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Abstract: In the classical Economic Order Quantity (EOQ) model, the common unrealistic assumptions
are that all the purchased items are of perfect quality and the demand is constant. However, in a
real-world environment, a portion of the purchased items might be damaged due to mishandling or
an accident during the shipment process, and the demand rate may increase or decrease over time.
Many companies are torn between repairing or replacing the imperfect items with new ones. The right
decision on that options is crucial in order to guarantee that there is no shortage of stocks while at
the same time not jeopardising the items’ quality and maximising the company’s profit. This paper
investigates two EOQ models for imperfect quality items by assuming the demand rate varies with
time. Under Policy 1, imperfect items are sent for repairs at an additional cost to the makeup margin;
under Policy 2, imperfect items are replaced with equivalent quality items from a local supplier at a
higher price. Two mathematical models are developed, and numerical examples along with sensitivity
analyses are provided to illustrate these models. Our results reveal that Policy 1 is preferable to Policy 2
most of the time. However, Policy 2 outperforms Policy 1 if there is no minimum threshold on the
purchased stock quantity. This research allows a company to discover solutions to previously identified
inventory problems and make the inventory-patching process more controlled.

Keywords: EOQ; time-varying demand; imperfect items; mathematical modelling

1. Introduction

Academics and practitioners have demonstrated over the last few decades that effec-
tive inventory management is one of the essential predictors of a company’s performance
in a challenging business environment. In general, the decision made by a company to
maximise profit while satisfying demand depends significantly on the inventory models.
The oldest classical inventory model is the Economic Order Quantity (EOQ). Based on
this model, it is tacitly assumed that the received items are of perfect quality. However,
in real-life applications, this assumption may not always be true. The received items may
be damaged or spoiled due to negligence in process control, transit or handling processes.
The existence of imperfect items should not be ignored because it enormously impacts the
total cost of an inventory system. Due to this issue, many studies have recently focused on
the inventory model considering imperfect quality items. A common assumption made
by existing studies is that the imperfect items are revoked or withdrawn at the end of
the product cycle and then sold at a discounted price. However, instead of offering a
discounted price, the imperfect items can be substituted with new items purchased from
another supplier or sent in for repair before the end of the cycle. These options can be
selected based on the considerable value of the imperfect items. Perhaps it will assist the
managers of a company in making the best decision while also satisfying the demand and
minimising inventory costs.

The assumption of a constant demand rate over a finite planning horizon is another
limitation of the classical EOQ model. It should be noted the supposition of a constant
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demand rate is only valid during the maturity phase of a product life cycle. In fact, patterns
of time-varying demand reflect sales in different phases of a product life cycle. Hence,
during the growth stage of a product life cycle, the demand rate should not be constant.
For example, the demand rate for newly launched electronic products increases at the
beginning of the cycle. The demand rate for these products will decrease when the product
becomes obsolete or a better electronic product hits the market. The same applies to
fashionable products such as clothes and cosmetics. The demand rate for these fashionable
products will increase astonishingly during the early cycle and drop dramatically when
the products become outdated. Furthermore, for seasonal inventory, the demand rate is
either increasing or decreasing with time. Seasonal inventory refers to items that are in
high or low demand at specific times of the year, i.e., the demand fluctuates throughout the
year due to weather, seasons, events, celebration or holidays. This fluctuation in demand
is reflected in orders/sales during those particular periods, and thus the management of
stock level is a key in response to the waxing and waning of demand. Hence, inventory
models with time-varying demand should be considered. Indeed, the demand rate should
be represented by a continuous linear or quadratic function of time [1].

Motivated by the aforementioned issues, this paper aims to develop two inventory
models that consider imperfect items under time-varying demand rates. Specifically, our
focus is on these two policies:

Policy 1: Sending the imperfect items for repair.
Policy 2: Purchasing new items from another supplier to replace the imperfect items.

We note here that Jaber et al. [2] considered the above two policies under the assump-
tion of a constant demand rate. As previously stated, a constant demand rate is only valid
throughout the maturity phase of a product life cycle. Therefore, the work of Jaber et al. [2]
has covered the maturity phase of a product life cycle. This paper will consider the growth
stage of a product life cycle where the demand rate is assumed to be linear. The rest of
this paper is organised as follows. Section 2 highlights the relevant literature, followed by
the listing of notations and assumptions in Section 3. Section 4 provides the mathematical
formulation of the two models. By using the derived mathematical formulation, numeri-
cal examples and sensitivity analyses are carried out and discussed in Section 5. Finally,
Section 7 concludes with key findings and suggests ideas for future research.

