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Abstract: Personalized Medicine (PM) is rapidly advancing in everyday medical practice. Technolog-
ical advances allow researchers to reach patients more than ever with their discoveries. The critically
ill patient is probably the most complex of all, and personalized medicine must make serious efforts to
fulfill the desire to “treat the individual, not the disease”. The complexity of critically ill pathologies
arises from the severe state these patients and from the deranged pathways of their diseases. PM
constitutes the integration of basic research into clinical practice; however, to make this possible
complex and voluminous data require processing through even more complex mathematical models.
The result of processing biodata is a digitized individual, from which fragments of information can
be extracted for specific purposes. With this review, we aim to describe the current state of PM
technologies and methods and explore its application in critically ill patients, as well as some of the
challenges associated with PM in intensive care from the perspective of economic, approval, and
ethical issues. This review can help in understanding the complexity of, P.M.; the complex processes
needed for its application in critically ill patients, the benefits that make the effort of implementation
worthwhile, and the current challenges of PM.
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1. What Is Personalized Medicine?

Personalized medicine (PM) is a concept that is increasingly referred to in medicine.
This concept is seen as a solution through which the progress of ongoing research can be
integrated into everyday medical practice. Medical research is a few steps ahead, owing to
technological advancement. New clinical hypotheses can be constructed on the basis of an
increase in data quantity and diversity. PM represents the integration of molecular data
(systems biology) with clinical data from individual patients in order to develop a more
accurate molecular taxonomy of diseases that enhances diagnosis and treatment and tailors
disease management to the individual characteristics of each patient [1].

Precision medicine is defined as “an innovative approach that considers individual dif-
ferences in people’s genes, environments, and lifestyles” to create unique sets of treatments
tailored to the individual [2]. (Figure 1).

Conceptually, precision medicine and personalized medicine are identical. Both
concepts focus on the individual and the disease or on a larger group of individuals with the
same pathological/physiological features. An editorial about a personalized approach to
cancer and diabetes triggered the inclusion of this concept in a governmental plan advanced
by President Obama [3]. The President’s 2016 budget included investments in an emerging
field of medicine that considers individual differences in people’s genes, microbiomes,
environments, and lifestyles, making possible more effective, targeted treatments for
diseases such as cancer and diabetes [4].

The first utilization of personalized medicine was in oncology and genetics, partic-
ularly in genomics, a branch of genetics that studies the response to certain treatments
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dependent upon genetic variability. Although nowadays, technologies allow for biomarker
analysis and identification and it is estimated that a quarter of treatments have genetic
variability, this information is not used in daily practice [5].
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Figure 1. Precision Medicine considers the individual, not the disease. A given illness can be present
in all age groups, genders, and physiological/pathological conditions; however, a particular patient
presents with different symptoms and responds differently to the same treatment recommendations
due to their uniqueness. Bioclinical discoveries need to be implemented specifically according to
subject and in order to meet personal needs.

Personalized medicine can be seen as the integration of information from multiple
sources to recreate the whole individual based solely on the gathered information, i.e.,
the big data. This information requires special processing and storage so that it can be
accurately accessed and combined in such ways that the results of the analysis can be
transposed into clinical practice. Therefore, specific technologies and processing methods
are required so that personalized treatments, prognoses, or preventive measures can be
applied in daily practice.

2. Big Data

In 2013, Goldman et al. established that 0 and 1 can be assigned to the well-known
components of human DNA [6]. Based on this information, computers with living cells
as their primary memory can be built, an advance which was incredibly well captured by
Steve Jobs: “I think the biggest innovations of the 21st century will be at the intersection of
biology and technology. A new era is beginning” [7].

With the data obtained from genome sequencing and the help of currently available
omics technologies, we can digitize a human being in a similar manner to how maps are
created in the Google application. We can unfold a human being as we would open a book
and separately read each of its pages; however, in this situation, the pages would represent
the results on the basis of different evaluations: biosensors, omics, imaging, scanners, social
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media, etc. All these results can be stored at different levels of storage, and when needed,
the information can be corroborated to obtain a specific result with respect to a given
problem that the individual may present with.

All the information we can obtain about one patient, including from all levels of
genomics and clinical records, should be stored in one place so it is accessible at any time.
This aspect is one of the main problems when it comes to personalized medicine because
for so-called “big data”, which encompasses all possible information about an individual,
software with the capacity to store, analyze, and process it is still being developed.

The obstacles that need to be overcome to store such a large amount of information
consist of the “four Vs” [8].

Volume: the quantity and dimensionality of data.
Velocity: the speed at which data change in a short amount of time.
Variety: the multitude of categories of data sets.
Veracity: the quality and reliability of data.

2.1. Topological Data Analysis

Managing big data is demanding, even for high-end super computers. Nowadays,
methods used to process biodata include known statistical methods, data ordination and/or
clustering, and machine learning. These methods are used to analyze data in the established
database Datasaurus, which offers the possibility to visualize data before committing to
trusting the descriptive statistics [9]. The above-mentioned biodata processing methods can
individually answer a given set of specific questions; however, they are far from mastering
analysis of all the available biodata [10].

A possibility for analysis of such large, continuous biodata is a topological data
analysis (TDA) mathematical model. TDA comprises schemes that pertain to “topology”,
a field of mathematics that addresses abstract notions of shape and connectivity [11].

Two algorithms constitute the foundation of TDA:

- Mapper, an algorithm used for data visualization and exploration; and
- Persistent homology, which implies that similar data can be analyzed given the context

that these data are found nearby or next to each other to create an individualized
diagram with those data [12].

TDA can be applied to systems that generate a large amount of data, data with
continuous character, and multiple scaling systems. TDA can summarize these data,
preserving their essential topological relationships. The system can be integrated to work
with other computer intelligence or machine learning tools to increase its computational
capacity [13–15].

2.2. Machine Learning

Studies have shown that the applicability of machine learning (ML) in biomedicine is
respectable when it comes to performing tasks such as diagnostics and prediction [14,16–19].

However, ML alone has serious limitations when interpreting big data due to data
complexity and volume. If ML technologies could be interconnected with TDA technologies,
the interpretability of biodata could become, to a point, faultless [20].

One example in this respect is represented by critically ill patients. These patients
have complex diseases, many of them in advanced stages, as well as many organ failures.
Each of these comorbidities represents a source of continuous variables, which could be
explored in two ways:

- From low risk to high risk, with the intent of evaluating the pathophysiology; or
- From high risk to low risk in order to evaluate potential treatment options [11].

2.3. Digital Twins

- Digital twins could be regarded as the ultimate technology for PM. This concept relies
on a mathematical model that can summarize an individual’s unique physiology
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and further create personalized treatments [11]. The resulting biodata achieved by
digital twinning could also be used to perform “in silico” tests with the intent of
creating different computer-simulated disease models, along with possible treatments,
which could further be transposed into reality [11]. As with other biodata used in the
management of computational intelligence, the main limitation consists of managing
large volumes and real-time data changes. To increase accuracy and facilitate biodata
management, these mathematical models could be linked together with the goal of
delivering correct solutions to patients [21].

2.4. Human Geographic Information System

Human characteristics can be mapped similarly to terrain. Geographic information
systems (GIS) are mostly used to create maps for different environmental structures. Based
on the same premises, one could also map a human being, from basic features to specific
details, creating a Human GIS with which medical specialists could navigate with the goal
of diagnostics, prognosis, or treatment. Human digitization is possible if all the information
available from one individual— i.e., data from biosensors, medical imagistic, medical
documents, monitoring, blood tests, social environments, and omics—can be stored and
the proper information or combination of information specific to a given situation can be
extracted at any given moment [22].

One of the first individuals who mapped himself using these technologies was
Michael Snyder, on whom the whole genome was sequenced, with data extracted from the
metabolome, proteome, certain antibodies, and biosensors. Based on these results, he was
able regulate his lifestyle and manage his glucose levels [23].

2.5. “Omics” Technologies

These technologies imply a wide range of assessments of a set of molecular data. Each
data category can provide a list of alterations consistent with the studied disease, which
provides an insight into biological pathways and processes.

If more than one such list can be provided, every detail about a given disease can be
unraveled, and proper medical conduct is a certainty. Many type of omics data currently
exist, and specialists in biodata analysis are still working on methods to integrate them all.

