A Review of the Application of Discrete Element Method in Agricultural Engineering: A Case Study of Soybean
Abstract
:1. Introduction
2. Soybean Particle Modeling
2.1. Geometric Model
- (1)
- Circular and combined elliptical particle models
- (2)
- Single-sphere model
- (3)
- Multi-sphere model
- (4)
- Ellipsoid model
2.2. Contact Model
2.3. Validation of Particle Models
- (1)
- Bulk density
- (2)
- Angle of repose
- (3)
- Dynamic angle of repose
- (4)
- Silo discharge
- (5)
- Self-flow screening test
- (6)
- Rotating cylinder mixing test
3. Soil Particle Modeling
3.1. Geometric Model
3.2. Contact Model
3.3. Parameter Calibration
4. Analysis of Soybean-Soil Contact
4.1. Seed Throwing Test
4.2. Calibration of Soil-Seed Parameters
5. Coupling of DEM with Other Algorithms
6. Conclusions
- (1)
- For soybean particle modeling, from 2-D to 3-D, from single-particle modeling methods to general particle modeling methods, the DEM model of particles has gradually improved. The contact models between soybean particles and the boundary mainly include the linear model, the nonlinear model, the Hertz model, the Hertz–Mindlin model, and the visco-elastic contact model. The main test methods for verifying particle models include the bulk density test, angle of repose test, dynamic angle of repose test, silo discharge test, self-flow screening test, and rotating cylinder mixing test.
- (2)
- For soil particle modeling, due to the complex composition, size and shape of soil particles, most scholars have used the single-sphere model to build their DEM models; some scholars have also built multi-sphere models of soil particles. The size of the particle model is determined according to the simulation needs. The main contact models used in analyzing soil particles include the parallel bonding model, the Edinburgh model, the HM+JKR model, etc. The main parameter calibration tests include the bulk density test, the cone penetration test, the angle of repose test, and compression and shear tests.
- (3)
- Taking the seed throwing test of soybean as an example, when studying the interaction between particles with different material properties, the selection of the contact model and the calibration of the relevant parameters require careful analysis and study.
- (4)
- For the simulation analysis of complex agricultural machinery, the DEM should be coupled with other algorithms, such as DEM and CFD coupling, DEM and MBD coupling, etc. These methods are mainly applied in the analysis of the sieving and seeding processes, but for the application of harvesting machinery, processing machinery, and in other fields, scholars still need to conduct in-depth research.
- (5)
- In general, the DEM has been widely and successfully applied in the field of agricultural engineering, but the research aspect of DEM modeling for soil particles still faces great challenges, and has great research prospects, for example, soil particle modeling and particle parameter calibration, analysis of the seed throwing process, and parameter calibration between seeds, soil particles, etc., still need to be studied in depth.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cundall, P.A.; Burman, B.C.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1980, 30, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Dong, K.J.; Wang, B.; Yu, A.B. Modeling of Particle Flow and Sieving Behavior on a Vibrating Screen: From Discrete Particle Simulation to Process Performance Prediction. Ind. Eng. Chem. Res. 2013, 52, 11333–11343. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.Q.; Yu, Y.J. Validation of a coupled model of discrete element method with multibody kinematics to simulate the screening process of a swing-bar sieve. Powder Technol. 2019, 346, 193–202. [Google Scholar] [CrossRef]
- Yu, Y.J.; Fu, H.; Yu, J.Q. DEM-based simulation of the corn threshing process. Adv. Powder Technol. 2015, 26, 1400–1409. [Google Scholar] [CrossRef]
