Pasteurellosis Vaccine Commercialization: Physiochemical Factors for Optimum Production
Abstract
:1. Introduction
2. Pasteurella multocida and Mannheimia haemolytica
3. Pasteurella spp. Production
3.1. Current Status and Challenges
3.1.1. Shake Flasks
3.1.2. Bioreactors
3.2. Factors Affecting the Production of Pasteurella spp.
3.2.1. Growth Substrate
3.2.2. Growth Supplements
3.2.3. pH
3.2.4. Temperature
3.2.5. Dissolved Oxygen (DO) Demand
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Orynbayev, M.; Sultankulova, K.; Sansyzbay, A.; Rystayeva, R.; Shorayeva, K.; Namet, A.; Fereidouni, S.; Ilgekbayeva, G.; Barakbayev, K.; Kopeyev, S.; et al. Biological Characterization of Pasteurella multocida Present in the Saiga Population. BMC Microbiol. 2019, 19, 37. [Google Scholar] [CrossRef] [PubMed]
- Petruzzi, B.; Briggs, R.E.; Tatum, F.M.; Swords, W.E.; De Castro, C.; Molinaro, A.; Inzana, T.J. Capsular Polysaccharide Interferes with Biofilm Formation by Pasteurella multocida Serogroup A. mBio 2017, 8, e01843-17. [Google Scholar] [CrossRef] [Green Version]
- Mostaan, S.; Ghasemzadeh, A.; Sardari, S.; Shokrgozar, M.A.; Nikbakht Brujeni, G.; Abolhassani, M.; Ehsani, P.; Asadi Karam, M.R. Pasteurella multocida Vaccine Candidates: A Systematic Review. Avicenna J. Med. Biotechnol. 2020, 12, 140–147. [Google Scholar] [PubMed]
- Oslan, S.N.H. Production of Viable Cell of GdhA Derivative of Pasteurella multocida B:2 for Subsequent Use as Animal Vaccine; Universiti Putra Malaysia: Serdang, Malaysia, 2017. [Google Scholar]
- Hurtado, R.; Maturrano, L.; Azevedo, V.; Aburjaile, F. Pathogenomics Insights for Understanding Pasteurella multocida Adaptation. Int. J. Med. Microbiol. 2020, 310, 151417. [Google Scholar] [CrossRef] [PubMed]
- Katechakis, N.; Maraki, S.; Dramitinou, I.; Marolachaki, E.; Koutla, C.; Ioannidou, E. An Unusual Case of Pasteurella multocida Bacteremic Meningitis. J. Infect. Public Health 2019, 12, 95–96. [Google Scholar] [CrossRef]
- Khoo, E.; Khoo, L.L.; Noormah, M.A.; Zamila, Z.; Nafizah, M.; Siti Nor Hanani, R.; Saifu Nazri, R.; Rosnah, Y.; Fhitri, M.; Roseliza, R. Capsular Serogroup of Pasteurella multocida Isolated in VRI, Malaysia from Year 2014 to 2016. Malays. J. Vet. Res. 2017, 8, 60–66. [Google Scholar]
- Khoo, E.; Siti Nor Hanani, R.; Joeship, E.; Lim, L.L.; Nafizah, M.; Saifu Nazri, R.; Noormah, M.A.; Norazariyah, M.N.; Roseliza, R. Novel Identification of Pasteurella multocida Serogroup F in Malaysia. Malays. J. Vet. Res. 2019, 10, 10–14. [Google Scholar]
- Oslan, S.N.H.; Tan, J.S.; Saad, M.Z.; Halim, M.; Mohamed, M.-S.; Ariff, A.B. Influence of Amino Acids and Vitamins on the Growth of GdhA Derivative Pasteurella multocida B:2 for Use as an Animal Vaccine. Bioprocess Biosyst. Eng. 2019, 42, 355–365. [Google Scholar] [CrossRef]
