Predicting the Effect of Mo Addition on Metastable Phase Equilibria and Diffusion Path of Fe in NiAl Laser-Clad Coatings Using First-Principle Calculations and CALPHAD Simulations
Abstract
:1. Introduction
2. Experimental Details and Aims
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamaguchi, M.; Inui, H.; Ito, K. High-temperature structural intermetallics. Acta Mater. 2000, 48, 307–322. [Google Scholar] [CrossRef]
- Fleischer, R.L. High-strength, high-temperature intermetallic compounds. J. Mater. Sci. 1987, 22, 2281–2288. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Cava, R.; Takagi, H.; Zandbergen, H.; Krajewski, J.; Peck, W.; Siegrist, T.; Batlogg, B.; van Dover, R.; Felder, R.; Mizuhashi, K. Superconductivity in the quaternary intermetallic compounds LnNi2B2C. Nature 1994, 367, 252–253. [Google Scholar] [CrossRef]
- Duerig, T.; Pelton, A.; Stockel, D. An overview of nitinol medical applications. Mat. Sci. Eng. A 1999, 273, 149–160. [Google Scholar] [CrossRef]
- Dimiduk, D.; Miracle, D.; Ward, C. Development of intermetallic materials for aerospace systems. Mater. Sci. Technol. 1992, 8, 367–375. [Google Scholar] [CrossRef]
- Darolia, R. NiAl alloys for high-temperature structural applications. JOM 1991, 43, 44–49. [Google Scholar] [CrossRef]
- Liu, C.; Kumar, K. Ordered intermetallic alloys, Part I: Nickel and iron aluminides. JOM 1993, 45, 38–44. [Google Scholar] [CrossRef]
- Ansara, I.; Dupin, N.; Lukas, H.L.; Sundman, B. Thermodynamic assessment of the AlNi system. J. Alloys Compd. 1997, 247, 20–30. [Google Scholar] [CrossRef]
- Ball, A.; Smallman, R. The operative slip system and general plasticity of NiAl-II. Acta Metall. 1966, 14, 1517–1526. [Google Scholar] [CrossRef]
- Kumar, K.; Mannan, S.; Viswanadham, R. Fracture toughness of NiAl and NiAl-based composites. Acta Metall. Mater. 1992, 40, 1201–1222. [Google Scholar] [CrossRef]
- Schulson, E.; Barker, D. A brittle to ductile transition in NiAl of a critical grain size. Scr. Metall. 1983, 17, 519–522. [Google Scholar] [CrossRef]
- Field, R.; Lahrman, D.; Darolia, R. The effect of alloying on slip systems in <001> oriented NiAl single crystals. Acta Metall. Mater. 1991, 39, 2961–2969. [Google Scholar] [CrossRef]
- Darolia, R.; Lahrman, D.; Field, R. The effect of iron, gallium and molybdenum on the room temperature tensile ductility of NiAl. Scr. Metall. Mater. 1992, 26, 1007–1012. [Google Scholar] [CrossRef]
- Noebe, R.; Behbehani, M. The effect of microalloying additions on the tensile properties of polycrystalline NiAl. Scr. Metall. Mater. 1992, 27, 1795–1800. [Google Scholar] [CrossRef]
- Tsau, C.; Jang, J.; Yeh, J. Microstructures and mechanical behaviors of NiAlFe intermetallic compounds. Mater. Sci. Eng. A 1992, 152, 264–268. [Google Scholar] [CrossRef]
- Kainuma, R.; Imano, S.; Ohtani, H.; Ishida, K. Microstructural evolution in ductile β (B2)+γ′ (L12) NiAlFe alloys. Intermetallics 1996, 4, 37–45. [Google Scholar] [CrossRef]
- Webber, J.; van Aken, D.C. Studies of a quasi-binary β-NiAl and α-Re eutectic. Scr. Metall. 1989, 23, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Milenkovic, S.; Coelho, A.; Caram, R. Directional solidification processing of eutectic alloys in the Ni-Al-V system. J. Cryst. Growth 2000, 211, 485–490. [Google Scholar] [CrossRef]
- Subramanian, P.; Mendiratta, M.; Miracle, D. Microstructures and mechanical behavior of NiAl-Mo and NiAl-Mo-Ti two-phase alloys. Metall. Mater. Trans. A 1994, 25, 2769–2781. [Google Scholar] [CrossRef]
- Ramasundaram, P.; Bowman, R.; Soboyejo, W. An investigation of fatigue and fracture in NiAl-Mo composites. Mater. Sci. Eng. A 1998, 248, 132–146. [Google Scholar] [CrossRef]
- Bei, H.; George, E. Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy. Acta Mater. 2005, 53, 69–77. [Google Scholar] [CrossRef]
- Vilar, R. Laser cladding. J. Laser Appl. 1999, 11, 64–79. [Google Scholar] [CrossRef]
- Shepeleva, L.; Medres, B.; Kaplan, W.; Bamberger, M.; Weisheit, A. Laser cladding of turbine blades. Surf. Coat. Technol. 2000, 125, 45–48. [Google Scholar] [CrossRef]
- Sexton, L.; Lavin, S.; Byrne, G.; Kennedy, A. Laser cladding of aerospace materials. J. Mater. Process. Technol. 2002, 122, 63–68. [Google Scholar] [CrossRef]
- Lin, C.M.; Kai, W.Y.; Su, C.Y.; Key, K.H. Empirical alloys-by-design theory calculations to the microstructure evolution mechanical properties of Mo-doped laser cladding NiAl composite coatings on medium carbon steel substrates. J. Alloys Compd. 2017, 702, 679–686. [Google Scholar] [CrossRef]
- Andersson, J.O.; Helander, T.; Höglund, L.; Shi, P.; Sundman, B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad 2002, 26, 273–312. [Google Scholar]