Examples of omics data include:
Genomics considers genetic variability in terms of response to treatment and suscepti-

bility to some illnesses [24].
Proteomics considers as its main activity, peptide content, and their interactions/modif-

ications and proteomic analysis of cellular systems [25].
Epigenomics involves definition of genome-wide DNA-reversible modifications [26].
Transcriptomics explores RNA from both quantitative and qualitative perspectives [27].
Metabolomic analyses consider various products of body metabolism, including lipids,

carbohydrates, and other byproducts of cell metabolism [28].
Microbiomics involves the study of microorganisms of a given group [29].
Physiome and exposome analyses involve collection of data from biosensors available

in the environment, including data with respect to variables concerning an individual’s
physiology [22] (Figure 2).

The diploid genome (diplomics) was elucidated more than decade ago due to the need
for improved understanding of the complex pathways of diseases. The physiopathology of
different illnesses often involves mutations, allele-specific effects, and variant combinations;
therefore, the “diplomics” genomic microsequencing approach is suitable for analyzing,
characterizing, and determining the appropriate conduit of a given disease [22,30].
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With the advent of sequencing with a two-year timeframe, the database of rare
Mendelian conditions improved from four fully characterized rare diseases in 2010 to
68 in 2012, with the number anticipated to increase to 7000 in the coming years [31].

Such methods of gathering and accurately analyzing biodata for the development of
treatment or prognosis strategies constitute the core of personalized medicine, a medical
practice of the future. The enormous volume of data gathered from an individual can be
used to create a digitized human and, when required, a precise fragment of this human
map can be studied. Specialists will happily embrace this approach and contribute to its
extension.

2.6. Microfluidics

Microfluidics is a technology that involving fluids up to a femtoliter scale. This
technology is incredibly useful in handling small probes with high specificity. Microfluidics
function in the same way as electronics, the difference being that in fluidics, chemical
mixtures or cells are moved onto a chip created using soft photolithography [32] (Figure 3).

Microfluidics technology can benefit PM by determining exact combinations of drugs
using less biomaterial. Furthermore, it reduces costs by using fewer reagents, and phe-
notyping and biomarkers can be obtained from the same cell sample, with physiological
conditions obtained with microfluidics for cell growth [33].

Organ cells can also be created using microfluidics. Such organs on a chip (OOACs)
can be created for either physiologic organs or different pathologies. In this regard, different
models that can replace experiments on animal models can be used for further research on
personalized treatments for different pathologies [34]. To date, several OOACs have been
created and used for studies, lung on a chip, liver on a chip, kidney on a chip, heart on a
chip, intestine on a chip, and multi-organ on a chip [35–40].
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These complex and precise technologies have a long way to go before they can be
implemented in bedside clinical practice, but progress to date is promising, with good
prospects for translation from in vitro to in vivo.

3. Precision Medicine in Intensive Care Units

The abovementioned mathematical models and sophisticated informatics technologies
are applicable to modern medicine and the critically ill. In these patients, the data needed
for processing have a continuous and intricate character due to ongoing and complex
monitoring. Below, we present some specific conditions that must be met in critically
ill patients.

3.1. Discriminative Models for Prediction of Perioperative and Long-Term Outcomes

• Perioperative organ dysfunction.

3.1.1. Coronary Disease

Coronary artery disease (CAD) is known to be a serious health problem worldwide.
This disease is produced by a complex of factors, one of the most important of which is the
hereditary factor [41].

Among these, a few mendelian contributions have been described in CAD:

- Familial forms of hypercholesterolemia, are often caused by mutations in the low-
density lipoprotein (LDL) receptor gene or the apolipoprotein (apo) B gene, which
encodes the major protein in the LDL particle [42];

- Familial hyperhomocystinuria associated with mutations in the 5,10-methylenetetrahy-
drofolate reductase gene [43];
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- Hutchinson–Gilford progeria syndrome is caused by mutations in the lamin A/C
gene [44];

- Tangier disease related to mutations in the ATP-binding cassette, subfamily, A.; mem-
ber 1 gene (ABCA1) [45]; and

- A type of coronary artery disease related to the MADS box transcription enhancer
factor 2, polypeptide A gene (MEF2A), as well as some forms of inherited primary elec-
trical diseases (“channelopathies”) caused by variants of the sodium channel, voltage-
gated, type, V.; α-subunit gene (SCN5A); the potassium channel, voltage-gated,
KQT-like subfamily, member 1 gene (KCNQ1); and other genes [46].

Postoperative atrial fibrillation (PAF) also presents with a multifactorial etiology. It is
known to be the most encountered pathology after coronary artery bypass graft (CABG),
occurring in as many as 40% of patients [47,48].

Genetic variations are thought to play a key role in PAF, and several studies have been
conducted in this direction. The genes believed to be the most involved in PAF are those
that modulate the heart’s electric activity (sinoatrial node, signal transmission/modulation
genes). Genetic alterations of any of the involved genes can be identified by genome wide
association studies (GWAS) or by single-nucleotide polymorphisms (SNP) [49].

Based on personalized approaches to biodata analysis, GWAS and SNP, researchers
were able to identify an SNP in the LY96 gene and a supplementary gene–gene interac-
tion with NFkB1, on the signaling pathway of PAF. These findings are important, as the
identified genes participate in the innate immune system, and they are modified when this
system is challenged. Findings such as those mentioned above prove that personalized
biodata approaches provide new targets for PAF prevention [50,51].

3.1.2. Acute Kidney Injury

Another well-acknowledged hospital pathology related to cardiac surgery is acute kid-
ney injury (AKI). This disorder is confirmed to have a strong link in terms of its appearance
in patients who have undergone a coronary artery bypass graft [52]. AKI is triggered by a
range of factors, i.e., age, obesity, chronic kidney disease, pre-existent heart pathologies,
and systemic inflammation; however, genetic predisposition and familial inheritance play
an important but understudied role [53].

AKI constitutes a perfect candidate for PM due to its vast heterogeneity and the
multiple potential causes that may lead to this disorder, which increases the number of
possible connections made among biodata points. A GWAS analysis performed on AKI
found identified new loci associated with post CABG-AKI; hence, a new approach to AKI
pathophysiology was described [54].

3.1.3. Sepsis

Sepsis is one of the most complex pathologies, in addition to being the most expensive
pathology to treat, with estimated costs in the US totaling approximately USD 20 billion
per year [55]. The physiopathology of sepsis can be understood as a complex maze, with
multiple pathways indicated, including inflammatory and anti-inflammatory pathways,
coagulopathies, the systemic action of microorganisms, and multiple organ failure. Since its
first mention and definition as a life-threatening condition caused by an abnormal response
of a host to infection, sepsis has been studied continuously; however, the literature does not
offer a clear plan for management or diagnosis [56]. Although extensive research has been
conducted on sepsis, results are limited with respect to the prevention and management of
this syndrome [57,58].

The extreme complexity and discrepancy presented by this pathology makes it a
perfect candidate for the implementation of personalized medicine with the hope of finding
proper treatments or prognostic means. Metabolomic and proteomic studies of severely
septic patients and septic shock patients revealed the possibility of personalizing a set of
biomarkers to be used to determine the mortality prognosis of such critically ill patients
and to improve survival [59].
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A personalized medicine approach that could be applied in sepsis is the enrichment
approach. This concept is divided into two categories: prognostic and predictive enrich-
ment [60]. Both categories are required for the application of personalized medicine in
septic patients in intensive care. With the help of this approach, septic patients were
clustered based on the probability of experiencing a given sepsis-related outcome, such
as multiple organ failure or mortality rate [61]. Prognostic enrichment strategies allow
researchers to conclude their studies by enrolling a smaller number of individuals, as in the
CONSENSUS trial, which required hundreds of patients to prove that the studied treatment
significantly reduced mortality among critically ill patients. The study would have required
thousands of patients to prove its point with classic approaches and simple statistics [62].
The predictive component of the enrichment approach aids in selecting patients with a
higher probability of response to given therapeutic conduct, with biological mechanisms as
the foundation (Figure 4) [63].
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Extensive research has been conducted in the field of sepsis and its genetic pathways,
and a tremendous amount of biodata has been gathered and deposited in specific databases,
such as the National Institutes of Health Gene Expression Omnibus (GEO), Array Express,
and the Host Response to Injury Program (Glue Grant) [64–66]. The Glue Grant program is
of particular interest with respect to personalized approaches to sepsis due to some notable
findings. The program showed that a real genetic storm happens in sepsis, that more than
80% of the expressed genes present with differential expression, and that different groups
of genes recover at significantly different rates in the context of sepsis [64,65].

3.1.4. Pain

Critically ill patients, like any other patient, suffer from chronic or acute pain. The dif-
ference between most ICU patients and other patients consists of the impossibility of
verbalizing pain. Nonetheless, the need to identify appropriate pain-management strate-
gies is equally necessary for any patient.

