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Abstract: Robots are being increasingly utilized for various operations in industrial and household
applications. One such application is for spray painting, wherein atomized paint particles are sprayed
on a surface to coat the surface with paint. As there are different models of robots available for
the job, it becomes crucial to select the best among them. Multi-criteria decision-making (MCDM)
techniques are widely used in various fields to tackle selection problems where there are many
conflicting criteria and several alternatives. This work focuses on selecting the best robot among
twelve alternatives based on seven criteria, among which payload, speed, and reach are beneficial
criteria while mechanical weight, repeatability, cost, and power consumption are cost criteria. Five
MCDM techniques, namely combination distance-based assessment (CODAS), complex proportional
assessment (COPRAS), combined compromise solution (CoCoSo), multi-attributive border approxi-
mation area comparison (MABAC), and višekriterijumsko kompromisno rangiranje (VIKOR) were
used for the selection while a weight calculation was performed using an objective weight calculation
technique called MEREC. HY1010A-143 was found to be the most suitable robot for spray-painting
applications by four of the five techniques used. Correlation studies showed a significant level of
correlation among all the MCDM techniques.

Keywords: robot selection; compromise solution; multi-criteria; optimization; ranking

1. Introduction

With massive progress in the field of engineering and information technology, robots
have become an integral part of industries, primarily in the automobile and manufacturing
sector. Robots are self-controlled machines which are reprogrammable and can perform
a diverse range of operations. In industries, the applications of a robot include loading,
finishing, welding, assembly, spray painting, etc. Spray painting involves directing atom-
ized paint particles toward a surface that needs to be coated [1]. The paint particles are
carried to the surface in a gaseous medium, which is usually compressed air [2]. Robots
are employed for this process primarily because of the hazardous nature of the process,
especially because of the involvement of atomized paint particles, which are damaging to
the human body. Because there are many robots available for spray painting, it becomes a
challenging task to select the most appropriate robot for the job [3].

Multi-criteria decision-making (MCDM) techniques provide us with the tools that are
required for the decision-making process when there are many criteria and alternatives
to choose from. MCDM has been employed in various domains of study where decision
making becomes crucial for selection among several alternatives based on contrasting
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criteria. Poongavanam et al. [4] conducted a comparative study between various MCDM
techniques for the selection of refrigerants in automobile air conditioning systems. Their
decision matrix consisted of fourteen alternatives and thirteen criteria, and the Shannon
entropy method was used for weight determination while the ranking was done using
an evaluation based on the distance from average solution (EDAS), multi-objective op-
timization based on ratio analysis (MOORA), and the technique for order of preference
by similarity to ideal solution (TOPSIS). Ozkaya et al. [5] used nine MCDM techniques
to rank 40 countries based on numerous criteria related to science and technology. They
also performed a comparative study of the MCDM techniques using a globally accepted
dataset, which showed significant overlap and confirmed the utility of the MCDM tech-
niques used. They stated a few advantages and disadvantages of the MCDM techniques
used in their study. Liu et al. [6] used the hybrid decision-making trial and evaluation
laboratory (DEMATEL), the analytical network process (ANP), and the višekriterijumsko
kompromisno rangiranje (VIKOR) MCDM techniques to select the best low-carbon energy
plan among four alternatives. Fifteen criteria were considered as a measure for four types
of properties. DEMATEL analysis showed interactions of various properties among each
other while ANP was used for the calculation of criteria weights. The ranks obtained
using the hybrid technique were compared with the ranks obtained using grey relational
analysis (GRA) and TOPSIS, which had also ranked the alternatives similarly. Badi et al. [7]
employed the combination distance-based assessment (CODAS) MCDM technique to select
a supplier based on four criteria among six alternatives. They made a quality decision using
the employed CODAS technique. They had considered both quantitative and qualitative
criteria for their study. The robustness of the method was verified by the same authors in
their subsequent work by comparing the results of different techniques. Popovic et al. [8]
selected the best option among 30 candidates based on six criteria. The weight calculation
was done using the stepwise weight assessment ratio analysis (SWARA) method while the
ranking was done using the combined compromise solution (CoCoSo) MCDM technique.
They also stated that the CoCoSo technique, which is a comparatively new technique, is a
highly reliable and simple technique for MCDM problems. Hamdia et al. [9] carried out a
damage assessment of reinforced buildings using a fuzzy analytic hierarchy process (AHP).

