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Abstract: Voltage sags are a serious problem within power supplies, which pose threats to both
residential electricity and industrial manufacturing. Since any one sag may be recorded by multiple
monitoring devices from different substations, the issue of redundant information in data arises. In
this regard, a novel method for voltage sag events based on projection technology, shape dynamic
time warping (shapeDTW), and spectral clustering is proposed. The main contributions of this paper
may be summarized as follows: (1) We present a new method for extracting the voltage anomaly
waveform, which is a fast projection segmentation algorithm (FPSA). The voltage sag waveform
is only a part of the voltage anomaly waveform, so the voltage anomaly waveform contains more
information. (2) ShapeDTW and spectral clustering are used to match and cluster voltage anomaly
waveforms, so as to achieve the normalization of voltage sag events. (3) In practical engineering, the
proposed method in the paper can be used to obtain the impact of voltage sags, reduce computational
complexity, and ease the workload of the operation and maintenance engineers. Experiments were
conducted using voltage sag data from voltage sag events recorded by the 10 kV monitoring points
in Beijing, China. The results showed the effectiveness and reliability of our proposed methods.

Keywords: fast projection segmentation algorithm (FPSA); voltage sag event; shapedtw; spectral clustering

1. Introduction

Currently, voltage sags have become an increasingly relevant issue for both utility
companies and their consumers. In certain industries, a sag event only a few milliseconds
in length can interrupt critical processes, which may then take several hours to be restarted.
This results in large financial losses due to downtime [1]. Moreover, in industrial applica-
tions, voltage sags are the most frequently occurring disturbances among all the possible
disturbances and account for 92% to 98% of interruptions. They may also be responsible
for other disturbances in the power network [2]. Therefore, the treatment and research of
voltage sags are important in improving the reliability of power systems and ensuring a
safe power supply in industrial production and daily life [3]. The Institute of Electrical and
Electronics Engineers’ (IEEE) definition for voltage sag is as follows: the root mean square
(RMS) voltage drops to 10–90% of the rated value, and the duration is 10 ms–60 s [4]. At
present, the data collection, detection, classification, and identification of voltage sags are
the focus of research; see [5–12].

Many studies have been performed regarding the pattern recognition of voltage
sags [3]. In general, there are three methods: data mining, signal processing, and physical
modeling. Distinct methods for identifying the source of voltage sags were analyzed
in [5], which are based on the disturbance energy, voltage current characteristic, or active
current component. Reference [13] proposed a Kullback–Leibler divergence measure
and standard deviation for voltage sag and harmonics identification. A support vector
machine and support vector regression were used to identify fault types and estimate
fault resistance. The Euclidean distance approach was used to identify the fault distance
in [14]. K-means clustering was used to identify voltage sags in [15]. Reference [16]
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detected and classified different power quality disturbances using the half- and one-period
windowing technique based on a continuous S-transform and neural networks. Several
signal-processing techniques have been proposed for power quality (PQ) disturbance
detection and segmentation. In [17], sags and interruptions were detected by the RMS
value. Its main drawback is the poor results achieved with non-stationary signals due to
the dependency of the RMS on both periodicity and wave shape. A sag/swell detection
algorithm based on wavelet transform, operating even in the presence of flicker and
harmonics in the voltage source, was presented in [18]. In [19], the Kalman filter and an
expert system were used to segment and identify different types of voltage dips (fault-
induced, transformer saturation, induction motor starting) and interruptions (non-fault
and fault-induced). The main drawbacks of this method are related to either the failure
in detecting very small changes in the voltage magnitude or the time resolution problems.
In [20], a method for voltage sag source identification that combined wavelet analysis
and modified dynamic time warping (DTW) distance was proposed. In [21], a statistical
analysis of variance (MANOVA) was directly proposed to extract the attributes of voltage
events from the voltage and current waveforms. In [22], Thevenin’s equivalent circuit was
used to replace any power network. By determining the sign of the internal resistance
in Thevenin’s equivalent circuit, the origin of a voltage sag disturbance could be easily
identified. In [7], the authors proposed a method of detecting sags for applications in
dynamic voltage restorers. The method is based on the fundamental amplitude calculation
using the d-q components of each phase of the voltage signal in half-cycle windows. The
method was efficient for different levels of sags, phase-jump, harmonics, and variation in
fundamental frequency. In [23], the authors used the delayed Legendre wavelet, ant lion
optimization algorithm, and a classifier ensemble to detect and classify eight types of sags.

