Solving the Formation and Containment Control Problem of Nonlinear Multi-Boiler Systems Based on Interval Type-2 Takagi–Sugeno Fuzzy Models
Abstract
:1. Introduction
2. System Description and Problem Statement of Multi-Boiler Systems
2.1. Remark 1 (Graph Theory)
2.2. Remark 2 (Uncertainty Problem of the Boiler System)
3. IT-2 Fuzzy Formation and Containment Controller Design for the Multi-Boiler System
4. Simulation Results
4.1. Simulation of IT-2 Fuzzy Control Method
4.2. Simulation
4.3. Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rydland, K.; Oyvang, K.; Gloersen, T.C. A mathematical model for dynamic analysis of a boiler. In Proceedings of the International Marine and Shipping Conference, London, UK, 4–8 June 1973. [Google Scholar]
- Tyssø, A.; Brembo, J.C.; Linds, K. The design of a multivariable control system for a ship boiler. Automatica 1976, 12, 211–224. [Google Scholar] [CrossRef]
- Mello, F.D.P. Boiler models for system dynamic performance studies. IEEE Trans. Power Syst. 1991, 6, 66–74. [Google Scholar] [CrossRef]
- Gilman, G.F.; Gilman, J. Boiler Control System Engineering; International Society of Automation: Pittsburgh, PA, USA, 2010. [Google Scholar]
- Changliang, L.; Jizhen, L.; Yuguang, N.; Weiping, L. Nonlinear boiler model of 300 MW power unit for system dynamic performance studies. In Proceedings of the IEEE International Symposium on Industrial Electronics Proceedings, Pusan, Korea, 12–16 June 2001; Volume 2, pp. 1296–1300. [Google Scholar]
- Kwan, H.W.; Amderson, J.H. A mathematical model of a 200 MW boiler. Int. J. Control 1970, 12, 977–998. [Google Scholar] [CrossRef]
- Liua, X.J.; Konga, X.B.; Houa, G.L.; Wang, J.H. Modeling of a 1000 MW power plant ultra super-critical boiler system using fuzzy-neural network methods. Energy Convers. Manag. 2013, 65, 518–527. [Google Scholar] [CrossRef]
- Åström, K.J.; Eklund, K. A simplified non-linear model of a drum boiler-turbine unit. Int. J. Control 1972, 16, 145–169. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Marquez, H.J.; Chen, T.; Liu, J. Analysis and control of a nonlinear boiler-turbine unit. J. Process Control 2005, 15, 883–891. [Google Scholar] [CrossRef]
- Chawdhry, P.K.; Hogg, B.W. Identification of boiler models. IEE Proc. D (Control Theory Appl.) 1989, 136, 261–271. [Google Scholar] [CrossRef]
- Vasquez, J.R.; Perez, R.R.; Moriano, J.S.; Gonzalez, J.P. System identification of steam pressure in a fire-tube boiler. Comput. Chem. Eng. 2008, 32, 2839–2848. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y. Performance assessment of a boiler combustion process control system based on a data-driven approach. Processes 2018, 6, 200. [Google Scholar] [CrossRef] [Green Version]
- Mižáková, J.; Piteľ, J.; Hošovský, A.; Pavlenko, I.; Ochowiak, M.; Khovanskyi, S. Biomass combustion control in small and medium-scale boilers based on low cost sensing the trend of carbon monoxide emissions. Processes 2021, 9, 2030. [Google Scholar] [CrossRef]
- Moradi, H.; Bakhtiari-Nejad, F.; Saffar-Avval, M. Robust control of an industrial boiler system; a comparison between two approaches: Sliding mode control & H∞ technique. Energy Convers. Manag. 2009, 50, 1401–1410. [Google Scholar]
- Wu, X.; Shen, J.; Li, Y.; Lee, K.Y. Data-driven modeling and predictive control for boiler–turbine unit. IEEE Trans. Energy Convers. 2013, 28, 470–481. [Google Scholar] [CrossRef]
- Tan, W.; Marquez, H.J.; Chen, T. Multivariable robust controller design for a boiler system. IEEE Trans. Control Syst. Technol. 2002, 10, 735–742. [Google Scholar] [CrossRef]
- Bell, R.D.; Åström, K.J. Drum-boiler dynamics. Automatica 2000, 36, 363–378. [Google Scholar]