- Mehmood, M.; Zia, S.; Javed, F.; Gul, M.; Ashraf, M.; Anwar, H. Physiochemical Factors Affecting in vitro Growth of Pasteurella multocida. Afr. J. Microbiol. Res. 2018, 12, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Annas, S.; Zamri-Saad, M.; Jesse, F.F.A.; Zunita, Z. New Sites of Localisation of Pasteurella multocida B:2 in Buffalo Surviving Experimental Haemorrhagic Septicaemia. BMC Vet. Res. 2014, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Marza, A.D.; Jesse Abdullah, F.F.; Ahmed, I.M.; Teik Chung, E.L.; Ibrahim, H.H.; Zamri-Saad, M.; Omar, A.R.; Abu Bakar, M.Z.; Saharee, A.A.; Haron, A.W.; et al. The Ability of Lipopolysaccharide (LPS) of Pasteurella multocida B:2 to Induce Clinical and Pathological Lesions in the Nervous System of Buffalo Calves Following Experimental Inoculation. Microb. Pathog. 2017, 104, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Tucci, P.; Estevez, V.; Becco, L.; Cabrera-Cabrera, F.; Grotiuz, G.; Reolon, E.; Marín, M. Identification of Leukotoxin and Other Vaccine Candidate Proteins in a Mannheimia haemolytica Commercial Antigen. Heliyon 2016, 2, e00158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuben, R.C.; Sarkar, S.L.; Ibnat, H.; Setu, M.A.A.; Roy, P.C.; Jahid, I.K. Novel Multi-Strain Probiotics Reduces Pasteurella multocida Induced Fowl Cholera Mortality in Broilers. Sci. Rep. 2021, 11, 8885. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elsadek, E.; Mostafa, A.E.H.; Abouelkhair, A. Molecular Studies on Pasteurella multocida in Ducks. J. Curr. Vet. Res. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Frey, J.; Kuhnert, P. Identification of Animal Pasteurellaceae by MALDI-TOF Mass Spectrometry. Methods Mol. Biol. 2015, 1247, 235–243. [Google Scholar] [CrossRef]
- Blakey, J.; Crispo, M.; Bickford, A.; Stoute, S. Fowl Cholera and Acute Heart Rupture in a Backyard Turkey. J. Vet. Diagn. Invest. 2019, 31, 390–394. [Google Scholar] [CrossRef]
- Orouji, S.; Hodgins, D.C.; Lo, R.Y.C.; Shewen, P.E. Serum IgG Response in Calves to the Putative Pneumonic Virulence Factor Gs60 of Mannheimia haemolytica A1. Can. J. Vet. Res. 2012, 76, 292–300. [Google Scholar]
- Talan, D.A.; Citron, D.M.; Abrahamian, F.M.; Moran, G.J.; Goldstein, E.J. Bacteriologic Analysis of Infected Dog and Cat Bites. Emergency Medicine Animal Bite Infection Study Group. N. Engl. J. Med. 1999, 340, 85–92. [Google Scholar] [CrossRef]
- Tatum, F.M.; Tabatabai, L.B.; Briggs, R.E. Cross-Protection against Fowl Cholera Disease with the Use of Recombinant Pasteurella multocida FHAB2 Peptides Vaccine. Avian Dis. 2012, 56, 589–591. [Google Scholar] [CrossRef]
- Zamri-Saad, M.; Annas, S. Vaccination against Hemorrhagic Septicemia of Bovines: A Review. Pak. Vet. J. 2016, 36, 1–5. [Google Scholar]
- Carter, G.R.; De Alwis, M.C.L. Haemorrhagic Septicaemia. In Pasteurella and Pasteurellosis; Adlam, C., Rutter, J.M., Eds.; Academic Press: London, UK, 1989; pp. 131–160. [Google Scholar]
- Frank, G.H. Pasteurellosis of Cattle. In Pasteurella and Pasteurellosis; Adlam, C., Rutter, J.M., Eds.; Academic Press: London, UK, 1989; pp. 197–222. [Google Scholar]
- Kabeta, T.; Fikadu, T.; Zenebe, T.; Kebede, G. Review on the Pneumonic Pasteurellosis of Cattle. Acad. J. Anim. Dis. 2015, 4, 177–184. [Google Scholar]
