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Abstract: Propylene Glycol Alginate Sodium Sulfate (PSS) is widely produced and used in medicine
as a marine drug for treating hyperlipidemia. During the sulfonation synthesis of PSS, the sulfonation
of chlorosulfonic acid is exothermic. At high temperatures, the process can easily produce a large
amount of ammonium sulfate. Ammonium sulfate adheres to PSS in crystal and participates in the
sulfonation reaction. In this study, the sulfonation process of commercial PSS was reproduced in the
laboratory using chlorosulfonic acid and formamide. We used differential scanning calorimetry and
thermogravimetric analyzer to examine the thermal stability of PSS, and we used both differential and
integral conversional methods to determine the appropriate thermokinetic models for this substance.
We also established an autocatalytic model to study the conversion limit time and the maximum
rate time of this substance. After calculation, the activation energy of this substance is no more than
60 kJ/mol, and it has other exothermic performances at different heating rates. The results help to
optimize the sulfonation process of PSS and analyze the thermal risk of PSS with ammonium sulfate.

Keywords: propylene glycol alginate; sulfonation process safety; differential scanning calorimetry;
thermogravimetric analyzer

1. Introduction

For the past 15 years, propylene glycol alginate sodium sulfate (PSS) has been a marine-
sulfated polysaccharide drug produced in large quantities in China [1]. The heparin-like
activity of the drug can reduce the viscosity of blood, has antithrombotic effects, and can
reduce peripheral vascular dilation. It has a significant impact on treating cerebrovascular
diseases [2,3]. The sulfonyl and propylene glycol groups are added by degradation, esteri-
fication, and sulfonation into the hydroxyl and carboxyl groups in Figure 1. The sodium
alginate extracted from seaweed synthesizes the final product PSS.

The typical PSS production process in commercial pharmaceutical companies is to
emulsify and acidify the raw materials, then add propylene oxide and sodium hydroxide to
the reactor for esterification under pressure. The propylene glycol alginate (PGA) formed
in the esterification reaction is fused with formamide and added to chlorosulfonic acid at
low temperatures. Then the temperature is increased to promote the sulfonation reaction
and obtain the crude PSS sample by washing and drying. Formamide is used as a reaction
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solvent because of its good solubility and high boiling point [4,5]. However, formamide
is easy to decompose into ammonium and carbon monoxide at high temperatures. The
ammonium is also easy to form a large amount of ammonium salt (ammonium sulfate
((NH4),S0y)) in an acidic environment [5]. Although the products will be dissolved and
precipitated with different concentrations of ethanol to remove sulfate salts at the end of
the process, the products are still mixed with a large amount of (NH4),SO; in the process.
This is prone to causing a thermal runaway reaction [6].
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Figure 1. Chemical mechanism diagram.

The process solves the problems of high raw material viscosity, incomplete reaction,
and low yield. However, the actual sulfonation process is a high-risk process involving
many dangerous substances, including highly corrosive chlorosulfonic acid and (NH4)»SO4.
They are prone to producing harmful gas at high temperatures, which has a substantial
risk [7-9]. In May 2012, an explosion occurred in Jiangxi Haichen Honghua Chemical Co.,
Ltd. (Jiangxi, China), where the cooling water of the condenser entered the sulfonation
kettle and reacted violently with chlorosulfonic acid to cause an explosion. In May 2005, a
chemical burn accident occurred in the production process of (NH4),SO4 workshop of a
pharmaceutical chemical enterprise with PSS production process (Henan, China), in which
(NH4)2504 was heated and decomposed into sulfur dioxide and water, causing a chemical
burn accident.

In this study, the sulfonation reaction process in the above process is performed
in the laboratory to explore the potential risks in the reaction. In addition, the thermal
stability of PSS + (NH4)>SO4 produced in the process is examined. Differential scanning
calorimetry (DSC) and thermogravimetric analysis (TG) were adopted to conduct thermal
tests. The thermokinetic models were adopted to simulate the exothermic situation of
PSS + (NH4)»SO4 under different heat-flow environments. Through the calculation results
of model fitting, the activation energy (E,) of the PSS + (NH,),SO4 was obtained. The
findings imply an optimization of the sulfonation process of PSS and establishing thermal
safety parameters for PSS + (NH4)»SO4.

