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Abstract: Fault diagnosis is studied based on the system type, which facilitates the realization of the
engineering configuration and improves the diagnosis efficiency. The fault-tolerant control method
is unified based on the concept of fault compensation. According to the dynamic characteristics
of the system, the method takes the boundary value of no-fault signal fluctuation as the basis for
fault detection, then takes the changing intensity of the solenoid valve control signal after the fault
occurs as the fault location basis. Finally, it takes the difference or ratio of the signals before and after
the fault occurs as the fault estimation. For the basis of fault separation, the integral value of the
fitting equation between the fault signal and time is used as the Eigenvalue of fault type separation
to comprehend fault separation. A program is written in C++ and combined with MATLAB/S-Fun
function to realize fault tolerance. At the same time, the dynamic model calibration and real-time
fault diagnosis, and fault-tolerant control process of sensor fault diagnosis are provided, which makes
it suitable for general engineering feedforward-feedback systems and has a certain suppression effect
on noise. The simulation results verify that the method is not only viable and it is exact.

Keywords: fault diagnosis; fault-tolerant control; signal processing; data-driven

1. Introduction

The research purpose of this paper is based on the current configuration form of
engineering system development and the limitation of the efficiency of the unified method
for fault diagnosis of various systems. We intend to start from the different structures of
the control system and combine the different dynamic characteristics of each system to
study their faults. The diagnosis method to establish the engineering configuration method
to achieve a productive system fault diagnosis. At the same time, a unified fault-tolerant
method for fault diagnosis based on the compensation concept is established to facilitate
engineering configuration to achieve efficient fault-tolerant control is considered. In this
paper, the fault diagnosis and fault-tolerant processing of the sensor are carried out based
on the feedforward-feedback control system. The sensor is an important data acquisition
device in the control system and an important bridge for communication between the
controller and the actuator. The normality of the sensor will directly affect the performance
of the control system. Therefore, the fault diagnosis and fault-tolerant control of sensors are
of great practical and application value for improving the safety and reliability of industrial
systems during operation. Scholars at home and abroad have conducted extensive research
on sensor fault diagnosis and fault tolerance control [1–5].

There are three main methods of sensor fault diagnosis. The first is fault diagnosis
methods based on analytical models, such as parameter estimation methods and equivalent
space methods [6,7]. The second is fault diagnosis methods based on prior knowledge, such
as expert systems and neural networks [8]. The third is based on data-driven fault diagnosis
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methods, such as signal processing methods and multivariate statistical analysis methods [9–11].
In the closed-loop of the feedforward-feedback control system, the analytical model method
and the prior knowledge method are hard to carry out due to the adjustment effect of the
PID controller and the disturbance effect of nonlinear factors [12].

Yu Zhiwei et al. proposed a new sensor fault diagnosis technology for distributed
control systems. This technology utilizes the equivalent space method to design a fault
diagnosis filter bank, which can effectively reduce the fault jump amplitude caused by
time lag and solve the problem of bus influence of communication lag on traditional fault
diagnosis [13]. Tao Liquan et al. designed a synovial observer for aero-engine sensor fault
diagnosis, which can effectively diagnose other types of faults, such as deviation and pulse
faults. The synovial observer is a fault diagnosis method based on an analytical model.
Compared with general linear observers, it can overcome the disturbance of nonlinear
factors in the system. However, there are also disadvantages, because the aero-engine
works in a high temperature and pressure environment and is interfered with by external
factors such as wind and air pressure, which may cause a large deviation between the
output of the observer and the actual signal, resulting in the problem of misdiagnosis [14].
Wei et al. proposed a convolutional neural network offline diagnostic method for processing
time series. The method adds a shift layer after the input layer of the neural network, which
avoids the loss of fault feature information due to the direct connection between the time
series and convolution layer. It is worth noting that the neural network fault diagnosis
method is based on the comparison between the predicted value and the actual value to
achieve the fault diagnosis. The predicted value requires a large number of sample signals
to train the algorithm, which is very difficult in engineering practice [15].

Fault-tolerant control is mainly divided into passive fault-tolerant control and ac-
tive fault-tolerant control. Passive fault-tolerant control incorporates reliable stabilization,
simultaneous stabilization, and integrity control [16]. Active fault-tolerant control incor-
porates control law rescheduling, control law reconfiguration design, and model tracking
reconfiguration control [17]. Reference [18] proposed a fault-tolerant control scheme with a
fault alarm based on the neural network by utilizing the implicit function theorem, which
can perform adaptive active fault-tolerant control for nonlinear faults. Reference [19] pro-
posed a three-loop fault-tolerant control system, which is theoretically analyzed from the
perspective of the pose controller requirements of the manipulator and has high robust-
ness to the system dealing with parameter changes. Yu Ming et al. proposed an active
fault-tolerant control method based on an optimized adaptive threshold and fault recon-
struction strategy. The synovial observer was used to reconstruct the fault, and then an
adaptive active fault-tolerant control law was designed according to the reconstruction re-
sults. It shows that the fault-tolerant method can achieve fault detection and fault tolerance
within 0.06 s [20].