- Zeng, Z.W.; Ma, X.; Cao, X.L.; Li, Z.; Wang, X. Critical Review of Applications of Discrete Element Method in Agricultural Engineering. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–18. [Google Scholar]
- Fang, H.M.; Ji, C.Y.; Chandio, F.A.; Guo, J.Z.Q.; Chaudhry, A. Analysis of Soil Dynamic Behavior during Rotary Tillage Based on Distinct Element Method. Trans. Chin. Soc. Agric. Mach. 2016, 47, 22–28. [Google Scholar]
- Yu, J.Q.; Fu, H.; Li, H.; Shen, Y. Application of discrete element method to research and design of working parts of agricultural machines. Trans. Chin. Soc. Agric. Eng. 2005, 21, 1–6. [Google Scholar]
- Lv, F.Y. Investigation of Physical and Mechanical Properties and Modeling Method for Soybean Grains; Jilin University: Changchun, China, 2017. [Google Scholar]
- Shen, Y.F. The Design for Precision Seed-metering Devices and Simulation Analysis of Working Process Based on the DEM; Jilin University: Changchun, China, 2003. [Google Scholar]
- Xu, Z. Simulation Analysis of Collision Process of Soybean Based on the DEM; Jilin University: Changchun, China, 2006. [Google Scholar]
- Zhang, L.N. Digital Design Method of Soybean Precision Seed-Metering Device Based on DEM; Jilin University: Changchun, China, 2009. [Google Scholar]
- Yu, J.Q.; Wang, G.; Xin, N.; Fu, H. Simulation Analysis of Working Process and Performance of Cell Wheel Metering Device. Trans. Chin. Soc. Agric. Mach. 2011, 42, 83–101. [Google Scholar]
- Lu, Z.; Negi, S.C.; Jofriet, J.C. A Numerical Model for Flow of Granular Materials in Silos. Part 1: Model Development. J. Agric. Eng. Res. 1997, 68, 223–229. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Le, L.M.; Nguyen, T.C.; Nguyen, T.H.; Le, T.-T.; Pham, B.T. Characterization of soybeans and calibration of their DEM input parameters. Part. Sci. Technol. 2021, 39, 530–548. [Google Scholar] [CrossRef]
- Vu-Quoc, L.; Zhang, X.; Walton, O.R. A 3-D discrete-element method for dry granular flows of ellipsoidal particles. Comput. Methods Appl. Mech. Eng. 1999, 187, 483–528. [Google Scholar] [CrossRef]
- Boac, J.M.; Ambrose, R.P.K.; Casada, M.E.; Maghirang, R.G.; Maier, D.E. Applications of Discrete Element Method in Modeling of Grain Postharvest Operations. Food Eng. Rev. 2014, 6, 128–149. [Google Scholar] [CrossRef] [Green Version]
- Boac, J.M.; Casada, M.E.; Maghirang, R.G.; Iii, J.P.H. Material and interaction properties of selected grains and oilseeds for modeling discrete particles. Am. Soc. Agric. Biol. Eng. 2000, 54, 1201–1216. [Google Scholar]
- Tao, H.; Zhong, W.; Jin, B. Comparison of Construction Method for DEM Simulation of Ellipsoidal Particles. Chin. J. Chem. Eng. 2013, 21, 800–807. [Google Scholar] [CrossRef]
- Liu, P.Y.; Yang, R.Y.; Yu, A.B. DEM study of the transverse mixing of wet particles in rotating drums. Chem. Eng. Sci. 2013, 86, 99–107. [Google Scholar] [CrossRef]
- Xu, T.Y.; Yu, J.Q.; Yu, Y.J.; Wang, Y. A modelling and verification approach for soybean seed particles using the discrete element method. Adv. Powder Technol. 2018, 29, 3274–3290. [Google Scholar] [CrossRef]
- Yan, D.X.; Yu, J.Q.; Wang, Y.; Long, Z.; Yu, Y.J. A general modelling method for soybean seeds based on the discrete element method. Powder Technol. 2020, 372, 212–226. [Google Scholar] [CrossRef]
- Wang, X.M. Study on Modeling Method of Maize Kernel Population Based on Multi—Ball Filling; Jilin University: Changchun, China, 2017. [Google Scholar]
- Kodama, M.; Rahul, B.; Curtis, J.; Hancock, B.; Wassgren, C. Force model considerations for glued-sphere discrete element method simulations. Chem. Eng. Sci. 2009, 64, 3466–3475. [Google Scholar] [CrossRef]
- Kruggel-Emden, H.; Rickelt, S.; Wirtz, S.; Scherer, V. A study on the validity of the multi-sphere discrete element method. Powder Technol. 2008, 188, 153–165. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, J.; Wang, Y.; Yan, D.; Yu, Y. A study on the modelling method of maize-seed particles based on the discrete element method. Powder Technol. 2020, 374, 353–376. [Google Scholar] [CrossRef]