Genome-wide association studies (GWAS) on pain-specific mechanisms and ap-
proaches revealed that a three-SNP haplotype of catecholamine O-methyltransferase
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(COMT) is correlated with a 30-fold difference in enzymatic activity and important modifi-
cations in sensitivity to pain in humans. However, it is not yet known the exact mechanism
by which this enzyme modulates pain [67]. The GWAS approach is not the ideal system
for genetic pain decryption due to challenges including the impossibility of differentiating
between different ethnicities and the need to include many subjects in studies [68].

Another method that can be applied with the aim of decoding the underlying mecha-
nisms of pain is constituted of whole genome sequencing. With this approach, rare gene
variants were identified in the angiotensin pathway alone, an enzyme linked with pain in
animal models [69].

The targeted gene approach proved a strong link between the voltage-gated sodium
channels Nav1.7 and human pain. The targeted gene approach was used to identify the
genomic variants of Nav1.7 that have a connection to four pain syndromes, and the Nav
1.7 polymorphism was found to be related to pain perception. The Nav 1.7 sodium channel
constitutes a target for both inherited and non-inherited pain management [70]. The tra-
jectory from the targeted gene to the treatment of pain is paved by some small molecules
targeted specifically toward the variants of sodium channel voltage-gated Nav 1.7 [71].

Although these small molecules are not yet widely used in clinical practice, the premises
for this targeted pain therapy by a genetic approach have been proposed, and pain man-
agement practice will likely benefit from these discoveries.

3.1.5. Blood Loss

Perhaps one of the best examples of demand for personalized medicine is a study on
the effectiveness of the use of drotrecogin alfa (recombinant human activated protein C)
in severely septic patients. This drug was introduced in 2011 for the treatment of sepsis
and a renowned trial, Recombinant Human Activated Protein C Worldwide Evaluation
in Severe Sepsis (PROWESS), concluded that in addition to reducing mortality amongst
critically ill septic patients, it also had a very low rate of side effects, namely bleeding [72].
A meta-analysis published a few years after the release of the PROWESS study results
proved that side effects such as bleeding are significantly more likely to appear than initially
reported. After the publication of the meta-analysis results, the drug was withdrawn from
clinical use [73].

3.2. Selection/Stratification for Perioperative Interventions
3.2.1. Prevention of Organ Failure

Critically ill patients are defined as patients with complex intricated pathologies;
multiple organ failure is often encountered in this subset of patients. Tailoring a specific
personalized treatment for such patients represents a considerable challenge. A com-
bined approach involving prediction, prevention, and personalized medicine should be
considered. To reach the point where the appropriate drug is administered in a precise
therapeutic window to the patient who will benefit the most from it, a strong link needs
to be created between research results and bedside application. Translational medicine is
defined the branch of medicine that can construct such a link between research and bedside
practice [74].

With the main objective of taking advantage of the therapeutic window and prevent-
ing reaching the organ failure stage, numerous animal experimental studies have been
conducted on different treatment means, diagnoses, and preventive measures. Animal
studies now constitute the primary method for development of new therapies [75].

The main downside of animal studies is that no animal model can recreate the com-
plexity of a human patient, let alone an ICU patient. Hence, the applicability of their
results to humans often fails due to the toxicity of severe side effects that did not appear in
animal experiments [76–78]. Animal models are mainly focused and mimic the researched
pathology without considering many other factors that could interfere with the disease in
humans. Among the factors ignored in animal studies are environmental factors, sex, age,
emotional factors, interactions with other drugs, and social behaviors [70–82].
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The medicine of the future should prioritize the individual over the disease, and the
way to succeed in this quest is by using predictive, preventive, and personalized medicine
(PPPM). The PPPM approach aims to develop appropriate knowledge and technological
skills to promote affordable strategies in the emerging fields of environmental risk factors,
epidemiology, healthy lifestyle, individualized nutrition, food technology, and culture
within a framework of cost-effective healthcare [83].

3.2.2. Hemodynamic Optimization

The homeostasis of ICU patients is a considerable risk, and shock states are often
observed in critically ill patients. Optimization of hemodynamics in this category of patients
is an outcome that has been sought for a long time but has not yet been achieved due to the
massive heterogeneity of ICU patients. Currently, the success of goal-directed therapy, in
terms of hemodynamics, is defined as a mean arterial pressure of at least 65 mmHg [84].
However, this “one size doesn’t fit all” hemodynamically unstable ICU patients.

A possible solution to this problem is cardiac modeling based on a set of mathematical
relations, with the goal of creating a myocardium with the same characteristics as those
presented by the patient. This model includes and processes anthropometric data, data re-
garding the disease/diseases the patient may have, and the results from different imagistic
other tests. The result incorporates all this specific data on the studied individual, resulting
in a heart model that matches their unique patient features [85]. Such models acquired were
validated to an extent by comparison with experimental studies and imaging results [86].

Limitations of cardiac modeling are associated with the immense volume and com-
plexity of data that need to be processed; the lack of a standard for data acquisition, such
as standard imaging results; material laws; and multidomain physics that need to be
applied [87,88]. Additional research is needed to facilitate the development and clinical
implementation of such cardiac modeling in terms of minimum data requirements, the
ideal timeframe to acquire images of the heart, and the type of statistics that should be used
according to the patient [89].

Even with these uncertainties in mind, this approach to achieving personalized hemo-
dynamic stability is a promising means by which intensivists can better understand and
help hemodynamically unstable patients.

3.2.3. Fluid Resuscitation

Fluid resuscitation constitutes one of the most used treatments in ICUs. Many large
studies have proposed different strategies for fluid administration in critically ill patients,
from a more liberal to restrictive fluid therapy and from balanced solutions to crystalloids
alone; furthermore, some studies have suggested alternative routes of administration, such
as bolus or continuous infusion [90–94]. Special adaptive platforms have been created
to help intensivists administer personalized fluid therapy, whereby patient data can be
introduced; then, using complex mathematical and statistical methods, the results can be
tailored to the individual instead of being protocolized for a given disease presented in the
patient [95].

Critical illness is vastly different from the areas in which precision medicine has made
a substantial impact, particularly oncology. Intensive care, as a medical specialty, is newer
than the other medical specialties, such as surgery or internal medicine. However, intensive
care has found itself on an ascending slope in recent decades due to improved under-
standing of disease pathways and the development of novel technologies with the aim of
sustaining and monitoring patients’ vitals. An improved understanding of physiopathol-
ogy has allowed intensivists to characterize and more clearly comprehend the complex
pathologies encountered in ICUs. Examples in this respect include the ongoing develop-
ment sepsis definitions and treatment or those for acute respiratory distress syndrome.
Although advances in intensive care are in progress, treatment and prognosis of critically
ill patients have not yet reached a satisfactory level. This may be attributed to the burden
of properly grouping critically ill patients into homogenous groups for development of
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improved treatment protocols and prognostics. Intergroup variability among ICU patients
is greater than in other specialties, and the severity of the pathologies of critically ill patients
is high [96,97]. When critically ill patients were grouped based on their diagnosis, the
results were mostly negative; however, scientists observed that in some individuals, the
proposed interventions were successful. Biomarkers were subsequently identified based
on these subgroups, and a more precise diagnosis/treatment was drafted for critically ill
patients [98].

Such discoveries were achieved by changing the lens through which critically ill
patients are viewed, from a conglomerate of diagnostics and diseases to individuals with
specific diagnostic and disease characteristics. Using this personalized perspective and the
multiple technological possibilities—sophisticated mathematical and statistical methods,
as well as exploration of proteomics, metabolomics, and genomics—the treatment and
diagnosis of ICU patients can be tailored accordingly, with the focus shifted from treating a
pathology to treating the individual.

One of the most difficult obstacles when it comes to the critically ill is that such patients
have more complex, heterogeneous diseases with multiple comorbidities and conditions
that can impact outcomes and response to treatment, making it difficult to identify a
single target. In this respect, panels of biomarkers have been proposed for ICU patients to
diagnose, treat, or prognosticate the course of their pathologies [99,100].

4. Approval of the FDA

All these new targeted therapies and technological methods of determining exact
doses or biomarkers need to be approved by quality control structures.

Because most newer PM therapies involve pharmacogenomics (PGx), the Food and
Drug Administration (FDA) built drug labeling databases. The first label of this kind was
approved by the FDA 20 years ago: Herceptin, a genetically targeted therapy [101].