MCDM techniques are also widely used for the selection of robots for industrial appli-
cations because of the complexity and consequences associated with the process of decision
making. Chatterjee et al. [10] used MCDMs in the selection of pick-and-place robots. They
selected load capacity, maximum tip speed, repeatability, memory capacity, manipulator
reach, velocity, vendor’s service quality, program flexibility, and cost as the criteria. They
relied on VIKOR and élimination et choix traduisant la realité (ELECTRE) to carry out the
analysis. Athawale and Chakraborty [11] carried out one of the preliminary works in pick-
and-place robot selection by comparing several MCDMs. They compared the weighted
sum model (WSM), weighted product model (WPM), AHP, TOPSIS, VIKOR, ELECTRE, the
preference ranking organization method for enrichment evaluation (PROMETHEE), and
the GRA method. Athawale et al. [12] used AHP in conjunction with the VIKOR method to
select the best pick-and-place robot. For similar problems, Omoniwa [13] used the GRA
method whereas Sen et al. [14] used the PROMETHEE II. In another work, Sen et al. [15]
used the TODIM method. Parameshwaran et al. [16] developed fuzzy VIKOR and fuzzy
TOPSIS frameworks to carry out robot selection in an uncertain decision-making environ-
ment. Xue et al. [17] developed a hybrid hesitant 2-tuple linguistic-term-infused MCDM
approach for robot selection. Ghorabaee [18] developed an interval type-2 fuzzy set and
deployed it with VIKOR for robot selection. Karande et al. [19] used WSM, WPM, WASPAS,
and MOORA to solve an industrial robot-selection problem. Goswami et al. [20] used
criteria importance through inter-criteria correlation (CRITIC) for weight calculation and
employed hybrid COPRAS–ARAS and TOPSIS–ARAS methods to select the best industrial
robot based on three beneficial and two non-beneficial criteria. They further validated their
newly developed hybrid MCDM techniques using several pre-existing MCDM techniques.
Rashid et al. [21] used the BW–EDAS method to select the best robot for industrial appli-
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cations. Four criteria and five alternatives were included in the decision matrix for the
decision-making process. They also compared their results with other MCDM techniques
to validate their approach, and a sensitivity analysis was done to check the robustness
of their approach. Very recently, Kumar et al. [22] used the SWARA–CoCoSo MCDM
approach to select the best industrial robot for spray-painting applications. Three bene-
ficial and four non-beneficial criteria were chosen to decide among twelve alternatives
by various manufacturers. They concluded that Fanuc P-350iA/45 was the best choice
among the considered alternatives for their study. Choda et al. [23] very recently used an
entropy-TOPSIS approach for arc-welding robot selection. Simion et al. [24] selected the
best possible arc-welding robot by evaluating the robot’s motion, repeatability, allowable
loading moment, payload, robot mass, reach, power rating, cost, and flexibility. They used
AHP to achieve the best compromise solution. Similarly, Agarwal et al. [25] considered
payload, horizontal reach, vertical reach, repeatability, weight, power rating, cost, flexibility,
safety, welding performance, maintainability, and ease of programming as the criteria for
the evaluation of robots. They relied on the entropy method to set the weights for the
criteria and MABAC to select the appropriate robot.

As evidenced from the discussion of the literature above, MCDM techniques involve
determining the weights of all the criteria that are taken into consideration. A weighted
normalized decision matrix is considered based on the quantitative data available for each
alternative for all the criteria. Various weight-determination criteria, such as the mean
weight method, the standard deviation method, the entropy method, CRITIC, MEREC, etc.,
have been proposed in the literature. Among these methods, MEREC is the most recent
one. MEREC was proposed by Ghorabaee et al. [26], where the authors state that it is based
on the removal effect of criteria. They compared the weights calculated by their proposed
MEREC method with other pre-existing methods, such as CRITIC, the entropy method,
and the standard deviation method, to validate the effectiveness of their method. It was
observed that MEREC could successfully assign criteria weights. A correlation analysis
showed significant overlap with existing weight-determining methods.

The objective of this research was to determine the best spray-painting robot based on
the qualitative features of the robots. To avoid any bias in the decision-making process, a
newly developed objective weight allocation method called MEREC was used in this work.
To the best of our knowledge, this is the first use of MEREC for robot-selection problems.
In this work, an attempt has been made to apply the MEREC method for robot selection in
a spray-painting application. Moreover, the literature survey also revealed that there is a
dearth of works where newer methods such as CoCoSo and MABAC have been applied to
robot-selection problems. Thus, in this paper, CoCoSo and MABAC are compared with
VIKOR, a widely popular traditional MCDM method applied to robot-selection problems.
Furthermore, two other algorithms, namely CODAS and COPRAS, are also considered
in this work. The rest of the paper is arranged as follows. The next section details the
criteria weight calculation method MEREC, followed by the mathematical frameworks and
descriptions of CODAS, COPRAS, CoCoSo, MABAC, and VIKOR. The problem description
of the case study considered in this paper is discussed in Section 3. Section 4 presents
detailed discussions of the results, and finally, some conclusions based on this study are
drawn in Section 5.

2. Methodology
2.1. MEREC

Ghorabaee et al. [26] proposed a weight-determination method based on the removal
effects of criteria. While most of the other weight-determining methods check for variance
in the alternative’s performance associated with the criteria to assign the weights of the
criteria, MEREC checks for the effect of the removal of criteria to assign a weight to each
criterion. The steps involved in weight determination using MEREC as described by the
original author are stated as follows:
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Step 1: The decision matrix is constructed. The matrix will be a n × m matrix, where
m is the number of criteria and n is the number of alternatives for the problem,
and each row and column will contain a performance value associated with the
corresponding alternative and criterion. From here on, xij is the denomination used
to refer to elements in the decision matrix in the ith row and jth column.

Step 2: The decision matrix is normalized. The formula used to normalize the decision
matrix is as follows:

nx
ij =


min

k
xkj

xij
if j ∈ B

xij
max

k
xkj

if j ∈ C
(1)

where B is the set of beneficial criteria and C is the set of non-beneficial (cost)
criteria.

Step 3: The overall performance of the alternatives (Si) is calculated as

Si = ln

(
1 +

(
1
m ∑

j

∣∣∣ln(nx
ij

)∣∣∣)) (2)

Step 4: The performance of the alternatives is calculated by removing each criterion
(

S′ij
)

:

S′ij = ln

(
1 +

(
1
m ∑

k,k 6=j
|ln(nx

ik)|
))

(3)

Step 5: The absolute deviation is calculated and is summed up to calculate Ej:

Ej = ∑
i
|S′ij − Si| (4)

Step 6: The weights of the criteria are determined using the following formula:

wj =
Ej

∑k Ek
(5)

In this equation, wj is the weight assigned to each criterion for all the MCDM tech-
niques used in this paper.