- Lin, X.; Ng, T.T. Contact detection algorithms for three-dimensional ellipsoids in discrete element modeling. Int. J. Numer. Anal. Methods Geomech. 1995, 19, 653–659. [Google Scholar] [CrossRef]
- Ouadfel, H.; Rothenburg, L. An algorithm for detecting inter-ellipsoid contacts. Comput. Geotech. 1999, 24, 245–263. [Google Scholar] [CrossRef]
- Saini, N.; Kleinstreuer, C. A new collision model for ellipsoidal particles in shear flow. J. Comput. Phys. 2019, 376, 1028–1050. [Google Scholar] [CrossRef]
- Barr, A.H. Superquadrics and Angle-Preserving Transformations. IEEE Comput. Graph. Appl. 1981, 1, 11–23. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Zhao, Y.Z. Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: A comparative study. Powder Technol. 2018, 331, 179–191. [Google Scholar] [CrossRef]
- Yan, D.; Yu, J.; Liang, L.; Wang, Y.; Yu, Y.; Zhou, L.; Sun, K.; Liang, P. A Comparative Study on the Modelling of Soybean Particles Based on the Discrete Element Method. Processes 2021, 9, 286. [Google Scholar] [CrossRef]
- Di, R.A.; Di, M.F.P. An improved integral non-linear model for the contact of particles in distinct element simulations. Chem. Eng. Sci. 2005, 60, 1303–1312. [Google Scholar]
- Landry, H.; Laguë, C.; Roberge, M. Discrete element representation of manure products. Comput. Electron. Agric. 2006, 51, 17–34. [Google Scholar] [CrossRef]
- Gao, W.; Feng, Y.T. A coupled 3D discrete elements/isogeometric method for particle/structure interaction problems. Comput. Part. Mech. 2019, 7, 869–880. [Google Scholar] [CrossRef]
- Horabik, J.; Beczek, M.; Mazur, R.; Parafiniuk, P.; Ryżak, M.; Molenda, M. Determination of the restitution coefficient of seeds and coefficients of visco-elastic Hertz contact models for DEM simulations. Biosyst. Eng. 2017, 161, 106–119. [Google Scholar] [CrossRef]
- Chen, Z.; Wassgren, C.; Veikle, E.; Ambrose, K. Determination of material and interaction properties of maize and wheat kernels for DEM simulation. Biosyst. Eng. 2020, 195, 208–226. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Lv, F.; Wang, Y.; Fu, H. A multi-sphere based modelling method for maize grain assemblies. Adv. Powder Technol. 2017, 28, 584–595. [Google Scholar] [CrossRef]
- Mousaviraad, M.; Tekeste, M.Z.; Rosentrater, K.A. Calibration and Validation of a Discrete Element Model of Corn Using Grain Flow Simulation in a Commercial Screw Grain Auger. Trans. ASABE 2017, 60, 1403–1415. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lv, F.Y.; Xu, T.Y.; Yu, J. Shape and size analysis of soybean kernel and modeling. J. Jilin Univ. 2018, 48, 507–517. [Google Scholar]
- Liu, F.Y.; Zhang, J.; Li, B.; Chen, J. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap. Trans. Chin. Soc. Agric. Eng. 2016, 32, 247–253. [Google Scholar]
- Coetzee, C.J. Particle upscaling: Calibration and validation of the discrete element method. Powder Technol. 2019, 344, 487–503. [Google Scholar] [CrossRef]
- Cunha, R.; Santos, K.; Lima, R.; Duarte, C.R.; Barrozo, M. Repose angle of monoparticles and binary mixture: An experimental and simulation study. Powder Technol. 2016, 303, 203–211. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, D.; Jia, F.; Qiu, H.; Li, A.; Bai, S. Experimental and numerical investigation on the shape approximation of rice particle by multi-sphere particle models. Adv. Powder Technol. 2020, 31, 1574–1586. [Google Scholar] [CrossRef]
- Coetzee, C.J.; Els, D.N.J. Calibration of discrete element parameters and the modelling of silo discharge and bucket filling. Comput. Electron. Agric. 2009, 65, 198–212. [Google Scholar] [CrossRef]
- Xu, T.Y. Expermental Study and Simulation Analysis of the Working Process of the Precision Seening Unit and Its Key Parts; Jilin University: Changchun, China, 2019. [Google Scholar]
- González-Montellano, C.; Ramírez, Á.; Gallego, E.; Ayuga, F. Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos. Chem. Eng. Sci. 2011, 66, 5116–5126. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, J.; Xue, D.; Wang, Y.; Zhang, Q.; Ren, L. An approach to and validation of maize-seed-assembly modelling based on the discrete element method. Powder Technol. 2018, 328, 167–183. [Google Scholar] [CrossRef]