At present, the fault diagnosis method based on a data-driven approach is one of the
research hotspots. The output signal of the sensor has the characteristics of strong dynamics
and is greatly affected by noise interference. It is difficult to implement fault diagnosis
methods based on analytical models and prior knowledge. Therefore, to solve this problem,
a data-driven sensor fault diagnosis and fault-tolerant control method are proposed.

2. Fault Diagnosis and Fault Tolerance Methods
2.1. Experimental Principle

The experiment was based on the complex system fault diagnosis and fault-tolerant
control innovation platform of a four-capacity water tank and built a feedforward-feedback
control system. By simulating and processing the sensor failure, the goal of the liquid
level in the water tank stabilization at the set value even in a sensor failure environment
was achieved. The complex system fault diagnosis and fault-tolerant control innovation
platform are depicted in Figure 1. The block diagram of the feedforward-feedback control
system is illustrated in Figure 2.
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Figure 1. The innovative platform for fault diagnosis and fault-tolerant control of complex systems.

Figure 2. Feedforward-feedback control system block diagram.

In the figure, θi(S) is the input signal; θo(S) is the output signal; Y(S) is the feedback
signal; ε(S) is the deviation signal; Q(S) is the interference signal.

First, the PID controller and the feedforward controller generate the control signal of
the solenoid valve based on the deviation signal and the interference signal, respectively.
Then the control signal and the interference signal are canceled after passing through
the control transfer function and the interference transfer function, respectively. This not
only gives play to the advantages of timely feedforward correction, but also retains the
advantages that feedback control can overcome various disturbances and lastly test the
controlled variables.

Based on the two upper and lower water tanks on the left side of the innovative
platform, a feedforward-feedback control system was built, and the built-in semi-physical
simulation model is shown in Figure 3.

Figure 3. Hardware-in-the-loop simulation model.
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2.1.1. Tuning PID Controller Parameters

According to the qualitative relationship between the controller parameters and the
system dynamic performance and steady-state performance, the controller parameters
were adjusted experimentally.

• First, set moderate PID parameters at the beginning of debugging to prevent abnormal
situations such as system instability or excessive shock;

• Then a step signal is delivered and the PID parameters are set according to the
overshoot of the manipulated variable and the number of oscillations.

2.1.2. Determining the Feedforward Controller Transfer Function

Adjust the opening of the manual valve to conserve the liquid level in the lower tank
near the set value. For the interference channel, the opening of the manual valve is fixed, so
there is a proportional relationship between the liquid level of the upper tank and its output
flow, which is a first-order inertia link. For the control channel, the proportional solenoid
valve is used to inversely offset the interference, which is likewise a first-order inertial link.
Consequently, the transfer functions of the interference channel and the control channel are:{

Gpd(S) =
K1

T1S+1
Gpc(S) = K2

T2S+1
(1)

In the formula, Gpd(S) and Gpc(S) are the transfer functions of the interference channel
and the control channel, respectively.

Taking the transfer function of the control channel as an example, input a step signal
with a suitable amplitude to the solenoid valve, so that the lower water tank reaches a
balanced state at a higher liquid level, as shown in Figure 4. The relevant parameters to
determine the transfer function of the control channel based on the step response curve are:{

Gpc(S) = K2
T2S+1

K2 = (yst − yin)/x0
(2)

Figure 4. The figure is a step response curve graph: (a) Step Signal; (b) Step Response Curve.

In the formula, yst represents the steady-state value of the step response curve; yin
represents the initial value of the step response curve; x0 represents the amplitude of the
step signal; the time constant T0 is obtained at the steady-state value of 0.632 times.

Similarly, for the transfer function of the interference channel, the step response
curve of the lower tank can be obtained by increasing the liquid level of the upper tank.
Subsequently, the relevant parameters of the transfer function of the interference channel
are calculated according to the above method.



Processes 2022, 10, 1237 5 of 19

The transfer function of the feedforward-feedback control system illustrated in
Figure 2 is:

θo(S)
Q(S)

=
Gpd(s)

1 + Gc(S)Gpc(s)
+

G f f (s)Gpc(s)
1 + Gc(S)Gpc(s)

(3)

In the formula, Gc(S) stands for PID controller transfer function. The invariance
condition is applied, i.e., when Q(S) is not 0, θo(S) is 0. Substituting this relationship
into the transfer function of the feedforward-feedback system, the transfer function of the
feedforward controller can be derived:

G f f (S) = −
Gpd(S)
Gpc(S)

(4)

The feedforward compensation device that meets the above formula can make the con-
trolled quantity not affected by the disturbance quantity and realize the full compensation.

2.2. Fault Detection Method

Fault detection is the beginning of the fault diagnosis task. Generally speaking, the
output signal of the sensor is abnormal at a certain time after the system is stable. At this
time, the fault detection module detects the fault signal in time and sends an alarm signal.