- Dabo, S.M.; Taylor, J.D.; Confer, A.W. Pasteurella multocida and Bovine Respiratory Disease. Anim. Health Res. Rev. 2007, 8, 129–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, F.F.; Tijjani, A.; Adamu, L.; Chung, E.T.; Abba, Y.; Mohammed, K.; Saharee, A.; Haron, A.; Sadiq, M.A.; Mohd, A.M.L. Pneumonic Pasteurellosis in a Goat. Iran. J. Vet. Med. 2015, 8, 293–296. [Google Scholar]
- Zamri-Saad, M.; Ernie, Z.A.; Sabri, M.Y. Protective Effect Following Intranasal Exposure of Goats to Live Pasteurella multocida B:2. Trop. Anim. Health Prod. 2006, 38, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Martineau-Doizé, B.; Dumas, G.; Larochelle, R.; Frantz, J.C.; Martineau, G.P. Atrophic Rhinitis Caused by Pasteurella multocida Type D: Morphometric Analysis. Can. J. Vet. Res. 1991, 55, 224–228. [Google Scholar] [PubMed]
- Glisson, J.R.; Hofacre, C.L.; Christensen, J.P. Fowl Cholera. In Diseases of Poultry; Swayne, D.E., Glisson, J.E., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V.L., Eds.; Wiley-Blackwell Press: Hoboken, NJ, USA, 2013; pp. 807–823. [Google Scholar]
- Qin, H.; Xiao, J.; Li, J.; Gao, X.; Wang, H. Climate Variability and Avian Cholera Transmission in Guangxi, China. Braz. J. Poult. Sci. 2017, 19, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Mbuthia, P.G.; Njagi, L.W.; Nyaga, P.N.; Bebora, L.C.; Minga, U.; Kamundia, J.; Olsen, J.E. Pasteurella multocida in Scavenging Family Chickens and Ducks: Carrier Status, Age Susceptibility and Transmission between Species. Avian Pathol. 2008, 37, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, K.R.; Rimler, R.B. Capsular Groups of Pasteurella multocida Isolated from Avian Hosts. Avian Dis. 1987, 31, 895–898. [Google Scholar] [CrossRef]
- Rafidah, O.; Zamri-Saad, M.; Shahirudin, S.; Nasip, E. Efficacy of Intranasal Vaccination of Field Buffaloes against Haemorrhagic Septicaemia with a Live GdhA Derivative Pasteurella multocida B:2. Vet. Rec. 2012, 171, 175. [Google Scholar] [CrossRef]
- Verma, R.; Jaiswal, T.N. Haemorrhagic Septicaemia Vaccines. Vaccine 1998, 16, 1184–1192. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Saad, M.; Mohamad, R.; Siti-Khairani, B. In Vitro and in Vivo Survivality of GdhA Derivative Pasteurella multocida B:2. Malays. J. Microbiol. 2014, 10, 63–66. [Google Scholar] [CrossRef]
- Arif, J.; Rahman, S.-U.; Arshad, M.; Akhtar, P. Immunopotentiation of Outer Membrane Protein through Anti-Idiotype Pasteurella multocida Vaccine in Rabbits. Biologicals 2013, 41, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Kong, L.Y.; Niu, M.F.; Qin, C.L.; Yang, Y.; Li, X.; Ruan, M.D.; Tian, Y.; Li, Z.L. Construction of a PtfA Chitosan Nanoparticle DNA Vaccine against Pasteurella multocida and the Immune Response in Chickens. Vet. J. 2018, 231, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Crouch, C.F.; LaFleur, R.; Ramage, C.; Reddick, D.; Murray, J.; Donachie, W.; Francis, M.J. Cross Protection of a Mannheimia haemolytica A1 Lkt-/ Pasteurella multocida ΔhyaE Bovine Respiratory Disease Vaccine against Experimental Challenge with Mannheimia haemolytica A6 in Calves. Vaccine 2012, 30, 2320–2328. [Google Scholar] [CrossRef]
- Nimtrakul, P.; Atthi, R.; Limpeanchob, N.; Tiyaboonchai, W. Development of Pasteurella multocida-Loaded Microparticles for Hemorrhagic Septicemia Vaccine. Drug Dev. Ind. Pharm. 2015, 41, 423–429. [Google Scholar] [CrossRef]