- Cai, R.; Hou, Z.; Zhao, Y. Numerical study on particle mixing in a double-screw conical mixer. Powder Technol. 2019, 352, 193–208. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, Y. Modelling of the flow of ellipsoidal particles in a horizontal rotating drum based on DEM simulation. Chem. Eng. Sci. 2017, 172, 636–651. [Google Scholar] [CrossRef]
- Gürsoy, S.; Chen, Y.; Li, B. Measurement and modelling of soil displacement from sweeps with different cutting widths. Biosyst. Eng. 2017, 161, 1–13. [Google Scholar] [CrossRef]
- Ucgul, M.; Fielke, J.M.; Saunders, C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil. Biosyst. Eng. 2014, 121, 105–117. [Google Scholar] [CrossRef]
- Ucgul, M.; Saunders, C.; Fielke, J.M. Discrete element modelling of top soil burial using a full scale mouldboard plough under field conditions. Biosyst. Eng. 2017, 160, 140–153. [Google Scholar] [CrossRef]
- Bravo, E.L.; Tijskens, E.; Suárez, M.H.; Cueto, O.G.; Ramon, H. Prediction model for non-inversion soil tillage implemented on discrete element method. Comput. Electron. Agric. 2014, 106, 120–127. [Google Scholar] [CrossRef]
- Zhang, Y.L. Simulation and Experimental Study on Soil Throwing Performance of Reverse Rotation Fertilization Seeder Based on Discrete Element Method; Jiangsu University: Zhenjiang, China, 2012. [Google Scholar]
- Pan, S.Q. Research on the Optimization Design and the Experiment of the Core Ploughshare Furrow Opener Based on the Discrete Element Method; Jilin University: Changchun, China, 2015. [Google Scholar]
- Yan, D.X. Particle Modelling of Soybean Seeds and The Simulation Analysis and Experimental Study of the Seed-Throwing and Pressing; Jilin University: Changchun, China, 2021. [Google Scholar]
- Milkevych, V.; Munkholm, L.J.; Chen, Y.; Nyord, T. Modelling approach for soil displacement in tillage using discrete element method. Soil Tillage Res. 2018, 183, 60–71. [Google Scholar] [CrossRef]
- Chen, Y.; Munkholm, L.J.; Nyord, T. A discrete element model for soil–sweep interaction in three different soils. Soil Tillage Res. 2013, 126, 34–41. [Google Scholar] [CrossRef]
- Obermayr, M.; Vrettos, C.; Eberhard, P.; Däuwel, T. A discrete element model and its experimental validation for the prediction of draft forces in cohesive soil. J. Terramech. 2014, 53, 93–104. [Google Scholar] [CrossRef]
- Ma, Y.J.; Wang, A.; Zhao, J.G.; Hao, J.; Li, J.; Ma, L.; Zhao, W. Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method. Trans. Chin. Soc. Agric. Eng. 2019, 35, 16–23. [Google Scholar]
- Wang, X.L.; Hu, H.; Wang, Q.G.; Li, H.; He, J.; Chen, W. Calibration Method of Soil Contact Characteristic Parameters Based on DEM Theory. Trans. Chin. Soc. Agric. Mach. 2017, 48, 78–85. [Google Scholar]
- Xiang, W.; Wu, M.L.; Lü, J.N.; Quan, W.; Ma, L.; Liu, G. Calibration of simulation physical parameters of clay loam based on soil accumulation test. Trans. Chin. Soc. Agric. Eng. 2019, 35, 116–123. [Google Scholar]
- Wu, T.; Huang, W.F.; Chen, X.S.; Ma, X.; Han, Z.Q.; Pan, T. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles. J. South China Agric. Univ. 2017, 38, 93–98. [Google Scholar]
- Shi, L.R.; Zhao, W.Y.; Sun, W. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method. Trans. Chin. Soc. Agric. Eng. 2017, 33, 181–187. [Google Scholar]
- Xie, F.P.; Wu, Z.Y.; Wang, X.S.; Liu, D.; Wu, B.; Zhang, Z. Calibration of discrete element parameters of soils based on unconfined compressive strength test. Trans. Chin. Soc. Agric. Eng. 2020, 36, 39–47. [Google Scholar]
- Li, J.W.; Tong, J.; Hu, B.; Wang, H.; Mao, C.; Ma, Y. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in northeast China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 130–140. [Google Scholar]