When the sensor fails, its output signal will change sharply compared to the no-fault
signal. Consequently, it is first required to compute the boundary value of the normal
fluctuation of the non-fault signal as the basis for judging whether the sensor fails. The
stack structure is used to compute the rate of change in the newly acquired signal compared
to the last sampled signal in real-time. Subsequently, record the maximum rate of change
in l groups of non-faulty signals, which is used to count the boundary value when the
system fails: {

kM = |(Mt+T −Mt)/Mt|
kV = |(Vt+T −Vt)/Vt|

(5)

In the formula, kM represents the change rate of the adjacent signal of the feedback
sensor; kV represents the change rate of the adjacent signal of the feedforward sensor; Mt+T
and Mt represent the adjacent output signal of the feedback sensor; Vt+T and Vt represent
the adjacent output signal of the feedforward sensor; t and T represent the system running
time and sampling period, respectively.

Taking the output signal of the feedback sensor as an example, compute the mean and
standard deviation of the maximum rate of change in l groups to determine the threshold
for fault detection:KM

σM
ωM

 =

[
1
l

l
∑

i=1
kMi

√
1
l

l
∑

i=1
(KM − kMi)

2 KM + vMσM

]T

(6)

In the formula, KM represents the mean value of the maximum rate of change in l
groups of no-fault signals; σM represents the standard deviation of the maximum rate of
change in l groups of no-fault signals; ωM represents the threshold of fault detection; vM
represents the weight of the standard deviation. Use different weights to improve the
accuracy of the detection.

Similarly, the fault detection threshold of the feedforward sensor is:KV
σV
ωV

 =

[
1
l

l
∑

i=1
kVi

√
1
l

l
∑

i=1
(KV − kVi)

2 KV + vVσV

]T

(7)

The fault detection method is to compare the maximum change rate of a group of
signals with the threshold value. If it exceeds the threshold value range, it is established
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that the output signal of the sensor is inaccurate, otherwise, it is determined that the signal
is not faulty.

2.3. Fault Location Method

According to the control system demonstrated in Figure 3, the output signals of the
feed-forward sensor and the feedback sensor are used as the disturbance signal and the
feedback signal of the system, respectively. The interference signal and feedback signal
pass through the feedforward controller and the PID controller, respectively, to generate
the control signal of the solenoid valve. Accordingly, the control signal can be used as the
basis for the location of the fault.

When the feedback sensor has a single fault, it is equivalent to a sudden change in
the liquid level of the control object. Subsequently, the solenoid valve control signal will
modify sharply for reverse adjustment. The mathematical model of the feedback sensor
fault location is: {

kval > ωval = Kval + vValσVal
tMval > tVval

(8)

In the formula, kval represents the change rate of the solenoid valve control signal; ωval
represents the threshold value of the solenoid valve control signal; the tMval represents the
adjustment time of the solenoid valve control signal when the feedback sensor has a single
fault; the tVval represents the adjustment time of the solenoid valve control signal when the
feedforward sensor has a single fault.

When a single fault of the feedforward sensor fails, the liquid level of the controlled
object cannot change abruptly. Then, the rate of change in the solenoid valve control signal
will not exceed the threshold. The mathematical model of the feedforward sensor fault
location is: {

kval < ωval = Kval + vValσVal
tMval < tVval

(9)

2.4. Fault Estimation Method

The purpose of fault estimation is to confirm the strength and timing of the failure
of the sensor output signal. Starting from the external characteristics of faults, this paper
defined the types of faults as additive faults and multiplicative faults. The mathematical
models for the two types of failures are:{

Ya = Y + a
Yk = Y·k (10)

In the formula, a is the deviation of the additive fault; k is the gain of the multiplicative
fault; Y, Ya, and Yk are the signal values in the no-fault state, the additive fault state, and
the multiplicative fault state, respectively.

Therefore, based on the mathematical model of the fault, it can be determined that
the time when the fault occurs is the time corresponding to the rate of change exceeding
the threshold during the fault detection process. The strength of the additive fault is the
difference between the signals before and after the fault occurs, and the strength of the
multiplicative fault is the ratio of the signals before and after the fault occurs. In this
experiment, the deviation is called the strength of additive faults, and the gain is called the
strength of multiplicative faults.

Based on the mathematical model of the fault type, determine the fault qualitative
mathematical model of the feedback sensor as:{

aM = MTM −MTM−T
kM = MTM / MTM−T

(11)
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In the formula, TM represents the fault time of the feedback sensor; MTM represents
the output signal of the sensor at the time of failure; MTM-T represents the sensor output
signal at the moment before the failure.

Similarly, the fault intensity estimation model of the sensor output signal of the
feedforward is: {

aV = VTV −VTV−T
kV = VTV / VTV−T

(12)

2.5. Fault Isolation Method

The purpose of fault isolation is to determine whether the fault is additive or multiplicative.