2. Literature Review

A typical assumption made by most existing researchers in the EOQ model is that all of
the items produced by the facility are of perfect quality. Multiple suggestions are provided
in later works to deal with this unrealistic assumption, where the supposition of all perfect-
quality items is no longer considered, i.e., the necessity for all items to be ideal throughout
the process is removed, matching the real-life scenarios. In reality, imperfect items do
exist, and these could be factory-defective items or damaged items due to transportation or
handling processes. Many researchers began their work by assuming that imperfect items
are withdrawn from inventory as a single batch, either at the end of the screening period or
at the end of the cycle. The imperfect items are then sold at a discounted price. Furthermore,
other researchers have considered the possibility in which errors are committed during the
screening for defective items, either by the manufacturer (as in Yoo et al. [3]) or by the buyer
(as in Khan et al. [4,5], Dey and Giri [6]). It is worth mentioning the extension study of Hsu
and Hsu [7] by Khalilpourazari et al. [8], where they proposed a multi-item EOQ model with
the presence of imperfect products in supply deliveries. Their inspection process is subject
to committing Type-I or Type-II errors, and operational constraints such as warehouse
capacity and budget are set to establish a more applicable model. In a few words, all goods
must be inspected before defective items can be identified. Al-Salamah [9,10], Bose and
Guha [11], Cheikhrouhou et al. [12], Chen and Tsai [13], Genta et al. [14], Ouyang et al. [15],
among others, have also contributed to the inventory system with inspection of items under
various realistic assumptions. Some of these papers, however, considered inspection but
not inspection errors.
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Salameh and Jaber [16] developed the EOQ model where a shipment contains a
random fraction of defective items. When the stocks are received, they assume that the
stocks are screened immediately to ensure that there are no shortages. They classified the
items that did not pass the screening process as “imperfect” and considered them as second-
grade products instead of eliminating them directly from the inventory altogether. Then,
they constructed a model that assumes that the imperfect items are sold at a discounted
price as lower-quality products. However, there are always better alternatives to cope with
the issue of defective items, and the subsequent extension for this realistic problem induces
more economical solutions.

The works by Salameh and Jaber [16] were then improvised by Jaber et al. [2]. Their
paper replaced the alternative of selling imperfect items at lower costs with two options. For
the first option, the imperfect items are replaced by purchasing the same number of items
from a local supplier but at a higher cost, whereas for the second option, the imperfect items
are sent for repairs and restorations at a third-party facility and are eventually returned to
the inventory. The rationale behind the first option is that an emergency shipment from a
distant supplier to substitute the defective items may not be feasible.

The literature above explores the models under a constant demand rate assumption.
Nevertheless, in reality, the demand rate of an item is not always constant, as it is subject
to variations due to climate conditions, price, income, style, taste and population, to
mention but a few. All these variables can cause an impactful variation in the demand
for items. The assumption that the demand rate is constant is only valid throughout the
maturity phase of a product life cycle (see [17]). Sometimes a product may experience a
surge in demand even during its maturity phase. For example, gloves and masks became
household essentials during the COVID-19 pandemic [18]. In Example 2 in [17], Dye and
Hsieh considered products during the growth phase of their product life cycle, and they
assumed that the time-varying demand rate is linearly increasing. The demand for trendy
items on the market may fluctuate over time. As a result, sales at various stages of the
product life cycle are assumed to be reflected in the patterns of time-varying demand.
Goyal and Giri [19] have written an outstanding assessment of the trends in the modelling
of deteriorating inventories. They mentioned that most of the time-varying demand
inventory models were developed under the assumption of a linear increasing/decreasing
demand rate or an exponential increasing/decreasing demand rate. In addition, the
inventory replenishment problem of deteriorating items with linearly and exponentially
time-varying demand has been studied by Hariga and Alyan [20]. In the growth stage
of a product life cycle, Khanra and Chaudhuri [1] suggested considering the demand rate
as a continuous quadratic function of time to represent the corresponding situation. A
heuristic algorithm was provided by them to tackle the issue over a finite planning horizon.
Musa et al. [21] considered the rework process for the imperfect items under a linearly
increasing demand rate. In addition, Chang et al. [22] considered the linear demand
for deteriorating items under allowable payment delays across a finite time horizon to
examine the impact of the credit duration on the demand function over the product life cycle.
Xu et al. [23] proposed the optimal inventory control strategies under time-varying demand
while considering carbon emission regulation. Usman et al. [24] developed the EOQ model
for imperfect quality items with linear demand. Chen et al. [25,26] examined an inventory
model in which the demand function is a revised version of the Beta distribution function
that follows the shape of a product life cycle over a finite planning horizon. In addition to
the time-dependent demand rate, some studies have considered price-dependent demand.
One of the striking pieces of research was conducted by Cárdenas-Barrón et al. [27]. They
developed EOQ models for perfect and imperfect quality items with the relaxation of some
assumptions, e.g., perfect and imperfect items have distinct holding costs. After the first
screening, the repair option is considered to have fixed the defective items. The demand
is assumed to be nonlinear and depends on the selling price, which follows a polynomial
function.
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In this paper, we extend the work of Jaber et al. [2] in consideration of the two
policies on how the imperfect quality items are handled under the assumption of a linear
increasing demand rate. Our obtained results are also compared with the results obtained
by Jaber et al. [2] by performing a sensitivity analysis. In the analysis, the parameter of the
linear demand function is modified such that its behaviour resembles the case in which the
demand rate is constant (Table 1).