The FDA endorses PGx drug labeling, since the first labeled drug was approved,
additional public databases have been created in this direction, such as the Pharmacologic
Knowledgebase (PharmGKB), and the Clinical Pharmacogenetics Implementation Consor-
tium (CPIC) database. In addition to drug labeling information, these databases include
information related to clinical observation, specific scientific literature, disease pathways,
dosing, specific warnings, and administration guidelines based on genotype [102,103].
The existing PGx public table, FDALabel, contains 75 biomarkers that can be used for
research on different processes and treatment conduct. Basic training in drug labeling is
required to correctly extract data from these databases [104]. Results of PGx labeling have
already been reported in oncologic patients treated based on the genetic population to
which they belong [105].

Once the information from these specific databases is made accessible and basic princi-
ples of their utilization are understood, specialists can facilitate personalized treatments for
any type of patient based on the patient’s genetics, with the aim of treating the individual
rather than the pathologies presented by the individual. Personalized medicine deals
with a multitude of complex concepts, from “omics” and genetic characterization of the
individual to high-end equipment and advanced mathematical and statistical models for
data processing. A multidisciplinary approach is required to achieve the desired results.

When it comes to critically ill patients, the situation is complicated because such
patients have multiple comorbidities that require the supervision of specialists representing
different branches of the medical field, in addition to technicians, statisticians, geneticists,
and access to proper equipment to sustain the patient’s vitals and to store, extract, and
process biodata. Collaboration among researchers and industry aims to ensure standardiza-
tion of measurements and reporting. Studies have been conducted to determine the best
ways to create multidisciplinary teams that can work together and achieve the expected
results [106]. Tigers BB et al., after a comprehensive review of studies on research team col-
laboration and formation, formulated recommendations for best practices, which included
the development of psychometric testing of measures of research collaboration quality that
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can be applied by each researcher and validated by other participants, such as stakeholders,
researchers, academics, and government officials. Both quality and quantity should be
considered to achieve the highest standards [107].

5. Ethics of Personalized Medicine

Personalized medicine raises some ethical issues that need to be addressed. According
to PM desire to “treat the individual and not the disease” in some cases, different patients
might receive a different course of treatment for the same disease on the basis of the patient’s
genetic characteristics. Even for the same phenotype, medical conduct might differ due to
the integration of all available biodata pertaining to an individual, exposome, metabolome,
proteome, microbiome, etc. In this context, a patient might not benefit from a certain
treatment because in his exposome or other factors that interfere with the desired results.

Personalized medicine shifts the balance of responsibility from the doctor to the patient
by implementing proactive as opposed to medicine, as is currently the standard. In this
initiative-taking approach to medicine, the patient has the responsibility of having “good
genetic references” to benefit from personalized treatment [108].

Another ethical problem specific to PM is the genetic material donated and stored
in biobanks issues related to donor consent when it comes to the use of stored biodata.
At the time of donation, it is impossible to know exactly to what extent genetic material
can be analyzed and exactly how much information can be extracted from the material.
Some solutions have been identified, and distinct types of consent are available, such as
the “broad consent” or multilayered or “tiered” consent, which allow donors to choose
whether their genetic material can be used for one or multiple research projects [109,110].

6. Economic Challenge

Personalized medicine has the capacity to improve the quality and longevity of human
lives and reduce costs by administering “the right treatment to the right patient at the
right time”. However, PM involves costs associated with data acquisition, storage, and
processing, as well as education of medical personnel and out-of-hospital personnel who
deal with biodata.

In a review of studies on the cost-effectiveness of drug pharmacogenetics wherein
FDA databases were searched, of 137 studies on pharmacokinetically engineered drugs,
only 44 complete economic studies were found on 9 PGx drugs [111] Table 1.

Table 1. Examples of PGx drugs and their economic evaluation.

Drug Therapy Gene Economic Evaluation

Abacavir HIV HLA-B Cost-saving

Carbamazepine Neurology HLA-A, HLA-B Cost-effective

Azathioprine Rheumatology TPMT Cost-saving

Warfarine CYP2C9
VKORC1 Cost-saving

Clopidogrel Cardiology CYP2C19 Cost-effective

Irinotecan Oncology UGT1A1 Cost-saving

Citalopram Psychiatry
CYP2C19
5HTTLPR
HTR2A

Cost-saving

Clozapine Psychiatry

CYP2D6
H2
5-HTT
5-HT2A
5-HT2C

Cost-effective

Mercaptopurine Oncology TPMT Cost-saving
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The economic aspect of PM constitutes one of the perspectives through which the
International Consortium for Personalized Medicine advocates for a balance between
investment, profit, benefit, telemedicine, mobile resources, and creation new jobs in the
healthcare system [112].

7. Concluding Notes

Future medicine relies on personalized treatments, as well as personalized diagnosis
and prognosis. Technological advancements allow researchers and medical specialists to
offer medical care based on individualism. Clinical trials should be developed in such a
manner that patients are grouped according to genotypes and clustered based on their
genetic characteristics. “Omics” technologies make a more precise differentiation when it
comes to prognostication and assigning individuals a certain group or treatment.

Newer data processing technologies and methods allow for improved prognostication
in both acute and chronic phases of pathologies.

Critically ill patients, although complex due to their severe and combined pathologies,
can benefit from personalized treatments in spite of difficulties in implementation. These
patients should be treated as individuals because even if they may have the same diagnosis,
their responses to treatments can be different. Treatment personalization could be the key
to successfully managing critically ill patients, as well as a response to the inconclusive
results obtained in studies performed of the critically ill.

The multitude of identified biomarkers can help in candidate selection for different
therapeutic methods and offer the possibility of therapeutic efficacy tracking.

The advanced technology involved in precision medicine can be used to create predic-
tive models to enhance discrimination of recovery probabilities in patients.

We have a long road ahead before personalized medicine can be applied daily in
intensive care, although the steps that have been taken to date are significant and promising.

Author Contributions: A.E.L., manuscript writing—original draft, data acquisition, writing—review
and editing; L.A., conceptualization, methodology, writing—review and editing. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward Precision

Medicine: Building A Knowledge Network for Biomedical Research and A New Taxonomy of Disease; National Academies Press (US):
Washington, DC, USA, 2011.

2. The Precision Medicine Initiative. Available online: https://obamawhitehouse.archives.gov/precision-medicine (accessed on
30 January 2015).

3. Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [CrossRef] [PubMed]
4. Holst, L. The Precision Medicine Initiative: Data-Driven Treatments as Unique as Your Own Body; The White House: Washington, DC,

USA, 2015.
5. Johnson, J.A. Pharmacogenetics: Potential for individualized drug therapy through genetics. Trends Genet. 2003, 19, 660–666.

[CrossRef] [PubMed]
6. Goldman, N.; Bertone, P.; Chen, S.; Dessimoz, C.; LeProust, E.M.; Sipos, B.; Birney, E. Towards practical, high-capacity, low-

maintenance information storage in synthesized DNA. Nature 2013, 494, 77–80. [CrossRef] [PubMed]
7. Issacson Simon, W.; Steve Jobs, S. New York; Simon & Schuster: New York, NY, USA, 2011.
8. L’Heureux, A.; Grolinger, K.; Elyamany, H.F.; Capretz, M.A. Machine Learning With Big Data: Challenges and Approaches.

IEEE Access 2017, 5, 7776–7797. [CrossRef]
9. Mirza, B.; Wang, W.; Wang, J.; Choi, H.; Chung, N.C.; Ping, P. Machine Learning and Integrative Analysis of Biomedical Big Data.

Genes 2019, 10, 87. [CrossRef]
10. Matejka, J.; Fitzmaurice, G. Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics

through Simulated Annealing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver,
CO, USA, 6–11 May 2017; pp. 1290–1294.

11. Skaf, Y.; Laubenbacher, R. Topological data analysis in biomedicine: A review. J. Biomed. Inform. 2022, 130, 104082. [CrossRef]
12. Adams, H.; Moy, M. Topology Applied to Machine Learning: From Global to Local. Front. Artif. Intell. 2021, 4, 668302. [CrossRef]

https://obamawhitehouse.archives.gov/precision-medicine
http://doi.org/10.1056/NEJMp1500523
http://www.ncbi.nlm.nih.gov/pubmed/25635347
http://doi.org/10.1016/j.tig.2003.09.008
http://www.ncbi.nlm.nih.gov/pubmed/14585618
http://doi.org/10.1038/nature11875
http://www.ncbi.nlm.nih.gov/pubmed/23354052
http://doi.org/10.1109/ACCESS.2017.2696365
http://doi.org/10.3390/genes10020087
http://doi.org/10.1016/j.jbi.2022.104082
http://doi.org/10.3389/frai.2021.668302


Processes 2022, 10, 1200 14 of 17

13. Chazal, F.; Michel, B. An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists.
Front. Artif. Intell. 2021, 4, 667963. [CrossRef]

14. Giannini, H.M.; Chivers, C.; Draugelis, M. Development and implementation of a machine-learning algorithm for early identifica-
tion of sepsis in a multi-hospital academic healthcare system. Am. J. Respir. Crit. Care Med. 2017, 195, A7015.