2.5.1. Feedback Sensor

When different types of faults occur in a sensor, there is a deviation in the adjustment
trend of the system, and the fault isolation is realized by investigating the characteristic
information of the deviation. Figure 5 demonstrates the regulation trend of the system
under different fault conditions.

Figure 5. System tuning trend.

Information can be drawn from the system adjustment trend chart: the signal had a
sudden change in the 350th second, and after a reaction time of about two seconds, the
controller started to re-adjust the system dynamically according to the fault signal until it
stabilized. The system’s adjustment interval was from 2 s to 20 s after the fault occurs.

After the fault arises, the signal value in the adjustment interval of the system is fitted
by the least-squares method and the time. Subsequently, to improve the sensitivity of fault
characterization, the inverse function transformation is performed on the fitting equation,
and the integral value of the inverse function is used as the eigenvalue of fault separation:{

yM(t) = αt + β + ε

SM =
∣∣∣∫ MTM

MTM−T

yM(t)−β
α dyM

∣∣∣ (13)

Taking the fault deviation (or gain) as the independent variable and the corresponding
fault characteristic as the dependent variable, the characteristic equation is obtained by the
univariate linear regression method: {

Ma = | f (a)|
Mk = | f (k)|

(14)

In the formula, Ma is the characteristic equation of additive fault; Mk is the characteris-
tic equation of multiplicative fault.
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The fault estimation value is substituted into the characteristic equation to gain the
corresponding Ma and Mk and then compared with the characteristic value. The feedback
sensor fault separation model is: {

e1 = |SM −Ma|
e2 = |SM −Mk|

(15)

when e1 is less than e2, it is determined that the feedback sensor has an additive failure;
otherwise, it is determined that the sensor has a multiplicative failure.

2.5.2. Feedforward Sensor

Since there is no feedback loop in the feedforward channel, there is no feedback
regulation of the feedforward signal after the fault occurs, but the rate of change in the
faulty signal is different from the rate of change in the no-faulty signal:{

KaV = (Vt+T+a)−(Vt+a)
Vt+a 6= Vt+T−Vt

Vt

KkV = (Vt+T · k)−(Vt · k)
Vt · k = Vt+T−Vt

Vt

(16)

In the formula, KaV is the rate of change in the output signal after an additive fault
occurs; KkV is the rate of change in the output signal after a multiplicative fault occurs.

The upper water tank simulates the interference object, and the interference has no
predetermined change rule. The use of the cubic polynomial fitting equation can better fit
the output signal of the feedforward sensor, which perfectly reflects the linear relationship
between the signal and time. The fitting equation is:{

V(t) = αV t3 + βV t2 + γV t + δV + ε
SV(t) = αSt3 + βSt2 + γSt + δS + ε

(17)

In the formula, V(t) represents the no-fault signal fitting equation; SV(t) represents
the fault signal fitting equation. The estimated values of the no-fault signal and the faulty
signal according to the fitting equation are:[

V(1) SV(1)
V(2) SV(2)

]
=

[
TV · · · TV

TV + T · · · TV + T

][
αV βV γV δV
αS βS γS δS

]T

(18)

In the formula, V(1) and V(2) represent the estimated value of the non-fault signal;
SV(1) and SV(2) represent the estimated value of the fault signal; TV represents the time
when the output signal of the feedforward sensor fails.

The rate of change in the additive fault value and the multiplicative fault value of the
no-fault estimated value at this intensity are calculated, respectively, and then compared
with the rate of change in the fault signal. The feedforward sensor fault separation model is: e1 =

∣∣∣ SV(2)−SV(1)
SV(1)

− [V(2)+a]−[V(1)+a]
V(1)+a

∣∣∣ = |SV −Va|

e2 =
∣∣∣ SV(2)−SV(1)

SV(1)
− [V(2) · k]−[V(1) · k]

V(1)·k

∣∣∣ = |SV −Vk|
(19)

when e1 is less than e2, it is determined that the feedforward sensor has an additive failure;
otherwise, it is determined that the sensor has a multiplicative failure.

2.6. Fault Tolerant Control Methods

The principle of fault-tolerant control is to achieve the inverse compensation of the sig-
nal according to the fault intensity and fault type determined by the fault diagnosis result.

If there is no fault, the compensation signal is the original signal.
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If an additive fault occurs, the original fault output signal will be subtracted from the
fault deviation value in the fault compensation link, and then used as the feedback signal
of the system. The inverse model of fault compensation is:

Tol = Ya − a (20)

If a multiplicative fault occurs, the original signal will be divided by the fault gain
value to switch to the feedback signal of the system, and the fault compensation inverse
model is:

Tol = Yk / k (21)

2.7. Online Calibration and Experimental Procedures

The flow of sensor fault diagnosis dynamic model calibration and real-time fault
diagnosis and fault-tolerant control is demonstrated in Figure 6.