Table 1. The approaches of EOQ models for imperfect items with various demands.

Papers

Handling Options Demands

Sell at a
Discounted

Price
Buy or Repair Constant

Time-
Dependent

Linear

Price-
Dependent
Nonlinear

Salameh and Jaber (2000) [16] X X

Lin (2010) [28] X X

Khan et al. (2011) [4] X X

Konstantaras et al. (2012) [29] X X

Jaggi et al. (2013) [30] X X

Hsu and Hsu (2013) [7] X X

Jaber et al. (2014) [2] X X

Sharifi et al. (2015) [31] X X

Lu et al. (2016) [32] X X

Taleizadeh et al. (2016) [33] X X

Khalilpourazari et al. (2019) [8] X X

Usman et al. (2020) [24] X X

Cárdenas-Barrón et al. (2021) [27] X X

Mokhtari and Asadkhani (2021) [34] X X

Pimsap and Srisodaphol (2022) [35] X X

This paper X X

3. Notations and Assumptions

The following notations are used.

y order quantity size quantity (units)

D demand rate (units/year)

X inspection rate (units/year)

R repair rate (units/year)

ρ fraction of defective items

m markup percentage by the repair shop (%)

T cycle time (years)

tI time to screen a lot of size y (years)

tR time to transport, repair and return imperfect items to the buyer (years)

tT total transport time (years)

tk time required to sell off all the perfect items (years)

S repair setup cost ($)

A transportation fixed cost ($)



Processes 2022, 10, 1220 5 of 16

K buyer’s order cost ($)

P unit price ($ per unit)

c1 material and labour cost to repair an item ($ per unit)

cT unit transportation cost ($ per unit)

cR unit repair cost charged to the buyer ($ per unit)

cI unit inspection cost ($ per unit)

cE unit purchasing cost of an emergency order ($ per unit)

cU unit cost ($ per unit)

cS unit salvage cost ($ per unit)

h holding cost of a good quality item ($ per unit per year)

h
′

holding cost at the repair facility ($ per unit per year)

hR holding cost of a repaired item ($ per unit per year)

hE holding cost of an emergency-ordered item ($ per unit per year)

To develop the model, the following assumptions are adopted from Jaber et al. [2]
except for 12.

1. The repair process of the items at the third-party shop is always in control.
2. The percentage of defective items, ρ, is assumed to be fixed.
3. The inspection rate, X and the repair rate, R are assumed to be constant.
4. The inspection rate always exceeds the demand rate, that is X > D.
5. The parameters of the demand function, a and b are always positive, to ensure that

the demand rate is also always positive for each value of t.
6. Shortage of inventory is not allowed in both models.
7. In the second model considered, the items are rebought immediately once the stock

level, y, drops to 0.
8. The items rebought in the second model considered are assumed to always be of

perfect quality.
9. The sum of the screening and repair times cannot exceed the total duration of the

mathematical model, that is tI + tR ≤ T.
10. The total duration of the model is always assumed to be less than 1 year, that is

0 < T < 1.
11. All the stock will be sold out at the end of the cycle.
12. The demand function is linearly time-dependent.

4. Mathematical Formulation

In this paper, we consider two policies for handling defective items where the first
policy is repairing the defective items while the second policy is replacing the defective
items by buying new items.