2. Experimental Materials and Methods
2.1. Materials

In the laboratory reproduction of the sulfonation production process of commercial
PSS, the used raw materials and reagents include propylene glycol alginate (PGA), for-

mamide, and chlorosulfonic acid. The specific information of the reagents used is listed in
Table 1.

Table 1. Specific information of materials used.

Reagent CAS Reagent Purity Usage Manufacturers
. e Zhejiang Yinuo Biotechnology Co., Ltd.
Propylene glycol alginate(PGA) 9005-37-2 Cp 10g (Hangzhou, China)
Formamide 75-12-7 AR 100 mL Yatai Chemical Co., Ltd. (Wuxi, China)
Chlorosulfonic acid 7790-94-5 AR 30 mL Qianyan Chemical Technology Co., Ltd.

(Wuhan, China)
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2.2. Sulfonation Synthesis of PSS

At present, the commercial production methods of PSS have quite a few risk factors.
This is mainly through the hydrolysis of sodium alginate and esterification with propylene
oxide to form the propylene diester alginate. Then, the propylene diester alginate is
sulfonated with formamide and chlorosulfonic acid to form sodium diester alginate [2]. In
the second reaction, because of the immense heat released by the sulfonation reaction, the
formamide involved in the reaction can easily decompose into ammonia and CO when
heated. Ammonia can easily form (NH4),SO4 under the environment of solid acids, such
as chlorosulfonic acid.

In the experiment of reproducing sulfonation synthesis, we stirred and fused 100 mL
formamide with 10 g propylene alginate as solvent. The reaction temperature was con-
trolled at about 5 °C, and the chlorosulfonic acid was added dropwise. After dropping, we
raised the total temperature to 110 °C. A large amount of (NH4),SO4 will be formed in the
reaction. To further explore PSS + (NH4),5SO, thermal safety performance, we measured it
with an advanced calorimeter and fitted its E, with the thermokinetic model [10].

2.3. Differential Scanning Calorimetry Experiments

The DSC developed by Mettler Toledo (Mettler Toledo Co., Zurich, Switzerland)
was used to measure the heat release of PSS + (NH4)2,SO4 produced in the sulfonation
synthesis experiment under different g [11-13]. According to the physical and chemical
properties of PSS + (NHy),SOy4, the high-density alumina crucible was selected to conduct
the experience, evenly spread 5.75 + 0.06 mg of PSS + (NH4)2SOy in an identical alumina
crucible, and calorimetric experiments with different § were carried out [10]. Combined
with the suggestions of the International Federation Of Thermal Analysis And Calorimetric
Algorithms and the actual situation of DSC, we calculated five groups of experiments, set to
1.0,2.0,3.0, 5.0, and 8.0 °C/min, respectively [14-16]. The characteristic thermal parameters
of each series of experiments (including peak temperature (T}), initial temperature (Tj),
and conversion.) were obtained through multiple experiments. These important kinetic
parameters are also utilized for subsequent thermokinetic calculation.

2.4. Thermogravimetric Analysis Experiments

The TG analyzer (Mettler Toledo Co., Zurich, Switzerland) was utilized to measure the
overall mass loss of PSS + (NHy),SO, under different B [17-19]. The acidity and alkalinity
of the PSS + (NH4)»,SO, was tested, the pH value was 5.8. The alumina was chosen as
the experimental vessel in TG experiments because of its weakly acidic [20]. According to
the overall mass loss of PSS + (NH4),SO; in the experimental process. The five groups of
experiments about 2.0, 3.0, 5.0, 8.0, and 10.0 °C/min was set under the same standard air
atmosphere, respectively. The characteristic thermal parameters of each group (including
mass loss rate, mass loss, T},) were obtained through multiple experiments. These are
combined with the parameters to draw the derivative thermogravimetric curve (DTG), to
observe the thermal mass loss of PSS at different B.