- Couzin, I.D.; Franks, N.R. Self-organized lane formation and optimized traffic flow in army ants. Proc. R Soc. Lond. Ser. B Biol. Sci. 2003, 270, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Ota, H. Multi-agent robot systems as distributed autonomous systems. Adv. Eng. Inform. 2006, 20, 59–70. [Google Scholar] [CrossRef]
- Rui, X.; Pingyuan, C.; Xiaofei, X. Realization of multi-agent planning system for autonomous spacecraft. Adv. Eng. Softw. 2005, 36, 266–272. [Google Scholar] [CrossRef]
- Skobelev, P.O.; Simonova, E.V.; Zhilyaev, A.A.; Travin, V.S. Application of multi-agent technology in the scheduling system of swarm of earth remote sensing satellites. Procedia Comput. Sci. 2017, 103, 396–402. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, L.; Hou, Z.G.; Tan, M.; Wang, M. Containment control of multi-agent systems in a noisy communication environment. Automatica 2014, 50, 1922–1928. [Google Scholar] [CrossRef]
- Ahn, H.S. Formation Control: Approaches for Distributed Agents; Springer: New York, NY, USA, 2019. [Google Scholar]
- Li, Z.; Duan, Z. Cooperative Control of Multi-Agent Systems: A Consensus Region Approach; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ren, W.; Cao, Y. Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues; Springer: London, UK, 2011. [Google Scholar]
- Ren, W.; Bread, R.W.; Atkins, E.M. Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 2007, 27, 71–82. [Google Scholar]
- Mokhtar, M.; Stables, M.; Liu, X.; Howe, J. Intelligent multi-agent system for building heat distribution control with combined gas boilers and ground source heat pump. Energy Build. 2013, 62, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.O.; Tanaka, K.; Griffin, M.F. An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Syst. 1996, 4, 14–23. [Google Scholar] [CrossRef]
- Chang, W.J.; Qiao, H.Y.; Ku, C.C. Sliding mode fuzzy control for nonlinear stochastic systems subject to pole assignment and variance constraint. Inf. Sci. 2018, 432, 133–145. [Google Scholar] [CrossRef]
- Ku, C.C.; Chang, W.J.; Tsai, M.H.; Lee, Y.C. Observer-based proportional derivative fuzzy control for singular Takagi-Sugeno fuzzy systems. Inf. Sci. 2021, 570, 815–830. [Google Scholar] [CrossRef]
- Chang, W.J.; Lin, Y.H.; Du, J.; Chang, C.M. Fuzzy Control with pole assignment and variance constraints for continuous-time perturbed Takagi-Sugeno fuzzy models: Application to ship steering systems. Int. J. Control Autom. Syst. 2019, 17, 2677–2692. [Google Scholar] [CrossRef]
- Qiao, H.Y.; Chang, W.J.; Lin, Y.H.; Lin, Y.W. Pole location and input constrained robust fuzzy control for T-S fuzzy models subject to passivity and variance requirements. Processes 2021, 9, 787. [Google Scholar] [CrossRef]
- Palacio-Morales, J.; Tobón, A.; Herrera, J. Optimization based on pattern search algorithm applied to pH non-linear control: Application to alkalinization process of sugar juice. Processes 2021, 9, 2283. [Google Scholar] [CrossRef]
- Ku, C.C.; Huang, P.H.; Chang, W.J. Passive fuzzy controller design for perturbed nonlinear drum-boiler system with multiplicative noise. J. Mar. Sci. Technol. 2010, 18, 7. [Google Scholar] [CrossRef]
- Chang, W.J.; Chang, Y.C.; Ku, C.C. Passive fuzzy control via fuzzy integral Lyapunov function for nonlinear ship drum-boiler systems. J. Dyn. Syst. Meas. Control. 2015, 137, 041008. [Google Scholar] [CrossRef] [Green Version]
- Lam, H.K.; Seneviratne, L.D. Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2008, 38, 617–628. [Google Scholar] [CrossRef]
- Biglarbegian, M.; Melek, W.W.; Mendel, J.M. On the stability of interval type-2 TSK fuzzy logic control systems. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2009, 40, 798–818. [Google Scholar] [CrossRef]