4.1. Policy 1: Repairing Defective Items

The first option treats imperfect items by sending them to be repaired at a third-
party facility (Figure 1). After restoration, the items are returned to the inventory. At the
beginning of each batch, a lot of y is received and depleted at the rate of D. The derivation
begins by assuming a linear function for the demand rate:

du
dt

= −D = −a− bt, a, b > 0 (1)
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Figure 1. Inventory level for the repair option for the defective items (Policy 1).

The inventory function, Y(t) is obtained by integration:

∫ Y(t)

y
du =

∫ t

0
(−a− bt) dt

Y(t) = y− at− bt2

2
. (2)

The boundary condition, Y(T) = 0 gives

y = aT +
bT2

2
, (3)

and from ∫ 0

Y(tI)−ρy
du =

∫ tk

tI

(−a− bt) dt,

we obtain

Y(tI) = ρy + atk +
bt2

k
2
− atI −

bt2
I

2
. (4)

Substituting tI into (2), we obtain Y(tI) = y − atI −
bt2

I
2 and substituting (3) into (4)

gives

y− atI −
bt2

I
2

= ρ

(
aT +

bT2

2

)
+ atk +

bt2
k

2
− atI −

bt2
I

2
.

Thus,

t2
k =

−2atk + (1− ρ)(2aT + bT2)

b
. (5)
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Multiply Equation (5) with tk and then replace the term t2
k on the right side with (5) gives

t3
k =

[b(1− ρ)(2aT + bT2) + 4a2]tk − 2a(1− ρ)(2aT + bT2)

b2 . (6)

Equations (5) and (8) will be used later for which both of the terms t2
k and t3

k can be
replaced by equations in terms of tk only.

The area during the repair interval is

A1 + A2 + A3 =
∫ tI

0
Y(t) dt +

∫ tk

tI

Y(t)− ρy dt

=
∫ tI

0
y− at− bt2

2
dt +

∫ tk

tI

(1− ρ)y− at− bt2

2
dt

= ((1− ρ)tk + ρtI)y−
at2

k
2
−

bt3
k

6
(7)

=
[2b(1− ρ)(2aT + bT2) + 2a2]tk

6b
− a(1− ρ)(2aT + bT2)

6b

+
ρ(2aT + bT2)2

4X
(8)

where the final equation is obtained from (3), (5), (6) and tI =
y
X = 2aT+bT2

2X . Next, from

tR = ρy
R + tT = ρ(2aT+bT2)

2R + tT , (3) and (7), we obtain

A4 =
∫ T

tI+tR

Y(t) dt−
∫ tk

tI+tR

Y(t)− ρy dt

=
∫ T

tk

y− at− bt2

2
dt−

∫ tk

tI+tR

ρy dt

= y(T − tk)−
aT2

2
− bT3

6
+

at2
k

2
+

bt3
k

6
+ ρy(tk − tI − tR)

= −
(
((1− ρ)tk + ρtI)y−

at2
k

2
−

bt3
k

6

)
− ρytR + yT − aT2

2
− bT3

6

= −(A1 + A2 + A3)−
ρtT(2aT + bT2)

2
− ρ2(2aT + bT2)2

4R
+

aT2

2
+

bT3

3
. (9)

Since ρy units need to be sent for repair, the total payment for repair is c1ρy. In
addition, the amount that needs to be paid for transportation is 2cTρy. In particular, the
transportation cost considers the two-way transport, that is, the cost for delivering the
imperfect items to the repair facility and the cost for resending the repaired items from the
repair facility. The holding cost at the repair facility is denoted by h′tRρy. Note that a fixed
amount of repair setup cost and transportation fixed cost needs to be paid. The markup
percentage by the repair shop is included in the calculation of the total cost of each repaired
item, cR(y). Hence, the following equation is obtained:

cR(y) = (1 + m)

(
S + 2A

ρy
+ c1 + 2cT + h′tR

)
.

The holding cost per cycle, HC(y) is determined by calculating the area under the
curve. Therefore,

HC(y) = h(A1 + A2 + A3) + hR A4.

The total cost per unit, TC(y) is given by

TC(y) = K + (cu + cI)y + cR(y)ρy + HC(y).
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The objective function, which is the total profit per unit time, TPU(y), is equal to the
total revenue per cycle minus the total cost per cycle divided by the cycle time, that is

TPU(y) =
Py− TC(y)

T
.