2.2. CODAS

Ghorabaee et al. [27] proposed a combination distance-based assessment (CODAS)
technique to effectively solve MCDM problems in 2016. This technique considers two
measures to rank the alternatives from best to worst. The primary measure is the Euclidean
distance of the alternatives from the negative-ideal solution. This distance is associated
with the L2-norm indifference space for criteria. CODAS also considers taxicab distance,
which is associated with L1-norm indifference space for criteria. The steps as proposed by
the Ghorabaee et al. [27] are stated as follows:

Step 1: The decision matrix is constructed. The matrix will be a n × m matrix, where m is
the number of criteria and n is the number of alternatives, and each row and column
will contain a performance value associated with the corresponding alternative and
criterion.

Step 2: The decision matrix is normalized. Linear normalization is considered in CODAS.
It is calculated as follows:

nx
ij =


xij

max
i

xij
if j ∈ B

min
i

xij

xij
if j ∈ C

(6)
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Step 3: The weighted normalized decision matrix is calculated as rij = wjnij, where wj is
the weight of jth criterion.

Step 4: The negative ideal solution point is determined as follows:

ns =
[
nsj
]

1xm, where nsj = min
i

rij. (7)

Step 5: The Euclidean and taxicab distances of the alternatives are computed using the
following formulas:

Ei =

√√√√ m

∑
j=1

(
rij − nsj

)2 (8)

Ti =
m

∑
j=1

∣∣rij − nsj
∣∣ (9)

Step 6: The relative assessment matrix Ra = [hik]nxn is defined as follows:

hik = (Ei − Ek) + (ψ(Ei − Ek) x (Ti − Tk)) (10)

where k ∈ {1, 2, . . . , n}, and ψ denotes a threshold function that is either 0 or 1
depending on the necessity to compute the taxicab distance:

ψ(x) =
{

1 if | x | ≥ τ

0 if | x | < τ
(11)

where τ is set by the decision maker.
Step 7: The assessment score is computed as follows:

Hi =
n

∑
k=1

(hik) (12)

and alternatives are ranked in descending values of the assessment score.

Consequently, the alternative with the highest Hi is the best choice among the alternatives.

2.3. COPRAS

COPRAS was introduced by Zavadskas et al. [28] in 1994 as an MCDM technique to
select construction sites. It uses stepwise ranking in terms of the utility and significance of
the alternatives to rank the available alternatives. Very little computational work makes
COPRAS one of the simplest and most effective MCDM techniques currently. The steps
involved in the decision-making process are discussed as follows:

Step 1: As with all the other MCDM techniques, the first step is to define a decision matrix.
Step 2: Normalization of the decision matrix is done to transform the performance val-

ues into comparable dimensionless values. The following formula is used for
normalization in COPRAS:

nij =
xij

∑m
i=1 xij

(13)

Step 3: The weighted normalized decision matrix is calculated by multiplying the corre-
sponding weight

(
wj
)

with each element of the normalized decision matrix:

D =
[
dij
]
; dij = nijx wj (14)

Step 4: Each alternative is categorized as minimizing the (S−) and maximizing the (S+)
indices using the formulas

S+ =
k

∑
j=1

dij (15)
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S− =
n

∑
j= k+1

dij (16)

Step 5: The relative weight (Qi) of the ith alternative is calculated as follows:

Qi = S+ +
min

i
S− ∑m

i=1 S−

S− ∑m
i=1

min
1

S−

S−

(17)

Step 6: The priority order of the alternatives is ranked using the value of Qi in descending
order. The highest relative weight is the most acceptable alternative.

2.4. CoCoSo

Yazdani et al. [29] proposed a technique called the combined compromise solution
(CoCoSo) for an MCDM problem which is based on integrated simple additive weighing
and an exponentially weighted product model. Consistency and accuracy are the main
advantages of the CoCoSo decision-making process. The steps involved, as suggested by
the original authors, are as follows:

Step 1: As with all the other MCDM techniques, the first step is to determine the decision
matrix with m rows and n columns.

Step 2: A compromise normalization equation is used to normalize the decision matrix.
The formula is stated as follows:

rij =
xij −min

i
xij

max
i

xij −min
i

xij
; j ∈ B (18)

rij =
max

i
xij − xij

max
i

xij −min
i

xij
; j ∈ H (19)

Step 3: Performance indices following the grey relation generation approach and the WAS-
PAS approach are calculated as Si and Pi, respectively. The calculation formula is
stated below:

Si =
n

∑
j=1

wjrij (20)

Pi =
n

∑
j=1

(
rij
)wj (21)

Step 4: Three appraisal scores for each alternative are calculated using the following formula:

kia =
Pi + Si

∑m
i=1(Pi + Si)

(22)

kib =
Si

min
i

Si
+

Pi

min
i

Pi
(23)

kia =
(1− λ)Pi + λSi

λmax
i

Si + (1− λ)max
i

Pi
(24)

Step 5: The alternatives are calculated and ranked in descending order based on ki:

ki = (kiakibkic)
1
3 +

1
3
(kia + kib + kic) (25)
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2.5. MABAC

Pamucar et al. [30] proposed a multi-attributive border approximation area compar-
ison (MABAC) method to tackle MCDM problems. They applied their newly proposed
method for the selection of forklifts. The distance of the criterion function from the border
approximation area was used to rank the alternatives using the MABAC method. A sensi-
tivity analysis and comparison with SAW, COPRAS, TOPSIS, and MOORA were also done
to confirm the validity of the newly proposed method. The primary advantage of MABAC
as stated by the authors is the consistency, accuracy and simplicity of the mathematical
apparatus used. The steps involved in MABAC are stated below:

Step 1: The decision matrix is determined, as with all the other MCDM techniques.
Step 2: The decision matrix is normalized using the following equations:

tij =
xij − x−i
x+i − x−i

; j ∈ B (26)

tij =
xij − x+i
x+i − x−i

; j ∈ H (27)

where x+i and x+i are the maximum and minimum values of the observed criterion
in the decision matrix.