2.5. Thermokinetic Analysis

For the study of the apparent E,, it is a characteristic value related to temperature.
When the E, of the substance is lower, the energy required for the reaction of the substance
is lower, which illustrates that reaction can occur easier [21,22]. Through the following
thermokinetic calculation methods, the kinetic parameters were obtained in the measure-
ment experiment to determine the value of E,. This reliable calculation method is widely
used in the thermal analysis experiments of various reactions or materials [23-25].

The Kissinger model was used to simulate the linear relationship of the data by the
Tp of the reaction and the corresponding maximum heat flow. E; of the substance and the
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determination coefficient (R?) of the linear relationship can be obtained through the slope.
The method is illustrated in Equation (1) [26,27].

B\ AR \ E1
ln(T2 =In ) RT 1)
where A is the pre-exponential factor, T is the reaction temperature, R is the ideal gas
constant (8.314 J/(mol-K)).
Further, the FWO model was utilized to analyze the conversion, time, and corre-
sponding temperature and deduces their linear relationship, The E, and R? of the lin-

ear relationship was obtained according to the slope. The method can be expressed as
Equation (2) [28,29].

IgB = lg(%a)> —2315— 0.4567% 2)

The Kissinger—Akahira-Sunose (KAS) method is derived by taking temperature as
integral and using Coats—Redfern approximation. In this method, the conversion is sub-
stituted by the relationship between the conversion rate («) and the temperature integral
to improve E,’s calculation accuracy and study the risk of the product [30,31]. The KAS
method can be expressed as Equation (3).

B[ Rk E, 1
Znﬁ_ln[EaG(a)} - 3)

o

3. Results and discussion
3.1. Process Safety of Sulfonation Synthesis of PSS

The sulfonation synthesis process of commercial PSS was performed in the laboratory.
This involved mixing propylene diester alginate with solvent formamide. A colloid with
high viscosity was formed, which is not easy to stir and has poor heat transfer. This
means uneven heating or high local heat can occur easily, as shown in Figure 2. After
the temperature was reduced to 5 °C, chlorosulfonic acid was added dropwise. In the
dropping process, chlorosulfonic acid participates in the reaction to form a sulfonation
reaction, leading to exothermic and viscosity reduction of the colloid. After dropping, we
raised the temperature to 110 °C for 3 h. During this period, the formamide involved in
the reaction can quickly decompose into ammonia and CO when heated. Ammonia can
easily form (NHy),SO, under the environment of solid acids [32]. In the meantime, a large
amount of CO was released, and the colloid could not discharge the gas quickly. This led
to many bubbles, as expressed in Figure 2, which can easily cause an increase in reactant
volume, a leak of CO, and personnel poisoning.

(b)

Figure 2. Sulfonation synthesis process 1. (a) Propylene diester alginate; (b) propylene diester

alginate add formamide; (c) after dropping chlorosulfonic acid.
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Figure 3 shows the products after experiment (PSS + (NH4);SO4) were obtained.
Then we dissolved and precipitated the products with different concentrations of ethanol
3 times to separate the sulfate salts and dry them in a drying oven for 24 h. Finally, it is
characterized by Fourier transform infrared spectrometer. Figure 4 displays the similarity
of the spectral curve between the dried sulfate salts and (NH4),SOy is 94.86%. Therefore,
the PSS is mixed with a large amount of (NH4),SO; in the production process.

(b)

Figure 3. Sulfonation synthesis process 2. (a) Temperature rise to 110 °C for reaction; (b) after the
reaction; (c¢) washed and filtered finished products.
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Figure 4. Infrared spectrum characterization.

3.2. Thermal Analysis Technology
(1) Thermal decomposition analysis by DSC

Figure 5 shows PSS + (NH4),SO; at different § in DSC curves. Table 2 details the
thermokinetic parameters (including starting temperatures Ty, Tp and Te) of the substance
during DSC experiment. PSS + (NH4),SO4 at each heating rate is stable below 130 °C.
As the temperature rises, PSS + (NH4),SO4 begins to release heat independently. Above
290 °C, the heat release ends, and the temperature change tends to be stable.
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Figure 5. DSC curves of PSS + (NHy4)»SOy at five different B.