- Homayoon, M.; Tahamtan, Y.; Kargar, M.; Hosseini, S.M.H.; Akhavan Sepahy, A. Pasteurella multocida Inactivated with Ferric Chloride and Adjuvanted with Bacterial DNA Is a Potent and Efficacious Vaccine in Balb/c Mice. J. Med. Microbiol. 2018, 67, 1383–1390. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Y.; Li, P.; Kong, Q. Identification of Fur in Pasteurella multocida and the Potential of Its Mutant as an Attenuated Live Vaccine. Front. Vet. Sci. 2019, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Gong, Q.; Qu, N.; Niu, M.F.; Qin, C.L. Evaluation of Immunogenicity and Protective Efficacy of Recombinant PtfA of Avian Pasteurella multocida. Iran. J. Vet. Res. 2016, 17, 84–88. [Google Scholar]
- Kim, T.; Son, C.; Lee, J.; Kim, K. Vaccine Potential of an Attenuated Pasteurella multocida That Expresses Only the N-Terminal Truncated Fragment of P. multocida Toxin in Pigs. Can. J. Vet. Res. 2012, 76, 69–71. [Google Scholar]
- Mohd Yasin, I.-S.; Mohd Yusoff, S.; Mohd, Z.-S.; Abd Wahid Mohd, E. Efficacy of an Inactivated Recombinant Vaccine Encoding a Fimbrial Protein of Pasteurella multocida B:2 against Hemorrhagic Septicemia in Goats. Trop. Anim. Health Prod. 2011, 43, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Gong, Q.; Peng, Y.G.; Niu, M.F.; Qin, C.L. Research Note: The Immune Enhancement Ability of Inulin on PtfA Gene DNA Vaccine of Avian Pasteurella multocida. Poult. Sci. 2020, 99, 3015–3019. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, V.P.; Cheema, P.S.; Sandey, M.; Ranjan, R.; Gupta, S.K.; Sharma, B. Immune Response to Dna Vaccine Expressing Transferrin Binding Protein a Gene of Pasteurella multocida. Braz. J. Microbiol. 2011, 42, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Qu, N.; Niu, M.; Qin, C.; Cheng, M.; Sun, X.; Zhang, A. Immune Responses and Protective Efficacy of a Novel DNA Vaccine Encoding Outer Membrane Protein of Avian Pasteurella multocida. Vet. Immunol. Immunopathol. 2013, 152, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Aubry, P.; Warnick, L.D.; Guard, C.L.; Hill, B.W.; Witt, M.F. Health and Performance of Young Dairy Calves Vaccinated with a Modified-Live Mannheimia haemolytica and Pasteurella multocida Vaccine. J. Am. Vet. Med. Assoc. 2001, 219, 1739–1742. [Google Scholar] [CrossRef]
- Mostaan, S.; Ghasemzadeh, A.; Ehsani, P.; Sardari, S.; Shokrgozar, M.A.; Abolhassani, M.; Nikbakht Brujeni, G. In Silico Analysis of Pasteurella multocida PlpE Protein Epitopes as Novel Subunit Vaccine Candidates. Iran. Biomed. J. 2021, 25, 41–46. [Google Scholar] [CrossRef]
- Othman, S.S. Construction of an Attenuated Pasteurella multocida B:2 by Mutation in the GdhA Gene. Master’s Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 2007. [Google Scholar]
- Du Preez, J.C.; van Rensburg, E.; Kilian, S.G. Kinetics of Growth and Leukotoxin Production by Mannheimia haemolytica in Continuous Culture. J. Ind. Microbiol. Biotechnol. 2008, 35, 611–618. [Google Scholar] [CrossRef]