Figure 6. Flow chart of dynamic model calibration, fault diagnosis, and fault-tolerant control.
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When the system running time reached the 300th second, the fault detection procedure
was started. The fault detection module processed the signal online, and if it is found
that the rate of change in the signal exceeds the threshold, that is, when k is greater than
ω, it is determined that the sensor is faulty. Then start the fault location procedure to
determine which sensor is faulty. If kval is greater than ωval, then the feedback sensor is
faulty, otherwise, the feedforward sensor is faulty. Third, determine the characteristic
value and fault intensity of the faulty sensor, and characterize the fault according to the
mathematical model of fault separation. Finally, the fault-tolerant compensation module
inversely compensates the fault signal based on the result of fault diagnosis, to realize the
correct operation of the sensor in the fault environment.

3. Simulation Verification
3.1. Test System

The innovative platform connected the OPC server to the lower computer PLC, and
the MATLAB/Simulink virtual controller can regulate the liquid level of the water tank
through the PID operation, combined with the configuration of the Wincc monitoring
interface. Real-time monitoring and online dynamic data of Workspace in MATLAB for
real-time data analysis and establishment of diagnostic and fault-tolerant models. By
calling the S-Fun function to write the program, the M file was dynamically linked to the
MATLAB software to realize the fault diagnosis and the verification of the fault-tolerant
control method.

Combined with the hardware-in-the-loop simulation model and the experimental
process, these modules were connected sequentially to the control system. After testing,
there was no error in the program of each module, and the interface connection between
the test modules was correct, the whole system met the requirements of function and
performance and can be simulated and verified. The simulation verification model is
displayed in Figure 7.

Figure 7. Implementation with control points.
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In the figure, the fault detection module was used to detect whether the sensor fails.
The fault location module was used to determine which sensor is faulty. The fault estimation
module was used to determine the time and intensity of the fault occurrence. The fault
isolation module was used to determine the type of fault. The fault decision module was
used to store the fault diagnosis results. The fault-tolerant control module was used to
realize the inverse compensation of the fault signal.

3.2. Data Collection

The expected value of the control object was set to 10 cm, the system running time
was 600 s, the sampling frequency was set to 2 Hz, the range of deviation was ±2 cm, and
the range of gain was 0.8% to 1.2%. Faults were simulated at random time points during
system operation, and then fault tolerance compensation was achieved after 50 s. The fault
gradient of each set of experiments was 2%, and each sensor gathered 40 sets of fault data
and 10 sets of non-fault data to determine relevant experimental parameters.

3.2.1. Determine the Threshold

Ten groups of fault-free signals were gathered, and the maximum rate of change
in each group of feedforward sensor signals, the maximum rate of change in feedback
sensor signals, and the maximum rate of change in control signals were calculated, and the
recorded, as presented in Table 1.

Table 1. The maximum rate of change in the no-fault signal.

Group 1 2 3 4 5 6 7 8 9 10

kM 0.0317 0.0202 0.0316 0.0291 0.0204 0.0262 0.0260 0.0260 0.0315 0.0204

kV 0.0176 0.0164 0.0158 0.0166 0.0235 0.0248 0.0159 0.0318 0.0236 0.0292

kval 0.1888 0.1244 0.2006 0.1696 0.1209 0.1481 0.1558 0.1553 0.1860 0.1111

The mean and standard deviation of 10 groups of data were computed and the
thresholds of the sensor and solenoid valve control signals were determined. The results
are shown in Table 2.

Table 2. Threshold-related parameters.

Parameter KM σM vM ωM KV σV vV ωV Kval σval vval ωval

F-B 0.021 0.005 3.000 0.036 — — — — — — — —

F-F — — — — 0.026 0.005 1.000 0.031 — — — —

VAL — — — — — — — — 0.059 0.009 1.000 0.068

Note: ‘—’ means there is no such data; F-B means feedback sensor; F-F means feedfor-ward sensor; VAL means
solenoid valve.

Lastly, the threshold value of the feedforward sensor signal was 0.031, the threshold
value of the feedback sensor signal was 0.036, and the change rate of the solenoid valve
control signal was 0.068.

3.2.2. Determine the Characteristic Equation

The characteristic equation of the feedback sensor fault data was determined, accord-
ing to the fault separation algorithm. The eigenvalues of various types of fault signals are
shown in Tables 3–6. The characteristic equations determined are shown in Table 7. (Note:
Call the MATLAB/Ployfit function for data fitting).
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Table 3. Eigenvalues of a > 0.

a > 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

SM 0.70 1.75 2.74 3.14 4.11 4.68 5.16 6.20 7.08 8.34

RMSE 0.0387 0.0354 0.0457 0.0386 0.0749 0.0549 0.0870 0.0704 0.0591 0.0581

Table 4. Eigenvalues of a < 0.

a < 0 −0.2 −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6 −1.8 −2.0

SM 1.27 1.53 3.37 4.72 6.57 7.91 8.75 12.32 15.09 17.27

RMSE 0.0308 0.0465 0.0351 0.0391 0.0348 0.0374 0.0370 0.0312 0.0275 0.0282

Table 5. Eigenvalues of k > 1.

k > 1 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

SM 0.47 1.43 2.32 2.87 3.72 4.44 4.45 5.73 6.16 8.82

RMSE 0.0363 0.0371 0.0509 0.0366 0.0528 0.0623 0.1228 0.0964 0.1525 0.1067

Table 6. Eigenvalues of k < 1.

k < 1 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80

SM 1.74 1.96 3.91 4.96 6.77 8.49 12.00 14.02 16.65 21.35

RMSE 0.0273 0.0337 0.0278 0.0272 0.0318 0.0297 0.0318 0.0221 0.0288 0.0260

Table 7. Eigenvalue fitting equation.