Step 3: The weighted normalized matrix is determined as

V =
[
vij
]

mxn; vij = wj.tij + wj (28)

Step 4: The border approximation area matrix is determined as

G = [gi]1xn ; gi =

(
m

∏
j=1

vij

)1/m

(29)

Step 5: The distances of the alternatives from the border approximation area are calculated
as

Q = V−G (30)

where V and G are the matrices defined in Steps 3 and 4.
Step 6: The criterion function is calculated as

Si =
n

∑
j=1

qij (31)

Alternatives are ranked in descending order by the criterion function. That is, the
highest value of the criterion function is to be ranked as 1.

2.6. VIKOR

Opricovic and Tzeng [31] developed the višekriterijumsko kompromisno rangiranje
(VIKOR) technique to solve MCDM problems involving conflicting and non-commensurable
criteria. This model proposes a compromise solution that is closest to the ideal solution with an
acceptable degree of accuracy. The steps involved in the VIKOR process are discussed below:

Step 1: The decision matrix is determined, as with the other MCDM techniques.
Step 2: The best f+i and the worst f−i performance values are determined for all criteria.
Step 3: The Sj and Rj values are calculated using the following relations:

Sj =
n

∑
i=1

wi
f+i − fij

f+i − f−i
(32)
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Rj = max
i

[
wi

f+i − fij

f+i − f−i

]
(33)

where wi is the weight of the criterion.
Step 4: The value of Qi is calculated as follows:

Qi = v
[

Si − (Si)min
(Si)max − (Si)min

]
− (1− v)

[
Ri − (Ri)min

(Ri)max − (Ri)min

]
(34)

where (Ri)max and (Ri)min represent the maximum and minimum values of Rj while
(Si)min and (Si)max represent the maximum and minimum values of Sj.
The value of v is given by the decision maker and it represents the weight of the
strategy of maximum group utility in the decision-making process. The term (1− v)
represents individual regret.

Step 5: Ranking is performed in ascending order of Qi.

3. Problem Description

Modern-day industries need to be safe, fast, efficient, and precise. Thus, most painting
applications in industrial settings now use robotic systems. However, numerous alternatives
with varying configurations and complexities are available to choose from. At times, due
to end user bias, an improper robotic system may be selected for a particular application
which could have been performed more efficiently and cost-effectively by another robot.
Often, a robotic system is selected without adequate examination of the application necessities.
Therefore, it is imperative that, while selecting an appropriate robotic system for spray-
painting applications, due consideration is given to the specifications and capabilities of
the robotic systems. These could include checking functional features such as production
rate, speed, or ability to work with different materials, or checking physical features such
as space requirements, power consumption, availability of spare parts, etc. The selection of
an appropriate robotic system from a set of viable alternatives by comparing their various
features (criteria), which may have conflicting requirements, is a typical multi-criteria decision-
making (MCDM) problem. The presence of conflicting requirements, such as high power
consumption due to high speed or high capital cost due to better brand/better efficiency,
means that spray-painting robot selection is a non-trivial problem.

An industrial spray-painting robot-selection problem was considered in this study.
The data for the analysis were collected from Kumar et al. [22]. In total, 12 robots from
six different manufacturers were considered. All the robots were capable of movement in
six degrees of freedom. Payload (P), mass (M), speed (S), repeatability (RE), reach (RC),
cost (C), and power consumption (PC) were the seven deciding factors, or criteria, for the
selection of the optimal robot. Payload (P), speed (S), and reach (RC) were the beneficial
criteria and mass (M), repeatability (RE), cost (C), and power consumption (PC) were the
cost criteria. Payload (P) was the total weight of the paint and spray gun, as well as the end
arm tooling, that the robot could lift. It was measured in kg. Speed (S) was a measure of
the robot’s productivity and was defined as the rate at which the robot could carry out the
spray-painting operation. It was measured in m/sec. Repeatability (RE) was a measure of
the robot’s ability to consistently perform the same task with minimum deviation. It was
measured in +/−mm. Reach (R) was a measure of the robot’s work envelope. It was the
distance from the centre of a robot to the fullest extension of its arm. It was measured in
mm. Cost (C) was the upfront capital investment for the procurement of the robot. It was
measured in USD. Power consumption (C) was the total electric power required to operate
the robot. It was measured in kVA.

4. Results and Discussion

Weight determination in past work was done using subjective weight-determining
techniques such as SWARA, and comparisons were made with other similar techniques such
as AHP, PIPRECIA, BWM, and FUCOM. Although subjective methods have their own merits,
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they rely heavily on the assumption that an expert decision maker is competent enough to
assign weights to each criterion without any error, which may or may not always be true.
Thus, this work focused on the application of the MCDM techniques CODAS, COPRAS,
CoCoSo, MABAC, and VIKOR for the selection of robots in a spray-painting application. The
weights of the various criteria considered in this study were calculated using an objective
weight-determining method based on the removal effect of criteria (MEREC), and all the
alternatives were ranked using the MCDM techniques discussed above.

The first step in any MCDM problem is the formulation of a decision matrix. Table 1
shows the list of 12 alternatives to choose from, based on seven different criteria. Three
of the seven criteria, namely payload (P), speed (S), and reach (RC), were required to be
maximized (beneficial criteria), while mechanical weight (M), repeatability (RE), cost (C),
and power consumption (PC) were to be minimized (cost criteria). For weight calculations,
the normalized decision matrix was calculated using Equation (1). Normalization was
done to ensure that the performance values conformed to the same standard. The overall
performance values of alternatives were calculated using Equation (2) and are shown in
Table 2. The performance value of each alternative upon removing each criterion was
calculated using Equation (3). Table 3 shows the Sij determined by the matrix. Ej, or the
absolute deviation, was calculated using Equation (4) and the weights of criteria were cal-
culated using Equation (5). It can be observed that M > RE > C > P > PC > RC > S was
the order of weight assigned to each criterion using the MEREC method. The mechanical
weight of the robot was selected as the most significant criteria for spray-painting robot
selection using the MEREC technique.