15. Chung, Y.M.; Hu, C.S.; Lo, Y.L.; Wu, H.T. A Persistent Homology Approach to Heart Rate Variability Analysis With an Application
to Sleep-Wake Classification. Front. Physiol. 2021, 12, 637684. [CrossRef]

16. Huysmans, J.; Dejaeger, K.; Mues, C.; Vanthienen, J.; Baesens, B. An empirical evaluation of the comprehensibility of decision
table, tree and rule based predictive models. Decis. Support Syst. 2011, 51, 141–154. [CrossRef]

17. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
Nat. Mach. Intell. 2019, 1, 206–215. [CrossRef] [PubMed]

18. King, P.H. Signal processing and machine learning for biomedical big data. IEEE Pulse 2019, 10, 34–35. [CrossRef]
19. Chicco, D. Ten quick tips for machine learning in computational biology. BioData Min. 2017, 10, 35. [CrossRef] [PubMed]
20. Moraleda, R.R.; Xiong, W.; Valous, N.A.; Halama, N. Segmentation of biomedical images based on a computational topology

framework. Semin. Immunol. 2020, 48, 101432. [CrossRef]
21. Kamel Boulos, M.N.; Zhang, P. Digital Twins: From Personalised Medicine to Precision Public Health. J. Pers. Med. 2021, 11, 745.

[CrossRef]
22. Topol, E.J. Individualized medicine from prewomb to tomb. Cell 2014, 157, 241–253. [CrossRef]
23. Chen, R.; Mias, G.I.; Li-Pook-Than, J.; Jiang, L.; Lam, H.Y.; Chen, R.; Miriami, E.; Karczewski, K.J.; Hariharan, M.; Dewey, F.; et al.

Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012, 148, 1293–1307. [CrossRef]
24. Voight, B.F.; Kang, H.M.; Ding, J.; Palmer, C.D.; Sidore, C.; Chines, P.S.; Burtt, N.P.; Fuchsberger, C.; Li, Y.; Erdmann, J.; et al.

The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet.
2013, 9, e1002793. [CrossRef]

25. Hein, M.Y.; Sharma, K.; Cox, J.; Mann, M. Proteomic Analysis of Cellular Systems. In Handbook of Systems Biology: Concepts and
Insights; Walhout, M., Vidal, M., Dekker, J., Eds.; Academic Press: New York, NY, USA, 2013; pp. 3–25.

26. Piunti, A.; Shilatifard, A. Epigenetic balance of gene expression by Polycomb and, C.O.MPASS families. Science 2016, 352, aad9780.
[CrossRef]

27. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74.
[CrossRef] [PubMed]

28. Kettunen, J.; Tukiainen, T.; Sarin, A.P.; Ortega-Alonso, A.; Tikkanen, E.; Lyytikäinen, L.P.; Kangas, A.J.; Soininen, P.; Würtz, P.;
Silander, K.; et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet.
2012, 44, 269–276. [CrossRef] [PubMed]

29. Org, E.; Parks, B.W.; Joo, J.W.; Emert, B.; Schwartzman, W.; Kang, E.Y.; Mehrabian, M.; Pan, C.; Knight, R.; Gunsalus, R.; et al.
Genetic and environmental control of host-gut microbiota interactions. Genome Res. 2015, 25, 1558–1569. [CrossRef] [PubMed]

30. Tewhey, R.; Bansal, V.; Torkamani, A.; Topol, E.J.; Schork, N.J. The importance of phase information for human genomics.
Nat. Rev. Genet. 2011, 12, 215–223. [CrossRef]

31. Boycott, K.M.; Vanstone, M.R.; Bulman, D.E.; MacKenzie, A.E. Rare-disease genetics in the era of next-generation sequencing:
Discovery to translation. Nat. Rev. Genet. 2013, 14, 681–691. [CrossRef]

32. Shembekar, N.; Chaipan, C.; Utharala, R.; Merten, C.A. Droplet-based microfluidics in drug discovery, transcriptomics and
high-throughput molecular genetics. Lab Chip. 2016, 16, 1314–1331. [CrossRef]

33. Mathur, L.; Ballinger, M.; Utharala, R.; Merten, C.A. Microfluidics as an Enabling Technology for Personalized Cancer Therapy.
Small 2020, 16, e1904321. [CrossRef]

34. Wu, Q.; Liu, J.; Wang, X.; Feng, L.; Wu, J.; Zhu, X.; Wen, W.; Gong, X. Organ-on-a-chip: Recent breakthroughs and future prospects.
Biomed. Eng. Online 2020, 19, 9. [CrossRef]

35. Ma, L.D.; Wang, Y.T.; Wang, J.R.; Wu, J.L.; Meng, X.S.; Hu, P.; Mu, X.; Liang, Q.L.; Luo, G.A. Design and fabrication of a
liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip. 2018,
18, 2547–2562. [CrossRef]

36. Humayun, M.; Chow, C.-W.; Young, E.W.K. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying
epithelial and smooth muscle cell interactions. Lab Chip. 2018, 18, 1298–1309. [CrossRef]

37. Schutgens, F.; Rookmaaker, M.B.; Margaritis, T.; Rios, A.; Ammerlaan, C.; Jansen, J.; Gijzen, L.; Vormann, M.; Vonk, A.;
Viveen, M.; et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 2019,
37, 303–313. [CrossRef] [PubMed]

38. Schneider, O.; Zeifang, L.; Fuchs, S.; Sailer, C.; Loskill, P. User-friendly and parallelized generation of human induced pluripotent
stem cell-derived microtissues in a centrifugal heart-on-a-chip. Tissue Eng. Part A 2019, 25, 786–798. [CrossRef] [PubMed]

39. Kasendra, M.; Tovaglieri, A.; Sontheimer-Phelps, A.; Jalili-Firoozinezhad, S.; Bein, A.; Chalkiadaki, A.; Scholl, W.; Zhang, C.;
Rickner, H.; Richmond, C.A.; et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids.
Sci. Rep. 2018, 8, 2871. [CrossRef] [PubMed]

40. Zhao, Y.; Kankala, R.K.; Wang, S.-B.; Chen, A.-Z. Multi-organs-on-chips: Towards long-term biomedical investigations. Molecules
2019, 24, 675. [CrossRef] [PubMed]

http://doi.org/10.3389/frai.2021.667963
http://doi.org/10.3389/fphys.2021.637684
http://doi.org/10.1016/j.dss.2010.12.003
http://doi.org/10.1038/s42256-019-0048-x
http://www.ncbi.nlm.nih.gov/pubmed/35603010
http://doi.org/10.1109/MPULS.2019.2911803
http://doi.org/10.1186/s13040-017-0155-3
http://www.ncbi.nlm.nih.gov/pubmed/29234465
http://doi.org/10.1016/j.smim.2020.101432
http://doi.org/10.3390/jpm11080745
http://doi.org/10.1016/j.cell.2014.02.012
http://doi.org/10.1016/j.cell.2012.02.009
http://doi.org/10.1371/annotation/0b4e9c8b-35c5-4dbd-b95b-0640250fbc87
http://doi.org/10.1126/science.aad9780
http://doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
http://doi.org/10.1038/ng.1073
http://www.ncbi.nlm.nih.gov/pubmed/22286219
http://doi.org/10.1101/gr.194118.115
http://www.ncbi.nlm.nih.gov/pubmed/26260972
http://doi.org/10.1038/nrg2950
http://doi.org/10.1038/nrg3555
http://doi.org/10.1039/C6LC00249H
http://doi.org/10.1002/smll.201904321
http://doi.org/10.1186/s12938-020-0752-0
http://doi.org/10.1039/C8LC00333E
http://doi.org/10.1039/C7LC01357D
http://doi.org/10.1038/s41587-019-0048-8
http://www.ncbi.nlm.nih.gov/pubmed/30833775
http://doi.org/10.1089/ten.tea.2019.0002
http://www.ncbi.nlm.nih.gov/pubmed/30968738
http://doi.org/10.1038/s41598-018-21201-7
http://www.ncbi.nlm.nih.gov/pubmed/29440725
http://doi.org/10.3390/molecules24040675
http://www.ncbi.nlm.nih.gov/pubmed/30769788


Processes 2022, 10, 1200 15 of 17

41. Thom, T.; Haase, N.; Rosamond, W.; Howard, V.J.; Rumsfeld, J.; Manolio, T.; Zheng, Z.J.; Flegal, K.; O’Donnell, C.; Kittner, S.; et al.
Heart disease and stroke statistics—2006 update: A report from the American Heart Association Statistics Committee and Stroke
Statistics Subcommittee. Circulation 2006, 113, e85–e151.

