are as follows:

1. Parameter initialization and chromosome encoding.

MEC scheduling initializes according to the equipment and product parameters within
the program. The population size, cross-mutation probability and maximum iteration times
of the NSGA-II algorithm are given.

Each equipment group may use different equipment sets to process different products.
The processing order of products can be adjusted according to production needs. A natural
number coding algorithm based on the task and the product processing order can link all
the tasks using a natural number code, to form chromosome representations of individual
order processing tasks.

2. Initialize the population.

The chromosome size of the parent population is set to compare the randomly pro-
duced chromosomes with all existing individuals. The results of the comparison are used
to decide whether or not they should join the initial population.

3. Grade separation and crowding degree calculation.

According to the equipment task urgency, the scheduling task priority is set and
the population is classified and sorted. The more urgent the task, the more adaptive the
individual. Individual fitness is measured by crowding, which is generally expressed as a
crowding distance and is obtained by calculating the difference in the objective functions
of the corresponding points.

4. Binary league choice.

The approach of the population to the PARETO optimal solution is the basis for
ensuring the program runs effectively. A non-dominant rank comparison between the
randomly selected individuals is made continuously; the smaller individuals are selected
with unequal rank and the larger ones with uniform rank. By comparing the non-dominant
ranking of individuals, two parent individuals are selected.

5. Genetic operator.

The operation of the genetic operator on the parent population produces the off-
spring population.

6. Elite retention strategy.

Parent and child populations exist simultaneously. The excellent individuals in the
parent population and the excellent individuals in the child populations are combined to
select the new generation population. Individuals from the new generation population are
selected by comparing their non-dominant ranking and crowding degree.

7. Number of iterations test.

The algorithm terminates at the maximum number of iterations, and the result is
the output.

3.4. Process Optimization of NSGA-II Algorithm Design

In this paper, we use the NSGA-II algorithm to optimize the working procedure of the
same equipment. The algorithm flow is basically the same as for the NSGA-II algorithm in
the equipment group.

3.5. Flow Chart for the Hybrid Algorithm

The hybrid algorithm gives full play to the advantages of both NSGA-II and the one-
way search algorithm. After encoding the actual problem, the single-item search algorithm
is responsible for multi-device cooperative grouping. If the multi-equipment cooperative
grouping carried out by NSGA-II is optimal, multi-equipment cooperative grouping is
not the optimal restart search. The NSGA-II algorithm is used to optimize the allocation
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of equipment and the selection of the working procedure in the group, and whether the
state is optimal or not is decided by continuing the execution. The NSGA-II algorithm and
the one-way search algorithm are used to ensure that the multi-equipment coordinated
grouping and single-equipment allocation are in the optimal state. Flow chart for the
hybrid algorithm is shown in Figure 4.

Figure 4. Flow chart for the hybrid algorithm.
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4. Application of MEC Collaborative Operation Scheduling Algorithm under
Compound Constraints
4.1. Advantages of MEC Operation

Multi-equipment simultaneous processing with multi-process multi-products is a
common enterprise situation. The characteristics of traditional multi-equipment serial
processing and multi-equipment collaborative processing are compared as follows:

(1) The traditional multi-equipment processing production cycle is longer, as the general
product is processed in sequence. Multi-equipment collaborative operation can ef-
fectively distribute products over several equipment groups at the same time, and
can dynamically adjust equipment groups, product groups, and product processing
procedures while processing.

(2) Traditional multi-equipment processing cannot adjust the equipment combination
and processing procedure in a timely way, according to the task urgency. In order to
guarantee the whole equipment task process, multi-equipment cooperation can adjust
the equipment combination in real time, according to the processing requirements.

(3) MEC operation is based on product type, product production planning, and equip-
ment production capacity. Enterprises with multi-equipment cooperation can adjust
the supply chain according to the production needs and effectively reduce the inven-
tory cost and transportation cost. In the example in Figure 5, the serial processing
time of the production products is 80, and the collaborative operation can be adjusted
between multiple products according to the overall needs. As a result, the production
time is reduced by 80 − 56/80 × 100% = 40%.

Figure 5. Multi-product processing time chart.

4.2. Advantages of Hybrid Algorithm

The hybrid algorithm presented in this paper has the following advantages: The
hybrid algorithm combines static production planning with dynamic adjustment to find the
optimal solution quickly. The hybrid algorithm can effectively establish the product grade
and equipment grade by setting the production in layers such as the product, equipment,
process-level coding into the algorithm, and whether there is a high-level task, to sort the
re-scheduling and ensure the shortest overall time.