Table 1. Decision matrix consisting of various robot models and their features [22].

Manufacturer Model Alternative P S RC M RE C PC

Kawasaki
KF121 A1 12 1 2668 770 0.5 52,186 5
KJ264 A2 15 2 2640 540 0.5 58,137 7

ABB
IRB 5500-22 A3 13 1 2975 780 0.2 20,167 6
IRB 5510 A4 13 1 2600 767 0.2 12,550 5

YASKAWA
Motoman MPX-3500 A5 15 2 2700 590 0.2 39,000 3
Motoman EPX-2800 A6 20 2 2779 650 0.5 44,000 5

Haosheng HS-6-1722 A7 20 2 1722 220 0.1 54,000 4
HS-6-1640 A8 10 2 1640 185 0.1 50,000 6

Fanuc
P-250iB/15 A9 15 2 2800 530 0.2 22,500 4
P-350iA/45 A10 45 2 2606 590 0.1 25,000 3

Yooheart
HY1010A-143 A11 10 2 1430 170 0.1 23,000 3
HY1050A-200 A12 50 2 2000 520 0.1 25,000 8

Table 2. Calculations of the performance values of alternatives using MEREC.

Alternative P S RC M RE C PC Si

A1 0.83 1.00 0.54 0.99 1.00 0.90 0.64 0.03
A2 0.67 0.80 0.54 0.69 1.00 1.00 0.91 0.11
A3 0.77 0.86 0.48 1.00 0.30 0.35 0.78 0.27
A4 0.77 0.86 0.55 0.98 0.30 0.22 0.66 0.36
A5 0.67 0.60 0.53 0.76 0.30 0.67 0.38 0.37
A6 0.50 0.60 0.51 0.83 1.00 0.76 0.63 0.19
A7 0.50 0.60 0.83 0.28 0.12 0.93 0.55 0.55
A8 1.00 0.60 0.87 0.24 0.10 0.86 0.71 0.51
A9 0.67 0.67 0.51 0.68 0.40 0.39 0.55 0.36

A10 0.22 0.67 0.55 0.76 0.20 0.43 0.39 0.54
A11 1.00 0.75 1.00 0.22 0.12 0.40 0.38 0.61
A12 0.20 0.75 0.72 0.67 0.16 0.43 1.00 0.51
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Table 3. Weight calculations using MEREC.

Alternative P S RC M RE C PC

A1 0.01 0.03 0.10 0.09 0.03 0.16 0.09
A2 0.05 0.08 0.14 0.48 0.11 0.13 0.12
A3 0.24 0.26 0.35 1.05 0.13 0.15 0.25
A4 0.33 0.34 0.41 1.28 0.23 0.19 0.31
A5 0.33 0.32 0.43 1.12 0.24 0.33 0.27
A6 0.11 0.13 0.27 0.23 0.19 0.27 0.18
A7 0.49 0.50 0.56 1.33 0.35 0.54 0.49
A8 0.51 0.46 0.52 1.32 0.28 0.49 0.48
A9 0.31 0.31 0.42 1.07 0.26 0.26 0.29

A10 0.40 0.50 0.59 1.40 0.39 0.47 0.46
A11 0.61 0.58 0.61 1.62 0.43 0.53 0.53
A12 0.36 0.48 0.54 1.28 0.34 0.43 0.51
Ej 0.6441 0.3872 0.5481 7.8821 1.4014 0.9029 0.5554

Weight 0.0523 0.0314 0.0445 0.6397 0.1137 0.0733 0.0451

Ej The selection of the best robot among 12 alternatives was done using five MCDM
techniques, namely CODAS, COPRAS, CoCoSo, MABAC, and VIKOR. The procedural
steps discussed in Section 2.2 were religiously followed for the rank calculation using
CODAS. Normalization of the decision matrix was done using Equation (6). The weights
determined using MEREC were multiplied by the performance value associated with the
corresponding criterion for all available alternatives to determine the weighted normalized
matrix, as shown in Table 4. The negative ideal solution was calculated using Equation (8),
and the Euclidian and taxicab distances were calculated using Equations (9) and (10),
respectively. The H assessment matrix was determined using Equation (11) and the value
of τ was selected as x for the computation of the H values presented in Table 5. The
ranking was done in descending order of the H values computed using Equation (13).
The ranks obtained using the CODAS technique are tabulated in Table 5. According
to the CODAS technique, HY1010A-143 was the best robot in the lot for spray-painting
applications, while HS-6-1640 and HS-6-1722 were ranked 2nd and 3rd, respectively. KF121
was selected to be the least desirable for spray-painting applications according to the
CODAS technique. Similarly, robots were also ranked using COPRAS by following the
procedural steps discussed in Section 2.3. The normalization procedure was slightly
different for the COPRAS method and was done using Equation (14). The weighted
normalized matrix was determined using Equation (15). The S+ and S− values were
calculated by summing up the elements in the weighted normalized matrix under beneficial
and cost criteria, respectively, as shown in Equations (16) and (17). The relative weights
of each alternative were calculated using Equation (18) and the alternatives were ranked
in descending order of Qi. The calculation of ranks using COPRAS is shown in Table 6;
HY1010A-143 was ranked first by COPRAS while KF121 was ranked last. It can be seen
that CODAS also ranked the same two robots as the best and the worst alternatives.