42. Brown, M.S.; Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 1986, 232, 34–47. [CrossRef]
43. Cho, S.E.; Sook Hong, K.; Shin, G.J.; Chung, W.S. The methylenetetrahydrofolate reductase C677T gene mutation is associated

with hyperhomocysteinemia, cardiovascular disease, and plasma B-type natriuretic peptide levels in Korea. Clin. Chem. Lab. Med.
2006, 44, 1070–1075. [CrossRef]

44. DeBusk, F.L. The Hutchinson-Gilford progeria syndrome: Report of 4 cases and review of the literature. J. Pediatr. 1972, 80,
697–724. [CrossRef]

45. Brooks-Wilson, A.; Marcil, M.; Clee, S.M.; Zhang, L.H.; Roomp, K.; van Dam, M.; Yu, L.; Brewer, C.; Collins, J.A.;
Molhuizen, H.O.; et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat. Genet. 1999,
22, 336–345. [CrossRef]

46. Wang, L.; Fan, C.; Topol, S.E.; Topol, E.J.; Wang, Q. Mutation of, M.E.F2A in an inherited disorder with features of coronary artery
disease. Science 2003, 302, 1578–1581. [CrossRef]

47. Mathew, J.P.; Fontes, M.L.; Tudor, I.C.; Ramsay, J.; Duke, P.; Mazer, C.D.; Barash, P.G.; Hsu, P.H.; Mangano, D.T. A multicenter risk
index for atrial fibrillation after cardiac surgery. JAMA 2004, 291, 1720–1729. [CrossRef] [PubMed]

48. Waldron, N.H.; Cooter, M.; Piccini, J.P.; Anstrom, K.J.; Klinger, R.Y.; Kertai, M.D.; Podgoreanu, M.V.; Stafford-Smith, M.; Newman,
M.F.; Mathew, J.P. Predictive ability of perioperative atrial fibrillation risk indices in cardiac surgery patients: A retrospective
cohort study. Capacité de prédiction des indices de risque de fibrillation auriculaire périopératoire chez les patients de chirurgie
cardiaque: Une étude de cohorte rétrospective. Can. J. Anaesth. 2018, 65, 786–796. [PubMed]

49. Ellinor, P.T.; Lunetta, K.L.; Albert, C.M.; Glazer, N.L.; Ritchie, M.D.; Smith, A.V.; Arking, D.E.; Müller-Nurasyid, M.; Krijthe, B.P.;
Lubitz, S.A.; et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat. Genet. 2012, 44, 670–675. [CrossRef]
[PubMed]

50. Darbar, D.; Roden, D.M. Genetic mechanisms of atrial fibrillation: Impact on response to treatment. Nat. Rev. Cardiol. 2013, 10,
317–329. [CrossRef]

51. Kertai, M.D.; Li, Y.J.; Ji, Y.; Qi, W.; Lombard, F.W.; Shah, S.H.; Kraus, W.E.; Stafford-Smith, M.; Newman, M.F.; Milano, C.A.; et al.
Genome-wide association study of new-onset atrial fibrillation after coronary artery bypass grafting surgery. Am. Heart J. 2015,
170, 580–590.e28. [CrossRef]

52. Swaminathan, M.; Hudson, C.C.; Phillips-Bute, B.G.; Patel, U.D.; Mathew, J.P.; Newman, M.F.; Milano, C.A.; Shaw, A.D.; Stafford-
Smith, M. Impact of early renal recovery on survival after cardiac surgery-associated acute kidney injury. Ann. Thorac. Surg. 2010,
89, 1098–1104. [CrossRef]

53. Lu, J.C.; Coca, S.G.; Patel, U.D.; Cantley, L.; Parikh, C.R. Translational Research Investigating Biomarkers and Endpoints for Acute
Kidney Injury (TRIBE-AKI) Consortium.. Searching for genes that matter in acute kidney injury: A systematic review. Clin. J. Am.
Soc. Nephrol. 2009, 4, 1020–1031. [CrossRef]

54. Stafford-Smith, M.; Li, Y.J.; Mathew, J.P.; Li, Y.W.; Ji, Y.; Phillips-Bute, B.G.; Milano, C.A.; Newman, M.F.; Kraus, W.E.;
Kertai, M.D.; et al. Genome-wide association study of acute kidney injury after coronary bypass graft surgery identifies suscepti-
bility loci. Kidney Int. 2015, 88, 823–832. [CrossRef]

55. Torio, C.M.; Andrews, R.M. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011. Healthcare Cost and
Utilization Project Statistical Brief #160. Rockville; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2013. Available
online: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb160.pdf (accessed on 17 June 2015).

56. Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.;
Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315,
801–810. [CrossRef]

57. Marshall, J.C. Why have clinical trials in sepsis failed? Trends Mol. Med. 2014, 20, 195–203. [CrossRef]
58. Lazăr, A.; Georgescu, A.; Vitin, A.; Azamfirei, L. Precision Medicine and its Role in the Treatment of Sepsis: A Personalised View.

J. Crit. Care Med. 2019, 5, 90–96. [CrossRef] [PubMed]
59. Kalil, A.C.; LaRosa, S.P. Effectiveness and safety of drotrecogin alfa (activated) for severe sepsis: A meta-analysis and meta

regression. Lancet Infect. Dis. 2012, 12, 678–686. [CrossRef]
60. Wong, H.R. Intensive care medicine in 2050, precision medicine. Intensive Care Med. 2017, 43, 1507–1509. [CrossRef] [PubMed]
61. Prescott, H.C.; Calfee, C.S.; Thompson, B.T.; Angus, D.C.; Liu, V.X. Toward smarter lumping and smarter splitting: Rethinking

strategies for sepsis and acute respiratory distress syndrome clinical trial design. Am. J. Respir. Crit. Care Med. 2016, 194, 147–155.
[CrossRef]

62. Swedberg, K.; Kjekshus, J.; CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure.
results of the cooperative north Scandinavian enalapril survival study (CONSENSUS). N. Engl. J. Med. 1987, 316, 1429–1435.
[CrossRef]

63. Center for Drug Evaluation and Research. Enrichment Strategies for Clinical Trials to Support Approval of Human Drugs and Bi-
ological Products FDA 2019. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/
enrichment-strategies-clinical-trials-support-approval-human-drugs-and-biological-products (accessed on 11 March 2019).

http://doi.org/10.1126/science.3513311
http://doi.org/10.1515/CCLM.2006.194
http://doi.org/10.1016/S0022-3476(72)80229-4
http://doi.org/10.1038/11905
http://doi.org/10.1126/science.1088477
http://doi.org/10.1001/jama.291.14.1720
http://www.ncbi.nlm.nih.gov/pubmed/15082699
http://www.ncbi.nlm.nih.gov/pubmed/29644515
http://doi.org/10.1038/ng.2261
http://www.ncbi.nlm.nih.gov/pubmed/22544366
http://doi.org/10.1038/nrcardio.2013.53
http://doi.org/10.1016/j.ahj.2015.06.009
http://doi.org/10.1016/j.athoracsur.2009.12.018
http://doi.org/10.2215/CJN.05411008
http://doi.org/10.1038/ki.2015.161
http://www.hcup-us.ahrq.gov/reports/statbriefs/sb160.pdf
http://doi.org/10.1001/jama.2016.0287
http://doi.org/10.1016/j.molmed.2014.01.007
http://doi.org/10.2478/jccm-2019-0017
http://www.ncbi.nlm.nih.gov/pubmed/31431921
http://doi.org/10.1016/S1473-3099(12)70157-3
http://doi.org/10.1007/s00134-017-4727-y
http://www.ncbi.nlm.nih.gov/pubmed/28236258
http://doi.org/10.1164/rccm.201512-2544CP
http://doi.org/10.1016/S0002-9149(88)80087-0
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/enrichment-strategies-clinical-trials-support-approval-human-drugs-and-biological-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/enrichment-strategies-clinical-trials-support-approval-human-drugs-and-biological-products


Processes 2022, 10, 1200 16 of 17

64. Xiao, W.; Mindrinos, M.N.; Seok, J.; Cuschieri, J.; Cuenca, A.G.; Gao, H.; Hayden, D.L.; Hennessy, L.; Moore, E.E.; Minei, J.P.; et al.
Response to Injury Large-Scale Collaborative Research Program, A genomic storm in critically injured humans. J. Exp. Med. 2011,
208, 2581–2590. [CrossRef]

65. Seok, J.; Warren, H.S.; Cuenca, A.G.; Mindrinos, M.N.; Baker, H.V.; Xu, W.; Richards, D.R.; McDonald-Smith, G.P.; Gao, H.;
Hennessy, L.; et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA
2013, 110, 3507–3512. [CrossRef]

66. Sweeney, T.E.; Shidham, A.; Wong, H.R.; Khatri, P. A comprehensive time-course-based multicohort analysis of sepsis and sterile
inflammation reveals a robust diagnostic gene set. Sci. Transl. Med. 2015, 7, 287ra71. [CrossRef]

67. Young, E.E.; Lariviere, W.R.; Belfer, I. Genetic basis of pain variability: Recent advances. J. Med. Genet. 2012, 49, 1–9. [CrossRef]
68. Dib-Hajj, S.D.; Waxman, S.G. Translational pain research: Lessons from genetics and genomics. Sci. Transl. Med. 2014, 6, 249sr4.