After the value of T∗ that maximises TPU is obtained, the optimal order size, y∗, can be
calculated. We choose the variable T for calculations so that the process becomes less tedious.
Furthermore, this can be achieved as y can be expressed as a function of T (see (3)). Now,

TC(T)
T

=
1
T
[K + (cu + cI)y + cR(y)ρy + HC(T)]

=
K
T
+ (cu + cI)

[
2a + bT

2

]
+ (1 + m)

{[
S + 2A

T

]
+ (c1 + 2cT)ρ

[
2a + bT

2

]}
+h

′
(1 + m)

{
ρ2(2aT + bT2)(2a + bT)

4R
+ tTρ

[
2a + bT

2

]}
+

HC(T)
T

. (10)

By Equations (8) and (9),

HC(T)
T

=
1
T

[
(h− hR)(A1 + A2 + A3) +

+hR

(
aT2

2
+

bT3

3
− ρtT(2aT + bT2)

2
− ρ2(2aT + bT2)2

4R

)]
= (h− hR)

(
2b(1− ρ)(2a + bT)tk

6b
+

a2tk
3bT
− a(1− ρ)(2a + bT)

6b
+

ρ(2aT + bT2)(2a + bT)
4X

)
+

+hR

(
aT
2

+
bT2

3
− ρtT(2a + bT)

2
− ρ2(2aT + bT2)(2a + bT)

4R

)
. (11)

Using Equations (10) and (11), we obtain

TPU(T) =
Py− TC(T)

T

=

[
2a + bT

2

]
Z1 +

[
(2aT + bT2)(2a + bT)

4

]
Z2

+

[
aT
2

+
bT2

3

]
Z3 +

Z4

T
+ (2a + bT)tkZ5 +

tk
T

Z6. (12)

where the constants Z1, Z2, Z3, Z4, Z5 and Z6 are defined as follows:

Z1 = P− cu − cI − (1 + m)(c1 + 2cT + h
′
tT)ρ + hRρtT +

a(1− ρ)(h− hR)

3b
;

Z2 =
hRρ2

R
− ρ(h− hR)

X
− h

′
ρ2(1 + m)

R
;

Z3 = −hR;

Z4 = −[K + (1 + m)(S + 2A)];

Z5 = −(h− hR)

[
2b(1− ρ)

6b

]
;

Z6 = −(h− hR)

(
a2

3b

)
.

Equation (5) is quadratic, so, yielding

tk =

√( a
b

)2
+ (1− ρ)

[
2
( a

b

)
T + T2

]
− a

b
.
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Next, we find the first and second derivatives of tk with respect to T.

dtk
dT

=
(1− ρ)

[( a
b
)
+ T

]√( a
b
)2

+ (1− ρ)
[
2
( a

b
)
T + T2

] . (13)

d2tk
dT2 =

(1− ρ)√( a
b
)2

+ (1− ρ)
[
2
( a

b
)
T + T2

] − (1− ρ)2( a
b + T

)2{( a
b
)2

+ (1− ρ)
[
2
( a

b
)
T + T2

]} 3
2

. (14)

Calculating the derivatives of tk allows TPU(T) to be differentiated with respect T :

dTPU(T)
dT

=

(
b
2

)
Z1 +

[
(2a + 3bT)(2a + bT)

4

]
Z2 +

(
a
2
+

2bT
3

)
Z3 −

Z4

T2

+

[
btk + (2a + bT)

dtk
dT

]
Z5 +

(
1
T

dtk
dT
− tk

T2

)
Z6. (15)

The necessary condition for TPU(T) to be a maximum is

dTPU(T)
dT

= 0.

Hence, the value of T∗ is obtained by setting dTPU(T)
dT to be zero and solving the

equation for T∗. Then, the optimal stock quantity is calculated by the following formula:

y∗ = aT∗ +
b(T∗)2

2

To verify that the obtained value T∗ indeed maximizes TPU, the second derivative of
TPU(T) is computed:

d2TPU(T)
dT

=

[
8ba + 6b2T

4

]
Z2 +

(
2b
3

)
Z3 +

2
T3 Z4

+

[
2b

dtk
dT

+ (2a + bT)
d2tk
dT2

]
Z5

+

(
− 2

T2
dtk
dT

+
1
T

d2tk
dT2 +

2tk
T3

)
Z6. (16)

The value of d2TPU(T)
dT obtained at T = T∗ must be negative. This is an indication that

TPU(T∗) is maximum.

4.2. Policy 2: Buying New Items to Replace Defective Items

In the second option, faulty items are replaced by purchasing the same number of
items from an alternate local supplier but at an increased price (Figure 2).