Following the procedural steps discussed in Section 2.4, robots for spray-painting ap-
plications were also ranked using CoCoSo. The compromise normalization of the decision
matrix was done using Equation (19). The performance indices Si and Pi were calculated
from the weighted normalized matrix and the exponentially weighted normalized matrix,
respectively, using Equations (20) and (21). The calculations of Si and Pi are shown in
Tables 7 and 8, respectively. Three appraisal scores were calculated using these two perfor-
mance indices and Equations (22)–(24), which were aggregated together in Equation (25) to
calculate the ranking index k. The calculated values of performance indices and ranks are
presented in Table 9. Alternatives were ranked in decreasing order of k as shown in the
table. CoCoSo ranked HS-6-1722 as the best robot for spray-painting applications. CoCoSo,
as with COPRAS and CODAS, also predicted KF121 as the least favourable alternative for
spray-painting applications.
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Table 4. Normalized decision matrix for CODAS.

Alternative P S RC M RE C PC

A1 0.0125 0.0189 0.0399 0.1412 0.0114 0.0176 0.0265
A2 0.0157 0.0236 0.0395 0.2014 0.0114 0.0158 0.0185
A3 0.0136 0.0220 0.0445 0.1394 0.0379 0.0456 0.0218
A4 0.0136 0.0220 0.0389 0.1418 0.0379 0.0733 0.0255
A5 0.0157 0.0314 0.0404 0.1843 0.0379 0.0236 0.0451
A6 0.0209 0.0314 0.0416 0.1673 0.0114 0.0209 0.0270
A7 0.0209 0.0314 0.0257 0.4943 0.0948 0.0170 0.0307
A8 0.0105 0.0314 0.0245 0.5878 0.1137 0.0184 0.0237
A9 0.0157 0.0283 0.0419 0.2052 0.0284 0.0409 0.0307

A10 0.0470 0.0283 0.0390 0.1843 0.0569 0.0368 0.0436
A11 0.0105 0.0251 0.0214 0.6397 0.0948 0.0400 0.0451
A12 0.0523 0.0251 0.0299 0.2091 0.0711 0.0368 0.0169

Table 5. Rank calculations using CODAS.

Alternative Euclidean Taxicab H Rank Alternative Euclidean Taxicab H Rank

A1 0.0211 0.0338 −4.0193 12 A7 0.3652 0.4807 5.4204 3
A2 0.0650 0.0916 −2.5983 9 A8 0.4602 0.5759 7.7019 2
A3 0.0466 0.0906 −3.0066 10 A9 0.0773 0.1569 −1.9929 6
A4 0.0664 0.1188 −2.4180 8 A10 0.0835 0.2017 −1.6040 5
A5 0.0642 0.1442 −2.2923 7 A11 0.5086 0.6423 9.0798 1
A6 0.0398 0.0863 −3.2666 11 A12 0.1036 0.2070 −1.0041 4

Table 6. Weighted normalized matrix, with performance metrics and rank calculations using COPRAS.

Alternative P S RC M RE C PC S+ S− Q Rank

A1 0.0047 0.0033 0.0084 0.0105 0.0414 0.0466 0.0074 0.0164 0.1060 0.0495 12
A2 0.0058 0.0042 0.0083 0.0074 0.0414 0.0519 0.0106 0.0183 0.1113 0.0498 11
A3 0.0051 0.0039 0.0094 0.0106 0.0124 0.0180 0.0090 0.0183 0.0501 0.0883 6
A4 0.0051 0.0039 0.0082 0.0105 0.0124 0.0112 0.0077 0.0171 0.0418 0.1010 4
A5 0.0058 0.0055 0.0085 0.0080 0.0124 0.0348 0.0044 0.0199 0.0597 0.0786 7
A6 0.0078 0.0055 0.0088 0.0089 0.0414 0.0393 0.0073 0.0221 0.0969 0.0583 10
A7 0.0078 0.0055 0.0054 0.0030 0.0050 0.0482 0.0064 0.0187 0.0626 0.0747 8
A8 0.0039 0.0055 0.0052 0.0025 0.0041 0.0447 0.0083 0.0146 0.0596 0.0734 9
A9 0.0058 0.0050 0.0088 0.0072 0.0166 0.0201 0.0064 0.0196 0.0503 0.0893 5

A10 0.0175 0.0050 0.0082 0.0080 0.0083 0.0223 0.0045 0.0307 0.0432 0.1119 2
A11 0.0039 0.0044 0.0045 0.0023 0.0050 0.0206 0.0044 0.0128 0.0322 0.1217 1
A12 0.0195 0.0044 0.0063 0.0071 0.0066 0.0223 0.0116 0.0302 0.0477 0.1037 3

Table 7. Si calculations for CoCoSo.

Alternative P S RC M RE C PC Si

A1 0.0026 0.0000 0.0356 0.0105 0.0000 0.0096 0.0261 0.0845
A2 0.0065 0.0118 0.0348 0.2517 0.0000 0.0000 0.0063 0.3112
A3 0.0039 0.0079 0.0445 0.0000 0.0885 0.0610 0.0162 0.2220
A4 0.0039 0.0079 0.0337 0.0136 0.0885 0.0733 0.0243 0.2452
A5 0.0065 0.0314 0.0366 0.1993 0.0885 0.0308 0.0451 0.4381
A6 0.0131 0.0314 0.0388 0.1363 0.0000 0.0227 0.0270 0.2694
A7 0.0131 0.0314 0.0084 0.5873 0.1112 0.0067 0.0325 0.7905
A8 0.0000 0.0314 0.0060 0.6240 0.1137 0.0131 0.0207 0.8090
A9 0.0065 0.0236 0.0394 0.2622 0.0758 0.0573 0.0325 0.4973
A10 0.0457 0.0236 0.0339 0.1993 0.1011 0.0533 0.0442 0.5010
A11 0.0000 0.0157 0.0000 0.6397 0.1112 0.0565 0.0451 0.8682
A12 0.0523 0.0157 0.0164 0.2727 0.1062 0.0533 0.0000 0.5165
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Table 8. Pi calculations for CoCoSo.