- Oslan, S.N.H. In Vivo Survivality and Optimization of Parameters for Biomass Production of GdhA Derivative of Pasteurella multocida B:2. Master’s Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 2013. [Google Scholar]
- Shah, A.H.; Ali, A.; Rajput, N.; Korejo, N. A Study on the Optimization of Physico-Chemical Conditions for the Growth of Pasteurella multocida under in Vitro Conditions. J. Agric. Soc. Sci. 2008, 4, 173–176. [Google Scholar]
- Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C.K.M. Strategies for Fermentation Medium Optimization: An In-Depth Review. Front. Microbiol. 2017, 7, 2087. [Google Scholar] [CrossRef]
- Klöckner, W.; Büchs, J. Shake-Flask Bioreactors. In Comprehensive Biotechnology; Moo-Young, M., Ed.; Academic Press: Burlington, UK, 2011; pp. 213–226. [Google Scholar] [CrossRef]
- Ladner, T.; Flitsch, D.; Lukacs, M.; Sieben, M.; Büchs, J. Combined Dissolved Oxygen Tension and Online Viscosity Measurements in Shake Flask Cultivations via Infrared Fluorescent Oxygen-Sensitive Nanoparticles. Biotechnol. Bioeng. 2019, 116, 3215–3227. [Google Scholar] [CrossRef]
- Raza, Z.A.; Tariq, M.R.; Majeed, M.I.; Banat, I.M. Recent Developments in Bioreactor Scale Production of Bacterial Polyhydroxyalkanoates. Bioprocess Biosyst. Eng. 2019, 42, 901–919. [Google Scholar] [CrossRef]
- Costa, E.; Teixidó, N.; Usall, J.; Atarés, E.; Viñas, I. The Effect of Nitrogen and Carbon Sources on Growth of the Biocontrol Agent Pantoea agglomerans Strain CPA-2. Lett. Appl. Microbiol. 2002, 35, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Khaled, A.R.; Shaker, L.S.; Bakkar, A.; Abulmagd, S.M. Comparison of Different Fermentation Parameters of Pasteurella multocida on the Dry Cell Mass for the Preparation of Fowl Cholera Vaccine. Int. J. Recent Sci. Res. 2016, 7, 14558–14561. [Google Scholar]
- Khan, A.; Munir, S.; Jamal, Q.; Anees, M.; Shah, S.A.; Sherwani, S.K.; Basit, A.; Ali, G.; Asadullah; Hussain, M. Biomass Production of Pasteurella multocida Using Biofermenter. Int. J. Adv. Res. 2013, 1, 142–151. [Google Scholar]
- Sarwar, N.; Khushi, M.; Rabbani, Z.; Younus, M.; Sarwar, M.; Ali, M.; Hanif, K.; Kamran, M. Optimization of Physico-Chemical Factors Augmenting in vitro Biomass Production of Pasteurella multocida. J. Anim. Plant Sci. 2013, 23, 1085–1088. [Google Scholar]
- Van Rensburg, E.; du Preez, J.C. Effect of PH, Temperature and Nutrient Limitations on Growth and Leukotoxin Production by Mannheimia haemolytica in Batch and Continuous Culture. J. Appl. Microbiol. 2007, 102, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Harper, M.; St Michael, F.; John, M.; Vinogradov, E.; Steen, J.A.; van Dorsten, L.; Steen, J.A.; Turni, C.; Blackall, P.J.; Adler, B.; et al. Pasteurella multocida Heddleston Serovar 3 and 4 Strains Share a Common Lipopolysaccharide Biosynthesis Locus but Display Both Inter- and Intrastrain Lipopolysaccharide Heterogeneity. J. Bacteriol. 2013, 195, 4854–4864. [Google Scholar] [CrossRef] [Green Version]
- Van Rensburg, E.; du Preez, J.C.; Kilian, S.G. Influence of the Growth Phase and Culture Medium on the Survival of Mannheimia haemolytica during Storage at Different Temperatures. J. Appl. Microbiol. 2004, 96, 154–161. [Google Scholar] [CrossRef]