[CrossRef]
69. Anand, U.; Facer, P.; Yiangou, Y.; Sinisi, M.; Fox, M.; McCarthy, T.; Bountra, C.; Korchev, Y.E.; Anand, P. Angiotensin II type 2

receptor (AT2 R) localization and antagonist-mediated inhibition of capsaicin responses and neurite outgrowth in human and rat
sensory neurons. Eur. J. Pain. 2013, 17, 1012–1026. [CrossRef] [PubMed]

70. Dib-Hajj, S.D.; Yang, Y.; Black, J.A.; Waxman, S.G. The Na(V)1.7 sodium channel: From molecule to man. Nat. Rev. Neurosci. 2013,
14, 49–62. [CrossRef] [PubMed]

71. Bregman, H.; Berry, L.; Buchanan, J.L.; Chen, A.; Du, B.; Feric, E.; Hierl, M.; Huang, L.; Immke, D.; Janosky, B.; et al. Identification
of a potent, state-dependent inhibitor of Nav1.7 with oral efficacy in the formalin model of persistent pain. J. Med. Chem. 2011, 54,
4427–4445. [CrossRef] [PubMed]

72. Ely, E.W.; Laterre, P.F.; Angus, D.C.; Ely, E.W.; Laterre, P.F.; Angus, D.C.; Helterbrand, J.D.; Levy, H.; Dhainaut, J.F.;
Vincent, J.L.; et al. Drotrecogin alfa (activated) administration across clinically important subgroups of patients with severe sepsis.
Crit. Care Med. 2003, 31, 12–19. [CrossRef] [PubMed]

73. Angus, D.C. Drotrecogin alfa (activated)...a sad final fizzle to a roller-coaster party. Crit Care 2012, 16, 107. [CrossRef]
74. Seifirad, S.; Haghpanah, V. Inappropriate modeling of chronic and complex disorders: How to reconsider the approach in the

context of predictive, preventive and personalized medicine, and translational medicine. EPMA J. 2019, 10, 195–209. [CrossRef]
75. Seifirad, S. An emerging need for developing new models for myocardial infarction as a chronic complex disease: Lessons learnt

from animal vs. human studies on cardioprotective effects of Erythropoietin in reperfused myocardium. Front. Physiol. 2014,
5, 44. [CrossRef]

76. Greek, J.; Shanks, N. Thoughts on animal models for human disease and treatment. J. Am. Vet. Med. Assoc. 2009, 235, 363–364.
77. Hackam, D.G. Translating animal research into clinical benefit. BMJ 2007, 334, 163–164. [CrossRef]
78. Mak, I.W.; Evaniew, N.; Ghert, M. Lost in translation: Animal models and clinical trials in cancer treatment. Am. J. Transl. Res.

2014, 6, 114–118.
79. McGonigle, P.; Ruggeri, B. Animal models of human disease: Challenges in enabling translation. Biochem. Pharmacol. 2014, 87,

162–171. [CrossRef] [PubMed]
80. Bruno, R.; Vivier, N.; Montay, G.; Liboux, A.É.; Powe, L.K.; Delumeau, J.C.; Rhodes, G.R. Population pharmacokinetics of riluzole

in patients with amyotrophic lateral sclerosis. Clin. Pharmacol. Ther. 1997, 62, 518–526. [CrossRef]
81. Lidegaard, O. Smoking and use of oral contraceptives: Impact on thrombotic diseases. Am. J. Obstet. Gynecol. 1999, 180, S357–S363.

[CrossRef]
82. Jerie, P. New catastrophe in pharmacological treatment—The crisis of clinical studies? Acute organ failure after administration of

TGN1412. Cas. Lek. Ceskych 2006, 145, 426.
83. Golubnitschaja, O.; Baban, B.; Boniolo, G.; Wang, W.; Bubnov, R.; Kapalla, M.; Krapfenbauer, K.; Mozaffari, M.S.; Costigliola, V.

Medicine in the early twenty-first century: Paradigm and anticipation—EPMA position paper 2016. EPMA J. 2016, 7, 23.
[CrossRef]

84. Beloncle, F.; Radermacher, P.; Guerin, C.; Asfar, P. Mean arterial pressure target in patients with septic shock. Minerva Anestesiol.
2016, 82, 777–784.

85. Holzapfel, G.A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2001;
pp. 388–390.

86. Zhu, Y.; Hardy, C.J.; Sodickson, D.K.; Giaquinto, R.O.; Dumoulin, C.L.; Kenwood, G.; Niendorf, T.; Lejay, H.; McKenzie, C.A.;
Ohliger, M.A.; et al. Highly parallel volumetric imaging with a 32-element RF coil array. Magn. Reson. Med. 2004, 52, 869–877.
[CrossRef]

87. Pathmanathan, P.; Shotwell, M.S.; Gavaghan, D.J.; Cordeiro, J.M.; Gray, R.A. Uncertainty quantification of fast sodium current
steady-state inactivation for multi-scale models of cardiac electrophysiology. Prog. Biophys. Mol. Biol. 2015, 117, 4–18. [CrossRef]

88. Johnstone, R.H.; Chang, E.T.Y.; Bardenet, R.; de Boer, T.P.; Gavaghan, D.J.; Pathmanathan, P.; Clayton, R.H.; Mirams, G.R.
Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models? J. Mol. Cell Cardiol. 2016,
96, 49–62. [CrossRef]

89. Mangion, K.; Gao, H.; Husmeier, D.; Luo, X.; Berry, C. Advances in computational modeling for personalised medicine after
myocardial infarction. Heart 2018, 104, 550–557. [CrossRef]

http://doi.org/10.1084/jem.20111354
http://doi.org/10.1073/pnas.1222878110
http://doi.org/10.1126/scitranslmed.aaa5993
http://doi.org/10.1136/jmedgenet-2011-100386
http://doi.org/10.1126/scitranslmed.3007017
http://doi.org/10.1002/j.1532-2149.2012.00269.x
http://www.ncbi.nlm.nih.gov/pubmed/23255326
http://doi.org/10.1038/nrn3404
http://www.ncbi.nlm.nih.gov/pubmed/23232607
http://doi.org/10.1021/jm200018k
http://www.ncbi.nlm.nih.gov/pubmed/21634377
http://doi.org/10.1097/00003246-200301000-00002
http://www.ncbi.nlm.nih.gov/pubmed/12544987
http://doi.org/10.1186/cc11152
http://doi.org/10.1007/s13167-019-00176-z
http://doi.org/10.3389/fphys.2014.00044
http://doi.org/10.1136/bmj.39104.362951.80
http://doi.org/10.1016/j.bcp.2013.08.006
http://www.ncbi.nlm.nih.gov/pubmed/23954708
http://doi.org/10.1016/S0009-9236(97)90047-3
http://doi.org/10.1016/S0002-9378(99)70696-4
http://doi.org/10.1186/s13167-016-0072-4
http://doi.org/10.1002/mrm.20209
http://doi.org/10.1016/j.pbiomolbio.2015.01.008
http://doi.org/10.1016/j.yjmcc.2015.11.018
http://doi.org/10.1136/heartjnl-2017-311449


Processes 2022, 10, 1200 17 of 17

90. Malbrain, M.L.; Marik, P.E.; Witters, I.; Cordemans, C.; Kirkpatrick, A.W.; Roberts, D.J.; Van Regenmortel, N. Fluid overload,
de-resuscitation, and outcomes in critically ill or injured patients: A systematic review with suggestions for clinical practice.
Anaesthesiol. Intensive Ther. 2014, 46, 361–380. [CrossRef] [PubMed]

91. Byrne, L.; Van Haren, F. Fluid resuscitation in human sepsis: Time to rewrite history? Ann. Intensive Care 2017, 7, 4. [CrossRef]
[PubMed]