Alternative P S RC M RE C PC Pi

A1 0.8550 0.0000 0.9902 0.0721 0.0000 0.8614 0.9757 3.7545
A2 0.8970 0.9696 0.9892 0.5506 0.0000 0.0000 0.9152 4.3216
A3 0.8734 0.9574 1.0000 0.0000 0.9718 0.9867 0.9550 5.7442
A4 0.8734 0.9574 0.9877 0.0853 0.9718 1.0000 0.9726 5.8481
A5 0.8970 1.0000 0.9913 0.4742 0.9718 0.9384 1.0000 6.2727
A6 0.9301 1.0000 0.9940 0.3720 0.0000 0.9178 0.9772 5.1911
A7 0.9301 1.0000 0.9286 0.9468 0.9974 0.8387 0.9853 6.6269
A8 0.0000 1.0000 0.9150 0.9842 1.0000 0.8814 0.9656 5.7462
A9 0.8970 0.9910 0.9947 0.5652 0.9549 0.9821 0.9853 6.3702

A10 0.9930 0.9910 0.9879 0.4742 0.9867 0.9769 0.9991 6.4088
A11 0.0000 0.9785 0.0000 1.0000 0.9974 0.9811 1.0000 4.9570
A12 1.0000 0.9785 0.9566 0.5795 0.9922 0.9769 0.0000 5.4837

Table 9. Rank calculations using CoCoSo (Lambda = 0.5).

Alternative ka kb kc k Rank Alternative ka kb kc k Rank

A1 0.053 2.000 0.512 1.234 12 A7 0.103 11.125 0.990 5.114 1
A2 0.064 4.835 0.618 2.416 10 A8 0.091 11.109 0.875 4.984 3
A3 0.083 4.158 0.796 2.328 11 A9 0.095 7.585 0.916 3.736 5
A4 0.084 4.461 0.813 2.460 8 A10 0.096 7.639 0.922 3.762 4
A5 0.093 6.858 0.895 3.444 7 A11 0.081 11.600 0.777 5.052 2
A6 0.076 4.573 0.729 2.424 9 A12 0.083 7.576 0.801 3.615 6

The MABAC technique was also used to rank the alternatives. Firstly, the decision
matrix was normalized using Equations (26) and (27) depending on the type of criteria. The
weights calculated with MEREC were used to calculate the weighted normalized matrix
by using Equation (28). The border approximation area matrix G was calculated using
Equation (29), as shown in Table 10, and the distances of the performance values from the
border approximation area were calculated using Equation (30). The criterion function Si
was calculated using Equation (31) and the alternatives were ranked in decreasing order of
Si, as shown in Table 11. HY1010A-143 was ranked number one by the MABAC technique,
while KF121 was ranked last.

Table 10. Weighted normalized decision matrix for MABAC.

Alternative P S RC M RE C PC

A1 0.0549 0.0314 0.0801 0.6502 0.1137 0.0828 0.0712
A2 0.0588 0.0432 0.0793 0.8914 0.1137 0.0733 0.0514
A3 0.0562 0.0393 0.0890 0.6397 0.2022 0.1343 0.0613
A4 0.0562 0.0393 0.0782 0.6533 0.2022 0.1466 0.0694
A5 0.0588 0.0628 0.0811 0.8390 0.2022 0.1040 0.0902
A6 0.0653 0.0628 0.0833 0.7760 0.1137 0.0960 0.0721
A7 0.0653 0.0628 0.0529 1.2270 0.2250 0.0799 0.0775
A8 0.0523 0.0628 0.0505 1.2637 0.2275 0.0864 0.0658
A9 0.0588 0.0550 0.0839 0.9019 0.1896 0.1306 0.0775

A10 0.0980 0.0550 0.0783 0.8390 0.2148 0.1266 0.0893
A11 0.0523 0.0471 0.0445 1.2794 0.2250 0.1298 0.0902
A12 0.1046 0.0471 0.0609 0.9124 0.2199 0.1266 0.0451

G 0.0634 0.0496 0.0702 0.8801 0.1812 0.1069 0.0703

The VIKOR MCDM technique was also used to determine the ranks of the alternatives
using the steps discussed in Section 2.6. The worst and best performance values for each
criterion were noted and Equations (32) and (33) were used to calculate the S and R values.
The Q values were calculated with the Sj and Rj values obtained using Equation (34), and
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ranking was done in ascending order of the Q values. Table 12 shows the ranks of all the
alternatives calculated using VIKOR. HY1010A-143 was selected as the best robot by the
VIKOR technique, which agreed with the CODAS, COPRAS, and MABAC techniques as
discussed above. KF121 was placed at the bottom of the ranks by VIKOR.

Table 11. Q matrix and ranks using MABAC.