- Jordan, R.M.M. The Nutrition of Pasteurella Septica. II. The Formation of Hydrogen Peroxide in a Chemically-Defined Medium. Br. J. Exp. Pathol. 1952, 33, 36–45. [Google Scholar]
- Berkman, S. Accessory Growth Factor Requirements of the Members of the Genus Pasteurella. J. Infect. Dis. 1942, 71, 201–211. [Google Scholar] [CrossRef]
- Danesi, E.D.G.; Miguel, A.S.M.; de Oliveira Rangel-Yagui, C.; de Carvalho, J.C.M.; Pessoa, A., Jr. Effect of Carbon:Nitrogen Ratio (C:N) and Substrate Source on Glucose-6-Phosphate Dehydrogenase (G6PDH) Production by Recombinant Saccharomyces cerevisiae. J. Food Eng. 2006, 75, 96–103. [Google Scholar] [CrossRef]
- Oppermann, T.; Busse, N.; Czermak, P. Mannheimia haemolytica Growth and Leukotoxin Production for Vaccine Manufacturing—A Bioprocess Review. Electron. J. Biotechnol. 2017, 28, 95–100. [Google Scholar] [CrossRef]
- Israni, N.; Shivakumar, S. Evaluation of Upstream Process Parameters Influencing the Growth Associated PHA Accumulation in Bacillus sp Ti3. J. Sci. Ind. Res. 2015, 74, 290–295. [Google Scholar]
- Cheng, L.; Wang, J.; Fu, Q.; Miao, L.; Yang, X.; Li, S.; Li, F.; Shen, Z. Optimization of Carbon and Nitrogen Sources and Substrate Feeding Strategy to Increase the Cell Density of Streptococcus suis. Biotechnol. Biotechnol. Equip. 2015, 29, 779–785. [Google Scholar] [CrossRef]
- Kim, H.J.; Kwag, H.-L.; Jin, Y.; Kim, H.-J. The Composition of the Carbon Source and the Time of Cell Harvest Are Critical Determinants of the Final Yield of Human Papillomavirus Type 16 L1 Protein Produced in Saccharomyces cerevisiae. Protein Expr. Purif. 2011, 80, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jin, Y.; Kim, H.-J. The Concentration of Carbon Source in the Medium Affects the Quality of Virus-like Particles of Human Papillomavirus Type 16 Produced in Saccharomyces cerevisiae. PLoS ONE 2014, 9, e94467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakobyan, L.; Gabrielyan, L.; Trchounian, A. Yeast Extract as an Effective Nitrogen Source Stimulating Cell Growth and Enhancing Hydrogen Photoproduction by Rhodobacter sphaeroides Strains from Mineral Springs. Int. J. Hydrog. Energy 2012, 37, 6519–6526. [Google Scholar] [CrossRef]
- Rebers, P.A.; Christianson, G.G.; Laird, G.A.; Symanowski, J. Agarose Soy Casein Digest Medium for Replacement of Blood Agar for Potency Determinations of Live Pasteurella Vaccines. Appl. Environ. Microbiol. 1989, 55, 106–108. [Google Scholar] [CrossRef] [Green Version]
- Wessman, G.E. Cultivation of Pasteurella haemolytica in a Chemically Defined Medium. Appl. Microbiol. 1966, 14, 597–602. [Google Scholar] [CrossRef]
- Highlander, S.K. Growth of Pasteurella haemolytica and Production of Its Leukotoxin in Semi-Defined Media. Am. J. Vet. Res. 1997, 58, 749–754. [Google Scholar]
- Passanha, P.; Kedia, G.; Dinsdale, R.M.; Guwy, A.J.; Esteves, S.R. The Use of NaCl Addition for the Improvement of Polyhydroxyalkanoate Production by Cupriavidus necator. Bioresour. Technol. 2014, 163, 287–294. [Google Scholar] [CrossRef]