Parameter Characteristic Equation SSE RMSE

a > 0 Ma = 0.37a2 + 2.98a + 0.45 1.5571 0.4716

a < 0 Ma = 3.14a2 − 2.22a + 0.65 2.1649 0.5561

k > 1 Mk = −35.32k2 + 112.59k− 77.49 0.3557 0.2254

k < 1 Mk = 434.75k2 − 880.74k + 447.24 2.1649 0.5561

3.3. Failure Detection Algorithm Verification

The obtained fault signal was identified according to the fault detection algorithm to
determine the detection accuracy of the algorithm.

Tables 8 and 9 exhibit the detection results of some faults. (Note: ‘0’ means no-fault
identified; ‘1’ means fault identified)

Table 8. Additive fault detection results.

Bia −1.0 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1.0

F-B 1 1 1 1 0 0 1 1 1 1

F-F 1 1 1 1 0 0 1 1 1 1

When the deviation range was outside ±0.2 and the gain range was outside 0.92 to
1.02, the fault detection algorithm can detect whether the sensor fails, according to the fault
detection results.
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Table 9. Multiplicative fault detection results.

Gain 0.90 0.92 0.94 0.96 0.98 1.02 1.04 1.06 1.08 1.10

F-B 1 1 1 1 0 0 1 1 1 1

F-F 1 1 1 1 0 0 1 1 1 1

The sensor’s fault signal was re-collected for fault location, fault estimation, fault
separation, and fault-tolerant control algorithm verification, according to the fault detection
results. The sample data were fault signals with deviations of ±5 mm and gains of 1.05
and 0.95. Figures 8 and 9 show some data before and after the failure. Figures 10 and 11
show the fault detection results.

Figure 8. Feedback sensor data: (a) Fault data with a deviation of 0.5; (b) Fault data with a gain of
1.05; (c) Fault data with a deviation of −0.5; (d) Fault data with a gain of 0.95.

Figure 9. Feedforward sensor data: (a) Fault data with a deviation of 0.5; (b) Fault data with a gain of
1.05; (c) Fault data with a deviation of −0.5; (d) Fault data with a gain of 0.95.

Figure 10. Feedback sensor fault detection results: (a) Fault data with a deviation of 0.5; (b) Fault
data with a gain of 1.05; (c) Fault data with a deviation of −0.5; (d) Fault data with a gain of 0.95.

Figure 11. Feedforward sensor fault detection results: (a) Fault data with a deviation of 0.5; (b) Fault
data with a gain of 1.05; (c) Fault data with a deviation of −0.5; (d) Fault data with a gain of 0.95.
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According to the fault detection result, the rate of change in the sensor output signal
exceeded the threshold, so it can be calculated that both the feedforward sensor and the
feedback sensor are faulty.

3.4. Failure Location Algorithm Verification

Figures 12 and 13 are the change rates of the solenoid valve control signals correspond-
ing to the above experimental data.

Figure 12. The rate of change in the solenoid valve control signal when the feedback sensor is a single
fault: (a) The rate of change in the control signal when the deviation was 0.5; (b) The rate of change
in the control signal when the gain was 1.05; (c) The rate of change in the control signal when the
deviation was −0.5; (d) The rate of change in the control signal when the gain was 0.95.

Figure 13. The rate of change in the solenoid valve control signal when the feedforward sensor is a
single fault: (a) The rate of change in the control signal when the deviation was 0.5; (b) The rate of
change in the control signal when the gain was 1.05; (c) The rate of change in the control signal when
the deviation was −0.5; (d) The rate of change in the control signal when the gain was 0.95.

According to the fault location results, it can be concluded that when the rate of change
in the control signal exceeded the threshold, it was determined that the feedback sensor
was faulty. Otherwise, it was determined that the feedforward sensor was faulty.

3.5. Fault Estimation Algorithm Verification

According to the fault detection result, the fault occurrence time of the feedforward
sensor and the feedback sensor was the 350th second. Taking the experimental data of
Figure 8a as an example, according to the estimation model of the fault intensity, the signal
may have an additive fault with a deviation of 0.5 or a multiplicative fault with a gain of
1.0501. Similarly, the strength estimation results of other fault signals are shown in Table 10.

Table 10. Fault estimation results.