- Wang, X.; Zhang, Q.; Fu, Z.; Wei, W.; He, J.; Huang, Y. An efficient method for determining DEM parameters of a loose cohesive soil modelled using hysteretic spring and linear cohesion contact models. Biosyst. Eng. 2022, 205, 283–294. [Google Scholar] [CrossRef]
- Lin, J.; Bao, M.; Zhang, F.; Yang, J.; Li, H. Mixing simulation of cohesive particles in a soil mixer. Powder Technol. 2022, 399, 117–218. [Google Scholar] [CrossRef]
- Bufton, L.P.; Richardson, P.; O’Dogherty, M.J. Seed displacement after impact on a soil surface. J. Agric. Eng. Res. 1974, 19, 327–338. [Google Scholar] [CrossRef]
- Ma, X.; Yu, H.Y.; Yang, H.K. The determining and model establishing of seed bouncing and rolling displacement after impact on a furrow. Trans. Chin. Soc. Agric. Mach. 1998, 29, 58–62. [Google Scholar]
- Ma, C.L. Precision Seeding Theory; Jilin Science and Technology Press: Changchun, China, 1999. [Google Scholar]
- Wang, Y.S.; Zheng, D.C.; Wu, H.P.; Wu, H. Probability Distribution of Seed Spacing of Precision Drilling. Trans. Chin. Soc. Agric. Mach. 2001, 32, 40–43. [Google Scholar]
- Sui, J. Research on Experiment and Simulation Analysis of Soybean Collision with Soil; Jilin University: Changchun, China, 2016. [Google Scholar]
- Hao, J.J.; Long, S.F.; Li, H.; Jia, Y.; Ma, Z.; Zhao, J. Development of discrete element model and calibration of simulation parameters for mechanically-harvested yam. Trans. Chin. Soc. Agric. Eng. 2019, 35, 34–42. [Google Scholar]
- Dowding, C.H.; Belytschko, T.B.; Yen, H.J. A coupled finite element–rigid block method for transient analysis of rock caverns. Int. J. Numer. Anal. Methods Geomech. 2010, 7, 117–127. [Google Scholar] [CrossRef]
- Dowding, C.H.; Gilbert, C. Dynamic Stability of Rock Slopes and High Frequency Traveling Wave. J. Geotech. Eng. 1989, 114, 1069–1088. [Google Scholar] [CrossRef]
- Michael, M.; Vogel, F.; Peters, B. DEM–FEM coupling simulations of the interactions between a tire tread and granular terrain. Comput. Methods Appl. Mech. Eng. 2015, 289, 227–248. [Google Scholar] [CrossRef]
- Ding, L.; Yang, L.; Wu, D.H.; Li, D.; Zhang, D.; Liu, S. Simulation and Experiment of Corn Air Suction Seed Metering Device Based on DEM CFD Coupling Method. Trans. Chin. Soc. Agric. Mach. 2018, 49, 48–57. [Google Scholar]
- Ren, B.; Zhong, W.; Chen, Y.; Chen, X.; Jin, B.; Yuan, Z.; Lu, Y. CFD-DEM simulation of spouting of corn-shaped particles. Particuology 2012, 10, 562–572. [Google Scholar] [CrossRef]
- Yang, W. Simulation Analysis and Experimental Study of the Screening Process of a Swing-Bar Sieve Based on the Coupling of DEM with MBK; Jilin University: Changchun, China, 2018. [Google Scholar]
- Yuan, J.; Yu, J.Q. Analysis on Operational Process of Self-excited Vibrating Subsoiler Based on DEM-MBD Coupling Algorithm. Trans. Chin. Soc. Agric. Mach. 2020, 51, 17–24. [Google Scholar]
- Zhang, L.; Zhai, Y.; Chen, J.; Zhang, Z.; Huang, S. Optimization design and performance study of a subsoiler underlying the tea garden subsoiling mechanism based on bionics and EDEM. Soil Tillage Res. 2022, 220, 105375. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, D.; Yu, J.; Wang, Y.; Zhou, L.; Sun, K.; Tian, Y. A Review of the Application of Discrete Element Method in Agricultural Engineering: A Case Study of Soybean. Processes 2022, 10, 1305. https://doi.org/10.3390/pr10071305
Yan D, Yu J, Wang Y, Zhou L, Sun K, Tian Y. A Review of the Application of Discrete Element Method in Agricultural Engineering: A Case Study of Soybean. Processes. 2022; 10(7):1305. https://doi.org/10.3390/pr10071305
Chicago/Turabian StyleYan, Dongxu, Jianqun Yu, Yang Wang, Long Zhou, Kai Sun, and Ye Tian. 2022. "A Review of the Application of Discrete Element Method in Agricultural Engineering: A Case Study of Soybean" Processes 10, no. 7: 1305. https://doi.org/10.3390/pr10071305
APA StyleYan, D., Yu, J., Wang, Y., Zhou, L., Sun, K., & Tian, Y. (2022). A Review of the Application of Discrete Element Method in Agricultural Engineering: A Case Study of Soybean. Processes, 10(7), 1305. https://doi.org/10.3390/pr10071305