Repeating the same process as in the first model considered, it can be observed that
Equations (3) and (5) still hold.

As in Equation (8), it can be shown that

A1 + A2 =
∫ tI

0
Y(t) dt +

∫ tk

tI

Y(t)− ρy dt

=
[2b(1− ρ)(2aT + bT2) + 2a2]tk

6b
− a(1− ρ)(2aT + bT2)

6b

+
ρ(2aT + bT2)2

4X
(17)
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By Equation (1), the expression for Y(t) for tk ≤ t ≤ T can be obtained by integrating
the following expression

∫ Y(t)

ρy
du =

∫ T

tk

−a− bt dt. (18)

Figure 2. Inventory level for the buying option to replace the defective items (Policy 2).

Hence,

Y(t) = ρy− at− bt2

2
+ atk +

bt2
k

2
. (19)

Using this expression, we obtain

A3 =
∫ T

tk

Y(t) dt

=
∫ T

tk

ρy− at− bt2

2
+ atk +

bt2
k

2
dt

= ρy(T − tk)−
aT2

2
− bT3

6
+

at2
k

2
+

bt3
k

6
+

(
atk +

bt2
k

2

)
(T − tk). (20)

Adding Equations (17) and (20) together, and then replace the term t2
k with the expres-

sion in (5), we obtain

A1 + A2 + A3 =

[
y(1− 2ρ)− (1− ρ)(2aT + bT2)

2

]
tk + ρy

(
T +

2aT + bT2

2X

)
− aT2

2
− bT3

6

+

[
(1− ρ)(2aT2 + bT3)

2

]
,
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which implies that

A3 = −(A1 + A2) +

[
y(1− 2ρ)− (1− ρ)(2aT + bT2)

2

]
tk + ρy

(
T +

2aT + bT2

2X

)
− aT2

2
− bT3

6
+

[
(1− ρ)(2aT2 + bT3)

2

]
. (21)

The holding cost is given by

HC(y) = h(A1 + A2) + hE A3.

The total cost per unit, TC(y) is given by

TC(y) = K + (cu + cl + ρ(cE − cs))y + HC(T).

The objective function, which is the total profit per unit time, TPU(y), is equal to the
total revenue per cycle minus the total cost per cycle divided by the cycle time, that is

TPU(y) =
Py− TC(y)

T
.

After the value of T∗, which maximises TPU, is obtained, the optimal order size, y∗,
can be calculated. As in Policy 1, we choose the variable T for calculations to make the
process less tedious.

Now, the total cost per unit for one cycle is

TC(T)
T

=
K
T
+ [cu + cI + ρ(cE − cs)]

(2a + bT
2

)
+

HC(T)
T

(22)

By Equations (17) and (21),

HC(T)
T

=
1
T

[
(h− hE)(A1 + A2) +

+hE

((
y(1− 2ρ)− (1− ρ)(2aT + bT2)

2

)
tk + ρy

(
T +

2aT + bT2

2X

)
− aT2

2
− bT3

6
+

(1− ρ)(2aT2 + bT3)

2

)]
= h

(
(1− ρ)(2a + bT)tk

3
+

a2tk
3bT
− a(1− ρ)(2a + bT)

6b
+

ρ(2a + bT)(2aT + bT2)

4X

)
+hE

(
aT
2

+
bT2

3
− (2 + ρ)(2a + bT)tk

6
− a2tk

3bT
+

a(1− ρ)(2a + bT)
6b

)
. (23)

Using Equations (22) and (23), the total unit time profit is

TPU(T) =
Py− TC(T)

T

=

[
2a + bT

2

]
Z1 +

[
(2aT + bT2)(2a + bT)

4

]
Z2

+

[
aT
2

+
bT2

3

]
Z3 +

Z4

T
+ (2a + bT)tkZ5 +

tk
T

Z6. (24)
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where the constants Z1, Z2, Z3, Z4, Z5 and Z6 are defined as follows :

Z1 = P− [cu + cI + ρ(cE − cs)] + (h− hE)
a(1− ρ)

3b
;

Z2 = −hρ

X
;

Z3 = −hE;

Z4 = −K;

Z5 = −2h(1− ρ)− hE(2 + ρ)

6
;

Z6 = −(h− hE)
a2

3b
.

As in Policy 1, we find the value of T∗ that maximises TPU.