Sensor Fault Type TM TV aM kM aV kV

F-F

a = 0.5 350.0 — 0.5000 1.0501 — —
a = −0.5 350.0 — −0.5000 0.9500 — —
k = 1.05 350.0 — 0.5003 1.0500 — —
k = 0.95 350.0 — −0.5003 0.9500 — —

F-B

a = 0.5 — 350.0 — — 0.5000 1.0313
a = −0.5 — 350.0 — — −0.5000 0.9387
k = 1.05 — 350.0 — — 0.5683 1.0452
k = 0.95 — 350.0 — — −0.7448 0.9500
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3.6. Fault Isolation Algorithm Verification

The fitting interval of the fault signal of the feedback sensor was 2 s to 10 s after the
fault occurred. The fitting interval of the fault signal of the feedforward sensor was 50 s
before and after the fault occurred. Table 11 shows the feedback sensor fault separation
results. Table 12 shows the fault separation results of the feed-forward sensor.

Table 11. Feedback sensor diagnostic results.

F-B SM Ma Mk e1 e2 Result

a = 0.5 2.0000 2.03300 1.79300 0.03300 0.20700 Additive

a = −0.5 2.1100 2.54500 2.89900 0.43500 0.78900 Additive

k = 1.05 1.6500 2.03400 1.78900 0.38400 0.13900 Multiplicative

k = 0.95 3.5300 2.54700 2.89900 0.98300 0.63100 Multiplicative

Table 12. Feedforward sensor diagnostic results.

F-F SV(1) SV(2) V(1) V(2) e1 e2 Result

a = 0.5 16.4549 14.1201 15.9660 15.9721 0.00010 0.00011 Additive

a = −0.5 7.6803 13.1329 8.1715 8.1747 0.00068 0.00071 Additive

k = 1.05 13.1497 7.6886 12.5439 12.5292 0.00020 0.00010 Multiplicative

k = 0.95 14.1134 14.1201 14.8606 14.8656 0.00012 0.00011 Multiplicative

The fault diagnosis results were consistent with the experimental data and satisfied
the conditional requirements of fault-tolerant control.

3.7. Fault Tolerant Control Algorithm Verification

To sufficiently reflect the fault-tolerant process, this experiment was set to start the
fault-tolerant control program 50 s after the fault occurred, and the compensation results
are shown in Figures 14 and 15.

Figure 14. Feedback sensor fault compensation results: (a) Compensation signal with a deviation of
0.5; (b) Compensation signal with a gain of 1.05; (c) Compensation signal with a deviation of −0.5;
(d) Compensation signal with a gain of 0.95.

Figure 15. Feedforward sensor fault compensation results: (a) Compensation signal with a deviation
of 0.5; (b) Compensation signal with a gain of 1.05; (c) Compensation signal with a deviation of −0.5;
(d) Compensation signal with a gain of 0.95.



Processes 2022, 10, 1237 16 of 19

The no-fault signal stabilized around the setpoint before the feedback sensor failed.
At the 350th second, a fault occurred, and the system adjusted the liquid level based on the
fault signal, so that the no-fault signal deviated from the set value, while the fault signal
stabilized around the set value. At the 400th second, the fault-tolerant control program
was started, and the compensation signal was inversely compensated based on the fault
signal, which coincided with the no-fault signal. Finally, the system proceeded to modify
the liquid level based on the compensation signal so that the compensation signal was
stable near the set value.

Before the feedforward sensor failed, the no-fault signal accurately displayed the
liquid level of the upper tank. At the 350th second a fault occurred, and the fault signal
deviated from the actual liquid level. In the 400th second, the fault-tolerant control program
was started, and the compensation signal was inversely compensated based on the fault
signal, which coincided with the no-fault signal, indicating that the compensation signal
accurately displayed the liquid level of the upper water tank.

4. Discussion

In order to reflect the novelty and superiority of the fault diagnosis and fault-tolerant
control method proposed in this paper, the accuracy of fault diagnosis, fault-tolerant control
accuracy, universality, and anti-interference were compared with some references. The
comparison results are shown in Table 13. (I: Inferior; II: Medium; III: Higher)

Table 13. Research comparison.

Compare Items Reference [15] Reference [21] This Article

Diagnosis Method Neural Networks Neural Networks Data-Driven

Fault Detection Accuracy 96.8% 96% 98%

Fault Estimation Accuracy — — >99%

Fault Isolation Accuracy — — 100

Tolerance Accuracy — 98.4% 99.95%

Comprehensive Accuracy 96.8% 97% 98.5%

Universality II II III

Anti-interference Ability II II III

In this experiment, after further processing the fault signal, it was determined that the
feedback sensor fault detection dead zone was 2%, the fault location accuracy was 100%,
the maximum error of fault estimation was less than 1%, and the fault separation dead zone
was 0%. It was determined that the fault detection dead zone of the feedforward sensor
was 2%, the fault location accuracy was 100%, the maximum error of fault estimation was
less than 1.5%, and the fault separation dead zone was 0%. In summary, the fault diagnosis
accuracy of this experiment was about 98.5%, and the deviation between the compensation
signal and the normal signal was less than 0.05%.