The monitoring and analysis of voltage sag events can provide an effective scientific
basis for power system operations management, accident investigation, fault location, and
sag management [3]. With the advancement of science and technology, a large amount of
original sampling data may be collected by monitoring systems. These data completely
encapsulate the transient waveforms of each detected sag event. However, the data of
the same voltage sag event would be recorded by multiple monitoring points. These data
not only consume computer memory unnecessarily, but also leave higher workloads for
engineers. The analysis of these data is then extremely inefficient due to a lack of effective
data-processing procedures. Therefore, it is very important to identify whether the data
recorded by different monitoring points are the voltage sag caused by the same event. As
far as we know, there is no relevant literature on this aspect. In order to meet the needs
of practical engineering applications, a novel clustering analysis method for voltage sag
events is proposed in this paper. At present, all classification methods are mainly based
on the characteristics of the voltage sag waveform. However, this waveform is only a
part of the voltage anomaly waveform. The voltage anomaly waveform contains more
information than the voltage sag waveform. Therefore, we propose a new method for
extracting the voltage anomaly waveform instead of the voltage sag waveform, which is
an FPSA. Then, we use shapeDTW and spectral clustering to match and cluster voltage
anomaly waveforms, so as to achieve the normalization of voltage sag events.

The rest of this paper is organized as follows. In Section 2, our novel clustering analysis
method for voltage sag events based on projection technology, shapeDTW, and spectral
clustering is introduced. In Section 3, real data analyses are used to verify the effectiveness
of the FPSA and clustering analysis method. The conclusions are summarized in Section 4.

2. Methodology

In this section, the PFSA is presented as an effective solution to correctly identify
non-stationary and quasi-stationary states in the measured voltage waveforms. We further
investigate the classification of voltage sag events by combining shapeDTW and spectral
clustering. A total of twenty recording files of voltage sag events are available to this end,
which are labeled as id 01, 02, · · · , 20. These signals are events recorded by PQ instruments
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and contain both pre-trigger and post-trigger information. Figure 1 shows voltage data
(id 01). Next, we mainly use id01 data to illustrate our proposed FPSA.

Figure 1. Voltage data (id 01).

2.1. Fast Projection Segmentation Algorithm

The model used to detect a signal transition can be divided into three steps: signal mod-
eling, acquisition of the detection parameter (DP), and extraction of the voltage anomaly
segment. The basic principle of signal modeling is to generate residuals by comparing the
actual responses with the expected responses of the system using mathematical models.
These residuals are expected to be zero (or zero mean) under no-fault conditions. In practi-
cal situations, the residuals are corrupted by the presence of noise, unknown disturbances,
and uncertainties in the system model. Hence, the aim of the method is to generate robust
residuals that are insensitive to these noises and uncertainties, while remaining sensitive to
faults. To this end, a simple and effective filtering method is proposed in this paper.

2.1.1. Signal Modeling Based on Filtering

Since the voltage data are usually periodic, it was assumed that the current voltage
sag monitoring terminal records the data as K points/period (K = 256 in this paper).
The voltage data of length N are expressed as {xi, i = 1, 2, · · · , N}, and then, the filtering
method can be divided into the following three steps:

Step 1 : Given K, the original voltage data {xi, i = 1, 2, · · · , N} can be divided into L
segments: {x1, x2, · · · , xK1}, {xK1+1, · · · , xK2} · · · , {xKL−1+1, · · · , xKL}, where L = [N/K],
K1 = K, K2 = 2× K, KL = L× K and [ ] denotes rounding down. Voltage data (id 01) seg-
mentation results are shown in Figure 2, where the black dotted lines are the dividing lines.

Figure 2. Voltage data (id 01) are divided into L segments according to K.
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Step 2 : According to IEEE Standard 1159–1995 [2], the RMS is used to initially
determine whether {xKj−1+1, · · · , xKj} has a sag. If

{
xKj−1+1, · · · , xKj

}
is a sag, then{

xKj−1+1, · · · , xKj

}
is removed, where j = 1, 2, · · · , L. The remaining data X after removal

are obtained as follows.

X =



X1 X2 · · · Xl · · · XK1

XK1+1 XK1+2 · · · XK1+l · · · XK2
...

...
...

...
...

...

XKj−1+1 XKj−1+2 · · · XKj−1+l · · · XKj
...

...
...

...
...

XKL−1+1 XKL−1+2 · · · XKL−1+l · · · XKL


, l = 1, 2, · · · , K, j = 1, 2, · · · , L (1).