- Hazwani-Oslan, S.N.; Tan, J.S.; Saad, M.Z.; Halim, M.; Ariff, A.B. Improved Cultivation of GdhA Derivative Pasteurella multocida B:2 for High Density of Viable Cells through in Situ Ammonium Removal Using Cation-Exchange Resin for Use as Animal Vaccine. Process Biochem. 2017, 56, 1–7. [Google Scholar] [CrossRef]
- Hills, G.M.; Spurr, E.D. The Effect of Temperature on the Nutritional Requirements of Pasteurella pestis. J. Gen. Microbiol. 1952, 6, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, S.; Boehme, L.; Lam, H.; Zhang, Z. Pichia pastoris Fermentation for Phytase Production Using Crude Glycerol from Biodiesel Production as the Sole Carbon Source. Biochem. Eng. J. 2009, 43, 157–162. [Google Scholar] [CrossRef]
- Gómez-Ríos, D.; Junne, S.; Neubauer, P.; Ochoa, S.; Ríos-Estepa, R.; Ramírez-Malule, H. Characterization of the Metabolic Response of Streptomyces clavuligerus to Shear Stress in Stirred Tanks and Single-Use 2D Rocking Motion Bioreactors for Clavulanic Acid Production. Antibiotics 2019, 8, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Host Species | Disease | Microorganisms | References |
---|---|---|---|
Cattle/buffalo | Hemorrhagic septicemia (HS) | P. multocida serotype B:2, E:2 | [11,20,21] |
Cattle | HS-like septicemic disease | P. multocida serotype B:2,4 | [22,23] |
Cattle | Pneumonic pasteurellosis | M. haemolytica serotype A1 P. haemolytica A | [23,24] |
Cattle | Bovine respiratory disease (BRD) | P. multocida A:3 M. haemolytica | [13,25] |
Sheep and goats | Pneumonic pasteurellosis, Septicemic pasteurellosis | P. haemolytica A P. trehalosi P. multocida serotype B:2 | [26,27] |
Pigs | Atrophic rhinitis | P. multocida serotype D | [28] |
Poultry/turkeys | Fowl cholera | P. multocida serotype A:1, A:3, A:4 P. multocida type F in turkeys | [29,30] |
Birds/ducks | Fowl cholera | P. multocida serotype A P. multocida serotype D | [10,31,32] |
Animals | Vaccine/Vaccine Targets | Challenge Strains | Immune Profiles a | Protection Efficacies | References | ||
---|---|---|---|---|---|---|---|
Day b | N | % | |||||
Live-attenuated and Bacterin | |||||||
Calves | M. haemolytica serotype A1 and P. multocida | M. haemolytica serotype A6 | ↑ Abs | 21 | 15–17 | Reduced lung bacteriology | [38] |
Rabbits | P. multocida B:2 | ↑ Abs | 7 | 8 | 25.0 | [36] | |
Mice | P. multocida (alginate microparticle) | P. multocida | - | 7 | 5 | 6 log protection | [39] |
Mice | P. multocida A strain PMSHI-9 (iron-inactivated; bDNA adjuvanted) | P. multocida | ↑↑ IL-6, IL-12, Abs | 28 | 10 | 100.0 | [40] |
Ducks | P. multocida 0818 strain ∆fur | P. multocida 0818 strain | ↑ SI (serum IgY and bile IgA) | 10 | 50 | 62.0 | [41] |
Antibody/Anti-idiotype | |||||||
Rabbits | P. multocida B:2 | ↑ Abs | 7 | 8 | 100.0 | [36] | |
Recombinant | |||||||
Chickens | ptfA (subunit with Freund’s complete adjuvant) | CVCC474 A:1 | ↑↑ SI, Abs, IFN-γ | 15 | 20 | 45.0 | [42] |
Pigs | N-terminal of P. multocida toxin (N-PMT) | P. multocida | ↑↑ IgG | 28 | 9 | Lower turbinate atrophy level | [43] |
Goats | P. multocida B:2 fimbrial protein | P. multocida B:2 | ↑↑ IgG and IgA | 3 | 3–6 | Zero/Reduced bacterial burden in organs | [44] |