Table 2. Characteristic temperature of PSS + (NH,),SO; in the DSC at different .

B (°C /min) Ty (°O) T, (°O) Te (°C)
1 132.7 148.5 161.7
2 146.9 165.3 182.9
3 120.5 168.5 190.7
5 174.4 183.7 213.7
8 189.5 209.3 288.7

The DSC curves at different § were compared. It can be seen that the exothermic situa-
tion of PSS + (NHy4),SO; at different § is also different. T, Te, and Ty, of PSS + (NHy)2SO4
increased with the higher B of PSS + (NH4);SO4. When the B is 1.0, 2.0, 3.0, and 5.0, the
peak value of the curve increases slowly. The largest heat flow value occurred at the j of
8.0 °C/min, the heat release is obvious, and the critical temperature parameters increase
significantly. So, the B of PSS + (NH4),50O4 has obvious effects on the initial temperature,
duration and effect of heating release [33-35].

(2) Thermal decomposition analysis by TG.

Figure 6 describes PSS + (NH4),SO4 produced in the sulfonation synthesis process at
different 8 in DTG curve. DTG curve is the first-order partial derivative of TG measured
data, indicating the DTG of the substance. In mass reduction, the DTG increased twice and
formed two mass loss peaks. Furthermore, the § varied also affect the DTG. When the
value increases, the peak value of DTG curve becomes sharper. The DTG of the substance
at the two peaks and its corresponding temperatures are T and T,. The PSS + (NH4)2SO4
was stable before 180 °C in the standard air atmosphere environment, as listed in Table 3.
After 180 °C, PSS + (NHy4),SO4 shows evident exothermic decomposition with increasing
temperature. This is because it was generated into CO and water, and the mass decreased.
So at the same temperature, when the § is higher, the mass loss rate of PSS + (NH4)2SO4
is also higher. The § value affected the temperature at which mass loss begins, the peak
temperature in the DTG curve took place at the lower temperature with the higher p. It
illustrated that at the same mass loss rate, the  value prevents an inversely proportional
trend with mass loss temperature of PSS + (NH4),5O4.
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Figure 6. DTG curves of PSS + (NH,4),SO; at five different .
Table 3. Characteristic temperature of PSS + (NH,),SO; in the DTG at different B.
Stage I Stage I1
B (°C/min) T1 (°C) DTG (mg/s) T, (°C) DTG (mg/s)
2 260.5 —0.5511 3239 —0.3587
3 268.8 —0.5252 326.9 —0.3499
5 276.6 —0.4999 3374 —0.3385
8 289.2 —0.4787 345.2 —0.3203
10 292.8 —0.4825 349.3 —0.4821

(3) Analysis of thermokinetic results

The first exothermic peak was studied, and some thermokinetic parameters of the
substance were obtained. According to the relevant research of the International Conference
on Thermal Analysis and Calorimetry, we can combine several different 8, establish the
thermokinetic model, and the E; of the material is solved by various model calculation
methods [36-38]. The Kissinger model was used to establish a linear equation and solve the
E, according to the temperature parameters. In the meantime, according to the a recorded
in the experimental process, FWO, Vyazovkin, and KAS models were used for calculation.
This was done to achieve the effect of mutual verification, reduce errors, and improve the
accuracy of the E, [39-41].

Figure 7 diagrams the linear relationship between In(B/ sz) and 1000/ T(K) by substi-
tuting 8, the exothermic peak and the system temperature corresponding to the exothermic
peak into the Kissinger model. According to the relevant results, the E, of PSS + (NH4),SO4
is 50.8418 kJ /mol, and the R? is 0.9341.