- Chang, W.J.; Lin, Y.W.; Lin, Y.H.; Pen, C.L.; Tsai, M.H. Actuator saturated fuzzy controller design for interval type-2 Takagi-Sugeno fuzzy models with multiplicative noises. Processes 2021, 9, 823. [Google Scholar] [CrossRef]
- Pellegrinetti, G.; Bentsman, J. Nonlinear control oriented boiler modeling-a benchmark problem for controller design. IEEE Trans. Control Syst. Technol. 1996, 4, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Li, Q.; Ren, Z.; Zhong, Y. Formation-containment control for high-order linear time-invariant multi-agent systems with time delays. J. Frankl. Inst. 2015, 352, 3564–3584. [Google Scholar] [CrossRef]
- Wang, Y.W.; Liu, X.K.; Xiao, J.W.; Shen, Y. Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control. Automatica 2018, 93, 26–32. [Google Scholar] [CrossRef]
- Åström, K.J.; Bell, R.D. Simple drum-boiler models. In Proceedings of the IFAC International Symposium on Power Systems, Modeling and Control Applications, Brussels, Belgium, 5–8 September 1988. [Google Scholar]
- Bell, R.D.; Åström, K.J. A Low Order Non-Linear Dynamic Model for Drum Boiler-Turbine-Alternator Units; Report TFRT-3192; Lund Institute of Technology: Lund, Sweden, 1979. [Google Scholar]
- Teixeira, M.C.M.; Zak, S.H. Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Trans. Fuzzy Syst. 1999, 7, 133–142. [Google Scholar] [CrossRef]
- Meng, Z.; Ren, W.; You, Z. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica 2010, 46, 2092–2099. [Google Scholar] [CrossRef]
- Lam, H.K.; Li, H.; Deters, C.; Secco, E.L. Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 2014, 61, 956–968. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.J.; Huang, B.J. Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises. ISA Trans. 2014, 53, 1787–1795. [Google Scholar] [CrossRef]
Parameters | Descriptions |
---|---|
Numbers of leader agents ( agents in total) | |
Numbers of follower agents ( agents in total) | |
Elements of m row and n column in adjacency matrix | |
, | Identity matrix with the dimension of leader and follower numbers |
, | Rule numbers of fuzzy model and fuzzy controller |
, | Upper and lower bound membership function-dependent scalars related to fuzzy rules and |
, | Common positive definite matrix of Lyapunov function for the stability analysis of leader and follower agents |
, | Semi-positive definite matrices for the stability analysis of leader and follower agents related to fuzzy rules and |
, | Common symmetric matrix for the stability analysis of leader and follower agents |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Chang, W.-J.; Ku, C.-C. Solving the Formation and Containment Control Problem of Nonlinear Multi-Boiler Systems Based on Interval Type-2 Takagi–Sugeno Fuzzy Models. Processes 2022, 10, 1216. https://doi.org/10.3390/pr10061216
Lin Y-H, Chang W-J, Ku C-C. Solving the Formation and Containment Control Problem of Nonlinear Multi-Boiler Systems Based on Interval Type-2 Takagi–Sugeno Fuzzy Models. Processes. 2022; 10(6):1216. https://doi.org/10.3390/pr10061216
Chicago/Turabian StyleLin, Yann-Horng, Wen-Jer Chang, and Cheung-Chieh Ku. 2022. "Solving the Formation and Containment Control Problem of Nonlinear Multi-Boiler Systems Based on Interval Type-2 Takagi–Sugeno Fuzzy Models" Processes 10, no. 6: 1216. https://doi.org/10.3390/pr10061216
APA StyleLin, Y. -H., Chang, W. -J., & Ku, C. -C. (2022). Solving the Formation and Containment Control Problem of Nonlinear Multi-Boiler Systems Based on Interval Type-2 Takagi–Sugeno Fuzzy Models. Processes, 10(6), 1216. https://doi.org/10.3390/pr10061216