- Ravi, C.; Wolverton, C. First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates. Acta Mater. 2004, 52, 4213–4227. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Jiang, C.; Zhu, J.; Chen, L.Q.; Liu, Z.K. First-principles calculations and thermodynamic modeling of the Ni-Mo system. Mater. Sci. Eng. A 2005, 397, 288–296. [Google Scholar] [CrossRef]
- Shin, D.; Wolverton, C. First-principles study of solute–vacancy binding in magnesium. Acta Mater. 2010, 58, 531–540. [Google Scholar] [CrossRef]
- Shin, D.; Wolverton, C. First-principles density functional calculations for Mg alloys: A tool to aid in alloy development. Scr. Mater. 2010, 63, 680–685. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.H. The calculation of atomic fields. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1927; pp. 542–548. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segall, M.; Lindan, P.J.; Probert, M.a.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Zoroddu, A.; Bernardini, F.; Ruggerone, P.; Fiorentini, V. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory. Phys. Rev. B 2001, 64, 045208. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hady, M.; Hinoshita, K.; Morinaga, M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr. Mater. 2006, 55, 477–480. [Google Scholar] [CrossRef]
- Harada, Y.; Morinaga, M.; Saito, J.I.; Takagi, Y. New crystal structure maps for intermetallic compounds. J. Phys. Condens. Matter 1997, 9, 8011. [Google Scholar] [CrossRef]
- Bozzolo, G.; Noebe, R.D.; Abel, P.B. Applied Computational Materials Modeling: Theory, Simulation and Experiment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Jin, Y.; Chaturvedi, M.; Han, Y.; Zhang, Y. Crystal structure of δ-NiMo phase in a ternary NiMoAl alloy. Mater. Sci. Eng. A 1997, 225, 78–84. [Google Scholar] [CrossRef]
- Wang, Y.; Woodward, C.; Zhou, S.; Liu, Z.K.; Chen, L.Q. Structural stability of Ni-Mo compounds from first-principles calculations. Scr. Mater. 2005, 52, 17–20. [Google Scholar] [CrossRef]
- Jones, H. The Theory of Brillouin Zones and Electronic States in Crystals; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Lin, C.M.; Chandra, A.S.; Morales-Rivas, L.; Huang, S.Y.; Wu, H.-C.; Wu, Y.E.; Tsai, H.L. Repair Welding of Ductile Cast Iron by Laser Cladding Process: Microstructure and Mechanical Properties. Int. J. Cast Met. Res. 2014, 27, 378–383. [Google Scholar] [CrossRef]
- Liu, Y.; Long, Z.G.; Wang, H.B.; Du, Y.; Huang, B.Y. A predictive equation for solute diffusivity in liquid metals. Scr. Mater. 2006, 55, 367–370. [Google Scholar] [CrossRef]
- Simonovic, D.; Sluiter, M.H. Impurity diffusion activation energies in Al from first principles. Phys. Rev. B 2009, 79, 054304. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.J.; Baskes, M.; Kim, H.; Cho, Y.K. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 2001, 64, 184102. [Google Scholar] [CrossRef]
- Mattsson, T.R.; Mattsson, A.E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Phys. Rev. B 2002, 66, 214110. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.J.; Shim, J.H.; Baskes, M. Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 2003, 68, 144112. [Google Scholar] [CrossRef]
- Krčmar, M.; Fu, C.L.; Janotti, A.; Reed, R. Diffusion rates of 3d transition metal solutes in nickel by first-principles calculations. Acta Mater. 2005, 53, 2369–2376. [Google Scholar] [CrossRef]
Supercell | Ni | Al | Fe | Mo | Structure | Formation Enthalpy |
---|---|---|---|---|---|---|
NiAl | 8 | 8 | - | - | −65.34 | |
NiAl (2Fe) | 7 | 7 | 2 | −58.89 | ||
NiAl (2Mo2Fe) | 6 | 6 | 2 | 2 | −46.08 | |
NiAl (3Mo1Fe) | 6 | 6 | 1 | 3 | −34.96 | |
Mo | - | - | - | 16 | −1936.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-M. Predicting the Effect of Mo Addition on Metastable Phase Equilibria and Diffusion Path of Fe in NiAl Laser-Clad Coatings Using First-Principle Calculations and CALPHAD Simulations. Processes 2022, 10, 1228. https://doi.org/10.3390/pr10061228
Lin C-M. Predicting the Effect of Mo Addition on Metastable Phase Equilibria and Diffusion Path of Fe in NiAl Laser-Clad Coatings Using First-Principle Calculations and CALPHAD Simulations. Processes. 2022; 10(6):1228. https://doi.org/10.3390/pr10061228
Chicago/Turabian StyleLin, Chun-Ming. 2022. "Predicting the Effect of Mo Addition on Metastable Phase Equilibria and Diffusion Path of Fe in NiAl Laser-Clad Coatings Using First-Principle Calculations and CALPHAD Simulations" Processes 10, no. 6: 1228. https://doi.org/10.3390/pr10061228
APA StyleLin, C. -M. (2022). Predicting the Effect of Mo Addition on Metastable Phase Equilibria and Diffusion Path of Fe in NiAl Laser-Clad Coatings Using First-Principle Calculations and CALPHAD Simulations. Processes, 10(6), 1228. https://doi.org/10.3390/pr10061228