By substituting the &, the 8, and corresponding system temperature into FWO model
calculation, we select the « of 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, 0.95, and 0.99. the E,
for all the samples was calculated from the slope of the lines within the conversion range
of 0.05-0.99 are shown in Figure 8. It can be seen from the figure that the fitting degree is
not directly proportional to the E, value. The average value E, is 51.4959 k] /mol, and R?
value is 0.9562.
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Figure 7. Kissinger model at different g in DSC experiments for PSS + (NH4)»SO4.
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Figure 8. In the DSC experiment, differential analysis of PSS + (NH4),SO4 under FWO model.

The fitting results through the linear relationship between In(a) and 1/T in Vyazovkin
model is shown in Figure 9. Among them, the calculated value of E, is higher with the
decrease of the fitting degree. The average value of E, is 46.9087 k] /mol, and the R? is 0.9006.
The KAS model was used to calculate the average E, of PSS + (NHy),SO4—results are
shown in Table 4. As the value of « is less than 0.3, the value of E, is greater than 50 kJ /mol.
On the contrary, the value of E, decreases continuously and is less than 50 k] /mol when
the value of « is greater than 0.3. The average value of E, is 47.0870 k] /mol, and the R2

is 0.9417.
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Figure 9. In the DSC experiment, differential analysis of PSS + (NH4)»,SO4 under Vyazovkin model.

Table 4. E; and R? under different a based on the KAS model.

« E, (kJ/mol) R?
0.05 66.2145 0.9920
0.10 60.9222 0.9789
0.20 55.0361 0.9591
0.30 51.5291 0.9485
0.40 48.7408 0.9407
0.50 46.2739 0.9348
0.60 44.0605 0.9294
0.70 42.1805 0.9247
0.80 40.3987 0.9235
0.90 38.5649 0.9242
0.95 37.3125 0.9261
0.99 33.8099 0.9176

The E, and R? of PSS + (NH,),SO, can be obtained through the fitting calculation of
four thermokinetic models. The results show the R? is close to 1.0, and the difference of
each fitted E, is slight, which illustrates the fitting results obtained by these four methods
are relatively reasonable and scientific. Finally, Table 5 presents the fitting results of the
four thermokinetic models. The E, of PSS + (NH4),SO; is 49.0833 k] /mol.

Table 5. E, and R? values were obtained by Kissinger, FWO, Vyazovkin, and KAS methods.

E, (kJ/mol) R?
Kissinger 50.8418 0.9341
FWO 51.4959 0.9562
Vyazovkin 46.9087 0.9006
KAS 47.0870 0.9417
average value 49.0834 0.9332

3.3. Thermokinetic Parameters Determined by Autocatalytic Model

According to the DSC curve of PSS + (NH4);SO4 in the exothermic process (Figure 4).
The curves of the initial stage of the exothermic process did not overlap, and the whole
curve is biased to the side with higher temperatures. According to the empirical judg-
ment method of spectrum and a multitude of simulation experiments. It is preliminarily
concluded that the exothermic process of PSS + (NH4),SO4 in the sulfonation process
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is a two-stage autocatalytic process. The following reaction formats are considered in
Equations (4)—-(6) [42,43].

A+nB+— (n+1)B 4)
A+— B 5)
B+—C (6)

In this autocatalytic reaction process, the reaction is often accelerated with the rapid
consumption of reaction substances, and autocatalytic substances are produced at the same
time. The autocatalytic model Equation (7) is as follows:

%‘ = Koe E*/RT(q _a)nl (z+o¢"2) @)
where 111 and 72, respectively, represent the first and second stages of the reaction and z is
the autocatalytic factor.

As listed in Table 6, In different conditions B at (1, 2, 3, 5, and 8 °C/min), the rela-
tionship between the § and time and the relationship between heat release and time are
shown in Figures 10 and 11, respectively, where sim and exp represent simulation and
experimental data, respectively, comparing the model simulation with the actual DSC
curve. The fitting results of the autocatalytic model are completely scattered on the same
line as the DSC experimental data. This illustrates that the simulation results are consistent
with the experimental results. The fitting results of the autocatalytic model showed the E,
fitted by autocatalytic model was 68.43 k] /mol. Therefore, the kinetic parameters simulated
by autocatalytic model are not different from those calculated by Kissinger, FWO, and

KAS model.