Alternative P S RC M RE C PC Si Rank

A1 −0.0085 −0.0181 0.0100 −0.2299 −0.0675 −0.0241 0.0009 −0.3372 12
A2 −0.0046 −0.0064 0.0092 0.0113 −0.0675 −0.0337 −0.0189 −0.1105 8
A3 −0.0072 −0.0103 0.0188 −0.2404 0.0210 0.0274 −0.0090 −0.1997 11
A4 −0.0072 −0.0103 0.0080 −0.2268 0.0210 0.0396 −0.0009 −0.1765 10
A5 −0.0046 0.0133 0.0109 −0.0411 0.0210 −0.0029 0.0199 0.0164 7
A6 0.0019 0.0133 0.0132 −0.1041 −0.0675 −0.0109 0.0018 −0.1522 9
A7 0.0019 0.0133 −0.0173 0.3469 0.0437 −0.0270 0.0072 0.3688 3
A8 −0.0111 0.0133 −0.0196 0.3836 0.0463 −0.0206 −0.0045 0.3873 2
A9 −0.0046 0.0054 0.0138 0.0218 0.0084 0.0236 0.0072 0.0756 6

A10 0.0346 0.0054 0.0082 −0.0411 0.0336 0.0196 0.0190 0.0793 5
A11 −0.0111 −0.0024 −0.0257 0.3993 0.0437 0.0228 0.0199 0.4465 1
A12 0.0412 −0.0024 −0.0093 0.0323 0.0387 0.0196 −0.0252 0.0948 4

Table 12. Rank calculations using VIKOR.

Alternatives P S RC M RE C PC S R Q Rank

A1 12 1.2 2668 770 0.5 52,186 5.1 0.9155 0.6292 0.9911 12
A2 15 1.5 2640 540 0.5 58,137 7.3 0.6888 0.3880 0.6411 8
A3 13 1.4 2975 780 0.15 20,167 6.2 0.7780 0.6397 0.9123 11
A4 13 1.4 2600 767 0.15 12,550 5.3 0.7548 0.6261 0.8859 10
A5 15 2 2700 590 0.15 39,000 3 0.5619 0.4405 0.6048 7
A6 20 2 2779 650 0.5 44,000 5 0.7306 0.5034 0.7659 9
A7 20 2 1722 220 0.06 54,000 4.4 0.2095 0.0666 0.0618 3
A8 10 2 1640 185 0.05 50,000 5.7 0.1910 0.0602 0.0445 2
A9 15 1.8 2800 530 0.2 22,500 4.4 0.5027 0.3775 0.5135 5

A10 45 1.8 2606 590 0.1 25,000 3.1 0.4990 0.4405 0.5647 6
A11 10 1.6 1430 170 0.06 23,000 3 0.1318 0.0523 < 0.0001 1
A12 50 1.6 2000 520 0.08 25,000 8 0.4835 0.3671 0.4923 4

All the MCDM techniques employed were consistent in choosing the least preferable
robot as the KJ121 robot. Also, HY1010A-143 was ranked the best by four of the MCDM
techniques, while the two Haosheng-made robots were ranked among the top three by all
the MCDM techniques—among which four techniques ranked HS-6-1640 as the better of
the two. The ranks obtained using all the MCDM techniques are tabulated in Table 13.

Table 13. Ranks obtained using various MCDM techniques.

Alternatives CODAS COPRAS CoCoSo MABAC VIKOR

A1 12 12 12 12 12
A2 9 9 10 8 8
A3 10 10 11 11 11
A4 8 8 8 10 10
A5 7 7 7 7 7
A6 11 11 9 9 9
A7 3 3 1 3 3
A8 2 2 3 2 2
A9 6 6 5 6 5

A10 5 5 4 5 6
A11 1 1 2 1 1
A12 4 4 6 4 4
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A correlation analysis has also been done to study the overlap and mismatch in the
MCDM techniques used. The Pearson correlation coefficient was chosen as the measure
to check the association of the ranks. It is a well-established measure of correlation for
checking the linear association between two arrays. It is calculated as:

Correlation coefficient(X, Y) = ∑(x− x)(y− y)√
∑(x− x)2 ∑(y− y)2

The “correl” function of MS Excel was used to obtain the correlation coefficients shown
in Figure 1. Figure 1 shows the correlation matrix among the five techniques used. All the
techniques used showed more than 90% correlation, validating the rankings obtained in
this study.

Figure 1. Correlation matrix of the ranks obtained using various MCDMs.

From the obtained results, it was observed that the five different MCDMs selected in
this work had a high correlation in terms of the best robot predicted. This indicates that the
methods are likely to give the same best solution. In general, there was no conflict seen in
the predicted best and predicted worst robots by the different MCDMs. However, owing
to the difference in the methodology of the calculation of performance scores, the internal
ranks (except the top and bottom 1%) showed some conflicts. Nevertheless, MCDMs are
generally used only to select the best compromise solution or avoid the worst possible
solution. In this regard, all five methods were found to be reliable.

5. Conclusions

In this paper, twelve spray-painting robots were compared based on three beneficial
and four cost criteria to select the best one for the job. The MCDM techniques COPRAS,
CODAS, CoCoSo, MABAC, and VIKOR were used to tackle the selection problem. The
weights of the criteria were calculated by using an objective weight-determination technique
called MEREC. Based on the rigorous analysis, the following conclusions can be made from
the current work:

• HY1010A-143 was the best robot for spray-painting applications, followed by HS-6-1640
and HS-6-1722 according to most of the MCDM techniques used in the current work.

• KF121 was the least desirable robot for spray-painting applications.
• The MEREC weight calculation was successfully employed with diverse MCDM

techniques for the selection of industrial robots for spray-painting applications. This
method was observed to be less cumbersome as compared to subjective methods.
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• A correlation analysis showed a high degree of correlation among all five MCDM
techniques used in this analysis.

Thus, it can be concluded that the MEREC method can be applied for similar
robot/machinery selection problems, where it is desired that the weights are not affected by
the preference of the decision makers. The MEREC weights were purely qualitative, as they
are dependent on the traits and specifications of the robots. Moreover, the ranking perfor-
mance of various MCDM methods has been contrasted here, which builds high reliability
in the obtained results. This work could be further extended to include newer methods
such as MARCOS, MARICA, the Rao method, etc. Furthermore, since the methodology
is data-driven, it can be easily applied to other research problems such as site selection,
machinery selection, material selection, etc., as well.
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