5. Numerical Example and Sensitivity Analysis

A numerical analysis is carried out to compare the two mathematical models presented
in Section 4. By performing a numerical analysis of the two models using the same
parameters, the model that provides the optimal policy can be discovered. This approach
is useful as the parameters can be easily modified to fit real-life situations. In this section,
the input parameters of the numerical examples from Jaber et al. [2] are adopted. Recall
that the demand rate considered by them is constant. The reason for choosing the same
parameters as theirs is that a comparison can be made under the assumption of a linear
demand rate for different values of b. The input parameters are as follows:

K = $100, A = $200, S = $100, P = $50/unit, cI = $0.5/unit, cu = $25/unit, cs = $20/unit,
cT = $2/unit, c1 = $5/unit, cE = $40/unit, h = $5/unit/year, h

′
= $4/unit/year,

hR = $6/unit/year, hE = $8/unit/year, X = 175,200 units/year, D = 50,000 units/year,
R = 50,000 units/year, tT = 2/200 year, m = 20%, and ρ = 0.02.

The solution to the equation TPU
′
(T) = 0 for both policies is solved using Wolfram

Mathematica. Fixing the parameters as stated above, the solution to the equation, T∗ which
satisfies 0 < T∗ < 1, is used to decide the optimal model. Since the demand function is
linear, the following outputs (Table 2) are computed for the case a = 50,000 and b = 5.

Table 2. Solutions for both policies.

Policy 1 Policy 2

T∗ = 0.075 T∗ = 0.029

TPU(T∗) = 1, 195, 456.243 TPU(T∗) = 1, 198, 028.718

TPU
′
(T∗) ≈ 0 TPU

′
(T∗) ≈ 0

TPU
′′
(T∗) = −365, 714.468 TPU

′′
(T∗) = −8, 469, 934.328

y∗ = 3732.409 y∗ = 1434.457

Figure 3 shows the total unit time profit, TPU, for both policies. It can be seen that
although Policy 2 generates a higher maximum total profit per unit time than that of
Policy 1 at the beginning, the value of TPU for Policy 2 decreases rapidly after the value
of T exceeds T∗. As T differs from 0 to 1, it is obvious that the graph of Policy 1 is above
Policy 2 more frequently, implying that Policy 1 generates a higher total profit per unit
time more consistently than Policy 2. To put it differently, the rate of decrease in TPU
in Policy 1 is lower than the rate of decrease in TPU in Policy 2 after the inventory level
exceeds the optimal stock quantity, resulting in Policy 1 being chosen as the most suitable
model. From Equation (3), note that the amount of stock, y, increases as the total duration
of the model, T, increases. In other words, the greater the T is, the greater the y is. If there



Processes 2022, 10, 1220 13 of 16

is no restriction on the order quantity, then Policy 2 outperforms Policy 1. However, in real
life, a vendor may require a buyer to order a minimum amount of items. For this scenario,
Policy 1 outperforms Policy 2, as shown by the mathematical models of the two policies.

Figure 3. Total profit per unit (TPU) for the two different policies.

Table 3 shows the behaviour of Policies 1 and 2 while varying the value of b when
a = 50, 000. As shown in Jaber et al. [2], the optimal amount of stock is y∗ = 3732 for
Model 1 and y∗ = 1434 for Model 2 when the demand function is constant. From the
sensitivity analysis, the values of y∗ and TPU(T∗) for both models tend to reach their
optimal values in the constant case as b approaches 0. Therefore, the results obtained here
can be considered as generalisations of the results obtained by Jaber et al. [2].

Table 3. The solutions for both policies with varying values of b.

Policy 1 Policy 2

b T∗ y∗ tl tR tk T∗ y∗ tl tR tk

5000 0.1025 5149.1465 0.0294 0.0112 0.1004 0.0402 2012.6031 0.0115 0.0279 0.0394

500 0.0765 3824.4618 0.0218 0.0106 0.0749 0.0294 1470.9296 0.0084 0.0204 0.0288

50 0.0748 3740.5108 0.0213 0.0106 0.0733 0.0288 1437.6622 0.0082 0.0200 0.0282

5 0.0746 3732.4093 0.0213 0.0106 0.0732 0.0287 1434.4571 0.0082 0.0199 0.0281

0.5 0.0746 3731.6020 0.0213 0.0106 0.0731 0.0287 1434.1377 0.0082 0.0199 0.0281

0.05 0.0746 3731.5213 0.0213 0.0106 0.0731 0.0287 1434.1058 0.0082 0.0199 0.0281

6. Theoretical and Managerial Implications

This study offers several managerial insights to companies for effectively managing
or coping with intricacy and becoming more inventive. Based on the analysis results
performed in Section 5, we have identified the following managerial implications, which
will be beneficial to a company’s management team:

(1) The buyer should not perceive the imperfect items as second-grade products and
unreservedly sell them at a discounted price. In point of fact, there are other better
options available, such as

(i) Send those imperfect items to a local workshop for repair and sell them at full
price once they have been fixed;
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(ii) Purchase new items from a local supplier as replacements for those imperfect
items and trade them at full price.