Compared with the literature in Table 13, the novelty of this method is that it can
determine the type and intensity of faults, which are not covered in other articles. The
superiority of this paper is that it has higher accuracy in fault diagnosis and fault-tolerant
control and higher anti-noise interference ability. More importantly, the fault handling
method has excellent universality.

Combined with the above fault handling results, the fault diagnosis method proposed
in this paper can fully mine the fault information even for weak faults, such as the time
when the fault occurred, the intensity of the fault, and the type of the fault. The fault-
tolerant control module can realize the accurate inverse compensation of the fault signal
according to the fault diagnosis result, to achieve the goal that the sensor can still output a
fault-free signal in the fault state, and ensure the normal operation of the control system,
which is beneficial to improving the safety and reliability of the industrial system.
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Although the fault diagnosis algorithm still has high diagnostic accuracy even for
some weak faults, due to the influence of system noise and environmental noise on the
fault detection accuracy, the phenomenon of feedback sensor compensation confusion will
appear in the empirical verification link. There are two solutions to this problem. The first
idea is to merge the stacking concept with the dynamic window residual sum method. The
maximal window residual of each group of signals and the threshold used to determine
the fault detection can effectively reduce the false alarm rate of the fault. The second idea is
to utilize a slow flow device to reduce the fluctuation of the liquid level from a practical
point of view, thereby reducing the impact of environmental noise.

In addition, complex control systems will likewise have multiple faults, and these
faults will show propagation, that is, abnormal equipment can not only cause sub-equipment
to fail but also other related equipment to fail. For example, when the actuator fails, it may
also cause a sudden change in the sensor, which can lead to misdiagnosis. Accordingly, for
the problem of multiple faults and the non-single mapping relationship between faults and
causes, the characteristic information of distinct faults should be sufficiently excavated to
form a complete set of fault diagnosis methods. This method not only has highly important
educational value but also has very realistic application value [22].

The ultimate goal of theoretical research is to apply it to engineering practice. To
understand the real-time fault diagnosis and fault-tolerant control of sensors using algo-
rithms in engineering applications, the MATLAB/S-Fun function was used. This is because
MATLAB/Simulink is an important modeling and simulation tool for studying dynamic
systems. Its powerful graphical modeling capabilities are generally used in the control
field, particularly the S-Fun function it provides. We can utilize C, MATLAB, and C++ by
ourselves and other languages to write modules to extend the functionality of Simulink.
At present, the fault processing method is still in the theoretical research stage, and many
experiments are needed to further optimize the fault diagnosis and fault-tolerant control
algorithm. Therefore, the sensor fault diagnosis and fault-tolerant control algorithm based
on the feedforward-feedback control system currently designed will be verified in the field
of chemical process, so that more noise interference factors can be considered, and the fault
processing algorithm can be further optimized.

5. Conclusions

Based on the current configuration forms of engineering system development and the
limitations of the efficiency of unified methods for fault diagnosis of various systems, this
paper summarized related fault diagnosis and fault-tolerant control methods. Combined
with the research results of contemporary fault diagnosis and fault-tolerant control theory
and engineering application, a real-time diagnosis and fault-tolerant control scheme based
on the data-driven feedforward-feedback control system for single sensor fault was pro-
posed. Given the complex nonlinear problems of the actual industrial system, this scheme
considered fault diagnosis by using the data generated during the operation of the system.
The fault characteristic information was extracted by analyzing the real-time data during
the operation of the system, and a mathematical model of fault detection, fault location,
fault estimation, fault separation, and fault-tolerant control was established based on this
characteristic information. Through a large number of simulation experiments, it was
proven that the fault diagnosis method has the advantages of small calculations, strong real-
time performance, and high anti-interference ability. Most importantly, it can effectively
overcome the problems of low diagnostic efficiency caused by the difficulty of modeling
the system and the lack of empirical knowledge in traditional fault diagnosis methods.

The main contributions of this paper are: First, based on the structure of the control
system, the ideas of efficient fault diagnosis and unified and efficient fault-tolerant control
based on compensation were studied, respectively, which is convenient for engineering
configuration. The second is based on the dynamic characteristics of the system and real-
time data drive, the proposed feedforward-feedback control system sensor fault diagnosis,
and the fault-tolerant control method, which improves the accuracy of fault diagnosis and
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the performance of fault-tolerant control. Third, the dynamic model calibration and real-
time fault diagnosis, and fault-tolerant control process of sensor fault diagnosis are given,
which makes the method suitable for general engineering feedforward-feedback control
system, and has a certain degree of restraining effect on the noise of engineering system.

At present, there is still a gap between the research content of this paper and the
above goals, and only the fault handling task of one type of equipment in the feedforward-
feedback control system was completed. In the following scientific research tasks, we will
continue to study the fault handling methods of other equipment and other systems and
strive to establish an effective system fault diagnosis engineering configuration method
and fault-tolerant control method.
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