Table 6. Thermokinetic evaluation of the multistage reaction models of PSS + (NH4),SO;.

PSS + (NH4),SO4 5 °C/min PSS + (NHy),SO4 8 °C/min
Autocatalysis Autocatalysis Autocatalysis Autocatalysis
A to Bl B1 to B2 AtoB1 B1 to B2
InA(In1/s) 15.2094 30.9340 18.3841 20.1172
E, (kJ/mol) 70.9749 132.3971 87.4477 100.1652
Reaction order n1 1.3955 2.4947 1.2565 1.1530
Reaction order n2 0.9987 0.5087 0.9257 0.3684
12 1
—— 1°C/min-exp e 1°C/min-sim
— 2°C/min-exp e 2°C/min-sim
1o~ — 3°C/min-exp ¢ 3°C/min-sim
2 — 5°C/min-exp ¢ 5°C/min-sim
g g 8°C/min-exp 8°C/min-sim
.5 : ® 0 00 00 0 00
ERE :
—8 : L] L] L] L] L] L]
g o
5 4 i
£ i
2- §
Jo- /
T T T T T T T T
0 50 100 150 200
Time (min)

Figure 10. Evolution of heating production of PSS + (NHy4)»SO4 thermal decomposition reaction with

time in experiment and simulation.
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Figure 11. Evolution of heating production rate of PSS + (NHy4),SO4 thermal decomposition reaction
with time in experiment and simulation.

Figure 12 shows the curve of TCL and TMR,4, where TCL depends on the temperature
of PSS + (NH4)»5S04 calculated according to the kinetic model. The dependence of time
instant is the conversion limit time when the reaction conversion reaches a predetermined
value. Therefore, estimating TCL studied the safe conversion time of the substance. Fur-
thermore, the parameters studied can evaluate the thermal stability of PSS + (NH4),SO4 to
establish the thermal safety parameters of the substance in the production process. The
results showed that in some hot areas, when the temperature reaches 42 °C, the conversion
of the substance could also reach a limit value of 200 days.
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Figure 12. Time to conversion limit (TCL) and adiabatic time to maximum rate (TMR,4) vs. tempera-
ture of PSS + (NHy),SOy.
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The estimation of dynamic model simulation (TMR,4) shows the correlation of the
maximum rate time according to the kinetic model. At present, the probability evaluation
standard of thermal runaway accidents in this regard is mainly based on the suggestions of
Stossel [44]. When TMR < 480 min, it is considered that the probability of an accident is
high. According to the simulated TMR curve, the temperature of PSS + (NH4),SO; in daily
production and use should not be higher than 63 °C.

4. Conclusions

We reproduced the sulfonation reaction in PSS production in the laboratory and
studied the thermal stability of PSS + (NH4),SO4 produced by increasing the temperature.
The experimental results of DSC show that PSS + (NH4),SO4 caused an exothermic reaction
under continuous heating. There is a positive proportional relationship between Ty, Tp,
and B. The PSS + (NH4),SO4 began decomposition after reaching 160 °C. The starting
temperature and rate of decomposition were consistent with  positive correlation. They
were reflected in the TG experiment. Because the heat released by the substance is relatively
low during the experiment, the thermal risk of this substance in daily production is not
too great. Through the fitting calculation of four reliable kinetic models (Kissinger, FWO,
Vyazovkin, and KAS models), the E, of PSS + (NH4);SOy is 49.0834 k] /mol, and the R?
is 0.9417. Since the value of E, is relatively low, the substance is easy to react to when
heated. In order to prevent the energy released after PSS + (NH4)2SO4 reaction. It is
recommended that the substances be stored separately and avoid the temperature of
the storage environment not exceeding 61 °C. The autocatalytic methods were used to
study the conversion limit time and the maximum rate of PSS + (NHy4),SOy. It provides
help for optimizing PSS production process and establishing thermal safety parameters
of PSS + (NH4),SOy4 in the future. It also provides a basis for studying the influence of
(NH4)2SO4 on the thermal stability of the system under the thermal runaway:.
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