(1) Compared with other algorithms, the hybrid algorithm is more targeted, faster, and
less crowded, and it converges to the optimal solution quickly.

(2) The algorithm is specially designed for the multi-equipment collaborative optimiza-
tion process. The hierarchical algorithm can identify production problems quickly
and solve them quickly within the hierarchy.

4.3. Case Study

To verify the differences between algorithms, MATLAB 2014 was used for program-
ming, to set the parameters of five algorithms. Figures 6–9 shows a comparison of the
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algorithms. Figures 6 and 8 show the results for the APSO algorithm, the NSGA-II al-
gorithm and the hybrid algorithm for the objective functions F1 and F2. Figures 7 and 9
are the results for the previously mentioned hybrid algorithms and the hybrid algorithm
proposed in this paper for the objective functions F1 and F2. The advantages of the hybrid
algorithm in solving speed and stability can be seen by comparison.

Figure 6. Comparison with classical traditional algorithms for optimizing F1.

Figure 7. Comparison with mentioned hybrid algorithms for optimizing F1.
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Figure 8. Comparison with classical traditional algorithms for optimizing F2.

Figure 9. Comparison with mentioned hybrid algorithms for optimizing F2.

Taking the actual production of a workshop as an example, there are 20 machine tools
altogether in the workshop, producing four kinds of products, a, b, c, and d, which need
to be combined into product e. Product a consists of 9 processes, product b consists of
12 processes, product c consists of 7 processes, and product d consists of 15 processes.
Product e consists of products a, b, c, and d assembled via 5 processes. Figure 10 shows a
multi-equipment collaborative scheduling plan.
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Figure 10. MEC scheduling plan.

4.4. Results Compared with Related Research

In this paper, the collaborative operation scheduling of multiple production equipment
items under compound constraints was carried out. Factors such as product priority,
equipment priority, process priority, and overall task adjustment were comprehensively
considered, and a hybrid algorithm was proposed to solve the problem. Use of the hybrid
algorithm improved the utilization ratio of resources remarkably. Compared with the
traditional algorithm for multi-equipment production scheduling, the minimum processing
time and the minimum transportation time of production were ensured, the equipment
utilization ratio of the enterprise was increased by more than 10%, and the time of product
transportation was reduced by more than 15%. Some hybrid algorithms have previously
been applied in the production scheduling process [24–27]. These algorithms were practical
for the corresponding scheduling. However, these studies did not consider the particularity
of multi-equipment joint operation under compound constraints in production scheduling.
Compared with the hybrid algorithm mentioned above, the equipment utilization ratio of
the enterprise was increased by more than 8% and the time for product transportation was
reduced by more than 10%.

5. Conclusions

MEC operation scheduling under compound constraints is a complex problem that
affects the production schedule and resource utilization of enterprises. Based on the
characteristics of multi-equipment collaborative operation under compound constraints, a
hybrid scheduling algorithm was established. This method can comprehensively consider
the influence of product priority, equipment priority, operation priority, and overall task
adjustment on production scheduling, which is conducive to achieving scheduling quickly,
according to production changes and needs.

The main contributions are as follows:

1. The joint operation of multiple types of equipment under compound constraints was
proposed, and the collaborative processing process for multiple types of equipment
under compound constraints was analyzed. Considering that compound constrains
restricted the production process, the collaborative processing operation scheduling
model for multiple types of equipment under compound constraints was constructed.

2. A hybrid algorithm combining a one-dimensional search algorithm and an NSGA-II
algorithm was proposed for the collaborative grouping of multiple equipment items
and the collaborative operation optimized scheduling of equipment within multiple
equipment groups.

3. The hybrid algorithm was applied to a production scheduling process for electrome-
chanical products in multi-equipment joint production, and the proposed method
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effectively improved the utilization rate of equipment and resources and reduced the
transportation time.

Due to the different internal conditions of different industries, the research results
of this paper are limited to the application of the algorithm in the process of machining
multi-equipment cooperation. In addition, this study did not consider the characteristics
of the coordinated operation of multiple devices in different industries. Future research
could establish various hybrid algorithms with various advantages combined with the
characteristics of different industries and apply them in the process of coordinated operation
and scheduling of multiple equipment items.
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