92. Caironi, P.; Tognoni, G.; Masson, S.; Fumagalli, R.; Pesenti, A.; Romero, M.; Fanizza, C.; Caspani, L.; Faenza, S.; Grasselli, G.; et al.
Albumin replacement in patients with severe sepsis or septic shock. N. Engl. J. Med. 2014, 370, 1412–1421. [CrossRef]

93. Finfer, S.; Bellomo, R.; Boyce, N.; French, J.; Myburgh, J.; Norton, R.; Investigators, S.S. A comparison of albumin and saline for
fluid resuscitation in the intensive care unit. N. Engl. J. Med. 2004, 350, 2247–2256. [PubMed]

94. Myburgh, J.A.; Finfer, S.; Bellomo, R.; Billot, L.; Cass, A.; Gattas, D.; Glass, P.; Lipman, J.; Liu, B.; McArthur, C.; et al. Hydroxyethyl
starch or saline for fluid resuscitation in intensive care. N. Engl. J. Med. 2012, 367, 1901–1911. [CrossRef]

95. Saville, B.R.; Berry, S.M. Efficiencies of platform clinical trials: A vision of the future. Clin. Trials 2016, 13, 358–366. [CrossRef]
96. Vincent, J.L. Improved survival in critically ill patients: Are large, R.C.Ts more useful than personalized medicine?

Intensive Care Med. 2016, 42, 1778–1780. [CrossRef] [PubMed]
97. Cohen, J.; Vincent, J.L.; Adhikari, N.K.; Machado, F.R.; Angus, D.C.; Calandra, T.; Jaton, K.; Giulieri, S.; Delaloye, J.; Opal, S.; et al.

Sepsis: A roadmap for future research. Lancet Infect. Dis. 2015, 15, 581–614. [CrossRef]
98. Shakoory, B.; Carcillo, J.A.; Chatham, W.W.; Amdur, R.L.; Zhao, H.; Dinarello, C.A.; Cron, R.Q.; Opal, S.M. Interleukin-1 receptor

blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: Reanalysis of
a prior phase III trial. Crit. Care Med. 2016, 44, 275–281. [CrossRef]

99. Langley, R.J.; Tipper, J.L.; Bruse, S.; Baron, R.M.; Tsalik, E.L.; Huntley, J.; Rogers, A.J.; Jaramillo, R.J.; O’Donnell, D.;
Mega, W.M.; et al. Integrative“omic” analysis of experimental bacteremia identifies a metabolic signature that distinguishes
human sepsis from systemic inflammatory response syndromes. Am. J. Respir. Crit. Care Med. 2014, 190, 445–455. [CrossRef]

100. McHugh, L.; Seldon, T.A.; Brandon, R.A.; Kirk, J.T.; Rapisarda, A.; Sutherland, A.J.; Presneill, J.J.; Venter, D.J.; Lipman, J.;
Thomas, M.R.; et al. A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflam-
mation in Critically Ill Patients: Discovery and Validation in Independent Cohorts. PLoS Med. 2015, 12, e1001916. [CrossRef]
[PubMed]

101. Hudis, C.A. Trastuzumab—Mechanism of action and use in clinical practice. N. Engl. J. Med. 2007, 357, 39–51. [CrossRef]
[PubMed]

102. Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics
knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [CrossRef] [PubMed]

103. Relling, M.V.; Klein, T.E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research
Network. Clin. Pharmacol. Ther. 2011, 89, 464–467. [CrossRef] [PubMed]

104. Fang, H.; Harris, S.C.; Liu, Z.; Zhou, G.; Zhang, G.; Xu, J.; Rosario, L.; Howard, P.C.; Tong, W. FDA drug labeling: Rich resources
to facilitate precision medicine, drug safety, and regulatory science. Drug Discov. Today 2016, 21, 1566–1570. [CrossRef]

105. Friedman, A.A.; Letai, A.; Fisher, D.E.; Flaherty, K.T. Precision medicine for cancer with next-generation functional diagnostics.
Nat. Rev. Cancer 2015, 15, 747–756. [CrossRef]

106. Sandoval, J.A.; Lucero, J.; Oetzel, J.; Avila, M.; Belone, L.; Mau, M.; Pearson, C.; Tafoya, G.; Duran, B.; Iglesias Rios, L.; et al.
Process and outcome constructs for evaluating community-based participatory research projects: A matrix of existing measures.
Health Educ. Res. 2012, 27, 680–690. [CrossRef]

107. Tigges, B.B.; Miller, D.; Dudding, K.M.; Balls-Berry, J.E.; Borawski, E.A.; Dave, G.; Hafer, N.S.; Kimminau, K.S.; Kost, R.G.;
Littlefield, K.; et al. Measuring quality and outcomes of research collaborations: An integrative review. J. Clin. Transl. Sci. 2019, 3,
261–289. [CrossRef]

108. Gefenas, E.; Cekanauskaite, A.; Tuzaite, E.; Dranseika, V.; Characiejus, D. Does the “new philosophy” in predictive, preventive
and personalised medicine require new ethics? EPMA J. 2011, 2, 141–147. [CrossRef]

109. Froud, R.; Meza, T.J.; Ernes, K.O.; Slowther, A.M. Research ethics oversight in Norway: Structure, function, and challenges.
BMC Health Serv. Res. 2019, 19, 24. [CrossRef]

110. Maschke, K.J. Wanted: Human biospecimens. Hastings Cent. Rep. 2010, 40, 21–23. [CrossRef] [PubMed]
111. Verbelen, M.; Weale, M.E.; Lewis, C.M. Cost-effectiveness of pharmacogenetic-guided treatment: Are we there yet? Pharm. J. 2017,

17, 395–402. [CrossRef] [PubMed]
112. Vicente, A.M.; Ballensiefen, W.; Jönsson, J.I. How personalised medicine will transform healthcare by 2030, the ICPerMed vision.

J. Transl. Med. 2020, 18, 180–187. [CrossRef] [PubMed]

http://doi.org/10.5603/AIT.2014.0060
http://www.ncbi.nlm.nih.gov/pubmed/25432556
http://doi.org/10.1186/s13613-016-0231-8
http://www.ncbi.nlm.nih.gov/pubmed/28050897
http://doi.org/10.1056/NEJMoa1305727
http://www.ncbi.nlm.nih.gov/pubmed/15163774
http://doi.org/10.1056/NEJMoa1209759
http://doi.org/10.1177/1740774515626362
http://doi.org/10.1007/s00134-016-4482-5
http://www.ncbi.nlm.nih.gov/pubmed/27620286
http://doi.org/10.1016/S1473-3099(15)70112-X
http://doi.org/10.1097/CCM.0000000000001402
http://doi.org/10.1164/rccm.201404-0624OC
http://doi.org/10.1371/journal.pmed.1001916
http://www.ncbi.nlm.nih.gov/pubmed/26645559
http://doi.org/10.1056/NEJMra043186
http://www.ncbi.nlm.nih.gov/pubmed/17611206
http://doi.org/10.1038/clpt.2012.96
http://www.ncbi.nlm.nih.gov/pubmed/22992668
http://doi.org/10.1038/clpt.2010.279
http://www.ncbi.nlm.nih.gov/pubmed/21270786
http://doi.org/10.1016/j.drudis.2016.06.006
http://doi.org/10.1038/nrc4015
http://doi.org/10.1093/her/cyr087
http://doi.org/10.1017/cts.2019.402
http://doi.org/10.1007/s13167-011-0078-x
http://doi.org/10.1186/s12913-018-3816-0
http://doi.org/10.1353/hcr.2010.0011
http://www.ncbi.nlm.nih.gov/pubmed/20964268
http://doi.org/10.1038/tpj.2017.21
http://www.ncbi.nlm.nih.gov/pubmed/28607506
http://doi.org/10.1186/s12967-020-02316-w
http://www.ncbi.nlm.nih.gov/pubmed/32345312

	What Is Personalized Medicine? 
	Big Data 
	Topological Data Analysis 
	Machine Learning 
	Digital Twins 
	Human Geographic Information System 
	“Omics” Technologies 
	Microfluidics 

	Precision Medicine in Intensive Care Units 
	Discriminative Models for Prediction of Perioperative and Long-Term Outcomes 
	Coronary Disease 
	Acute Kidney Injury 
	Sepsis 
	Pain 
	Blood Loss 

	Selection/Stratification for Perioperative Interventions 
	Prevention of Organ Failure 
	Hemodynamic Optimization 
	Fluid Resuscitation 


	Approval of the FDA 
	Ethics of Personalized Medicine 
	Economic Challenge 
	Concluding Notes 
	References