(2) If the purchased quantity is small, a buyer should opt for Policy 2, i.e., replace the
imperfect items with those new purchased from a local supplier. This suggestion
is valid because the total profit per unit under Policy 2 achieves the highest at the
beginning of the total time cycle (see Figure 3). To explain more practically, a small
number of stock orders implies a small number of imperfect items; it is not worth
sending the imperfect items for repair as this approach takes longer to return to capital.

(3) If a large quantity purchase is required, a buyer should undoubtedly opt for Policy 1,
i.e., send the imperfect items to a local workshop for repair purposes. This advice
works because the graph of the total profit per unit for Policy 1 is predominantly above
that for Policy 2 (see Figure 3). That is to say, from the long-term perspective, repairing
the imperfect items from large stocks will bring the company a consistent profit.

We note here that the implications (1)–(3) hold during the growth and maturity stages
of the product cycle.

7. Conclusions

Two modified EOQ models are presented in this paper where the first model deals
with Policy 1 and the second model deals with Policy 2. The outcome obtained here offers
beneficial insights and provides salvaging options for a firm to handle imperfect quality
items. Policy 1 suggests that imperfect quality items are sent for repairs, whereas Policy 2
suggests that imperfect quality items are replaced by purchasing new items from a local
supplier at a higher price. The work of Jaber et al. [2] is extended in this research in the
sense that the demand function considered here is linearly increasing. Our emphasis
here is that Jaber et al. considered the above two policies under the assumption of a
constant demand rate, which is only valid during the maturity phase of a product life cycle.
In response to different phases of a product life cycle, different corresponding demand rates
are worth exploring. What is the best policy to tackle the problem of defective products in
the growth stage of a product life cycle? This is the core of our research, and in this paper,
the growth stage of a product life cycle is considered, and the demand rate is assumed
to be linearly increasing. It should be noted here that the sensitivity analysis in Table 3
shows that the value of the optimal amount of stock y∗ approaches the value of the optimal
stock quantity obtained by Jaber et al. [2] when the linear demand function approaches
the constant demand function. Therefore, our developed mathematical models are indeed
generalisations of the models obtained by Jaber et al. [2].

Our findings reveal that Policy 2 performs better than Policy 1 if there is no restriction
on the number of ordered stock items for a buyer. This situation is not always accurate in
real life, as a vendor may set a threshold on the minimum purchased items to stimulate
sales. As a result, Policy 1 may be superior to Policy 2 in this scenario. We note here that
the results in this research support the findings obtained by Jaber et al. [2]. They also drew
similar conclusions as ours. Therefore, it can be concluded that either in the growth stage
or the maturity stage of a product life cycle, the choice of Policy 1 or 2 depends on whether
there is any restriction on the minimum amount of items that need to be ordered by a buyer.
Generally speaking, if the ordered quantity is small, then the best option is to replace the
imperfect items by purchasing new items from a local supplier at a higher price. On the
contrary, if the ordered quantity is large, then the best option is to send the imperfect items
for repairs to a third-party facility.

The work performed in this research can be extended in a myriad of ways. Firstly,
future researchers may consider other options to handle imperfect quality items, such as
obtaining machinery and manpower to fix defective items in the firm instead of sending
defective items to a shop for repairs. By considering this alternative, transportation and
repair costs can be cut down but at the cost of increased machinery and labour costs.
Another option to handle imperfect quality items is to return the defective items to the
original supplier to be recycled, and an equal number of items are repurchased to replace the
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defective items. If this option is considered, the firm will have to handle an increased cost
of transportation, but the cost of the items during the second purchase may be decreased
since the materials used to produce the items are provided by the firm.

The case where the demand function is quadratic or of a higher degree can also
be considered in future work. Will the result obtained still be consistent with the work
of Jaber et al. [2] when the demand function is now quadratic or cubic? This will be an
exhilarating mathematical exercise for interested readers in the future.
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