Turkeys | P. multocida P-1059 recombinant filamentous hemagglutinin peptide (rFHAB2) adjuvant | P. multocida P-1059 or χ73 | - | 8 | 40 | 70.0–75.0 | [20] |
DNA Vaccine | |||||||
Chickens | ptfA (inulin-adjuvant) | CVCC474 A:1 | ↑↑ SI, IL-2, IFN-γ; ↑ IL-4; ≡ Abs | 15 | 20 | 55.0 | [45] |
Chicken | ptfA (chitosan-adjuvant) | CVCC474 A:1 | ↑↑ SI, IL-2, IFN-γ; ≡ IL-4 | 15 | 25 | 68.0 | [37] |
Mice | tbpA (IL-2-adjuvant) | P. multocida serotype B:2 (strain P52) | ↑↑ SI, IgG | 48 h | 12 | 66.6 | [46] |
Chicken | ompH, ompA (divalent and fusion) | CVCC474 A:1 | ↑↑ SI, IFN-γ | 15 | 20 | 70.0–75.0 | [47] |
Strain | Optimal Growth Condition | Agitation Speed (rpm) | References | |
---|---|---|---|---|
Temperature (°C) | pH | |||
P. multocida B:2 | 35–40 | 6–8 | 500–550 | [53,61] |
gdhA derivative P. multocida B:2 | 37 | 6–7 | 200–700 | [9] |
aroA derivative P. multocida B:2 | 37 | 7.4 | 200 | [20] |
P. multocida A | 37 | 7.2 | 90–200 | [59] |
P. multocida | 37 | 7.2 | 200 | [63] |
P. multocida | 35–40 | 7.2–8.2 | 500–1000 | [10] |
M. haemolytica | 37 | 7.0 | 400–550 | [64] |
M. haemolytica | 35–37 | 7 | 200 | [65] |
P. septica | 36–37.5 | 7 | 200 | [66] |
Strain | Mode | Improvement | References |
---|---|---|---|
gdhA derivative P. multocida B:2 | Batch | Biomass production increased by 16.6% in bioreactor | [61] |
P. multocida B:2 | Batch | Achieved high biomass production | |
P. multocida B:2 | Batch | Improved biomass production in short duration | [60] |
P. multocida A | Batch | Improved biomass production | [59] |
P. multocida | Batch | Enhanced colony-forming unit (CFU) and dry mass production | [10] |
M. haemolytica | Batch | Achieved high-viability cells in production | [64] |
M. haemolytica | Continuous | Leukotoxin production was increased by 45-fold | [62] |
M. haemolytica | Continuous | Leukotoxin production was maximized and acetic acid production was minimized | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oslan, S.N.H.; Tan, J.S.; Yusoff, A.H.; Sulaiman, A.Z.; Awang, M.A.; Lazim, A.M.; Lim, S.J.; Oslan, S.N.; Saad, M.Z.; Ariff, A.B. Pasteurellosis Vaccine Commercialization: Physiochemical Factors for Optimum Production. Processes 2022, 10, 1248. https://doi.org/10.3390/pr10071248
Oslan SNH, Tan JS, Yusoff AH, Sulaiman AZ, Awang MA, Lazim AM, Lim SJ, Oslan SN, Saad MZ, Ariff AB. Pasteurellosis Vaccine Commercialization: Physiochemical Factors for Optimum Production. Processes. 2022; 10(7):1248. https://doi.org/10.3390/pr10071248
Chicago/Turabian StyleOslan, Siti Nur Hazwani, Joo Shun Tan, Abdul Hafidz Yusoff, Ahmad Ziad Sulaiman, Mohd Azrie Awang, Azwan Mat Lazim, Si Jie Lim, Siti Nurbaya Oslan, Mohd Zamri Saad, and Arbakariya B. Ariff. 2022. "Pasteurellosis Vaccine Commercialization: Physiochemical Factors for Optimum Production" Processes 10, no. 7: 1248. https://doi.org/10.3390/pr10071248
APA StyleOslan, S. N. H., Tan, J. S., Yusoff, A. H., Sulaiman, A. Z., Awang, M. A., Lazim, A. M., Lim, S. J., Oslan, S. N., Saad, M. Z., & Ariff, A. B. (2022). Pasteurellosis Vaccine Commercialization: Physiochemical Factors for Optimum Production. Processes, 10(7), 1248. https://doi.org/10.3390/pr10071248