Since the median can characterize the center position of the distribution and has the
advantage of being robust and unaffected by outliers, we used the median of the data
{xl , xK1+l , · · · , xKL−1+l} as the estimate of the lth column of the matrix X. Let x̂l=median
{xl , xK1+l , · · · , xKL−1+l}, where l = 1, 2, · · · , K. The process of Step 2 on the voltage sag
data (id 01) is shown in Figure 3.

Step 3 : Sequence 1 can be obtained by Step 2 as follows:

Sequence 1:{x̂1, x̂2, · · · , x̂K},

Repeat Sequence 1 on the length of the original data (N) to obtain Sequence 2:

Sequence 2:{x̂1, x̂2, · · · , x̂K, x̂1, x̂2, · · · , x̂K · · · }.

Sequence 2 is our estimate of the original data. Then, we can obtain the filter sequence
(residuals’ sequence) as follows:

Filter sequence:{ε1, ε2, · · · , εN} εi = x̂i − xi, i = 1, 2, · · · , N.

The filtering process for voltage sag data (id 01) is shown in Figure 4.

2.1.2. Detection Parameter Based on Sharp Drop Point

The voltage sag data are projected onto the vertical axis, and the frequency histogram
can be obtained after projection (as shown in the red part of Figure 5b). The kernel density
curve f (x) of the frequency histogram can be obtained by kernel density estimation (the
red curve shown in Figure 5b). In the real data, the amount of voltage anomaly (voltage
sag) data is always significantly smaller than the total amount of data. Based on this fact,
we can clearly find that the anomaly data are mainly distributed in the tail region of the
projection distribution, while the non-anomaly data are mainly concentrated in the central
region of the projection distribution. The projected distribution of voltage sag data (id 01)
is shown in Figure 5.

In this paper, we propose to use the local sudden-drop point (sdp) of the kernel density
function as the basis for dividing the tail region and the central region of the kernel density
curve, where the tail region of the kernel density curve is the anomaly data. In this way,
the sdp is also called the DP. The local sudden-drop point of f (x) is defined as the location
at which the density curve falls rapidly from high to low. A formal definition is given
as follows.
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Definition 1. (Local sudden-drop point) For any point x, the interval (x− d, x + d) is considered

as the d-neighborhood of x. Then, x0 is a local sudden-drop point if x0 = argmax
x

d2 f (x)
dx2 for all

x ∈ (x0 − d, x0 + d), when d f (x)
dx < 0; see [24].

Remark 1. Through the definition of the sdp, we can conclude that if the voltage sags, the sdp of
the kernel density function of the voltage data must exist, but there may be multiple sharp-drop
points, such as sdp 1, sdp 2, sdp 3, and sdp 4 in Figure 6. In power data analysis, we can choose sdp
2 and sdp 3 as the division of the tail region and the central region of the kernel density function,
where the region between sdp 2 and sdp 3 is the central region of the kernel density function.

(a)

(b)

(c)

Figure 3. The processing of Step 2 on voltage sag data (id 01), where “Actual” represents the actual
response, “RMS” represents the real data after passing the RMS detection, “Estimate” represents
x̂l , l = 1, 2, · · · , K, and the subfigures (a–c) represent the three-phase voltage sag data respectively.



Processes 2022, 10, 1337 6 of 20

(a)

(b)

(c)

Figure 4. The processing of Step 3 on voltage sag data (id 01), where subfigures (a–c) represent the
three-phase voltage sag data respectively.

Figure 5. Projection fast segmentation algorithm of A-phase voltage sag data (id 01), where (a) is the
filter sequence of the A-phase (id 01) and (b) is the corresponding kernel density curve.
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Figure 6. Region segmentation of the filter sequence (id 01).

2.1.3. Extracting Voltage Anomaly Segment

The region segmentation of the filtered sequence is shown in Figure 6. From Figure 6,
we can see that the filtering sequence can be divided into three regions (a), (b), and (c)
by sdp 2 and sdp 3. It is obvious that the voltage of the (a) and (b) regions has voltage
anomalies. In fact, the voltage anomalies also occurred in the (c2) region of the (c) region.
To this end, we propose a method for identifying the (c2) region in the (c) region as an
anomaly region.

Through the above, a discontinuous voltage sequence can be obtained:{
ε l1 , ε l1+1, · · · , ε l1+p1

}
, · · · ,

{
ε ls , ε ls+1, · · · , ε ls+ps

}
, · · · ,

{
ε ln , ε ln+1, · · · , ε ln+pn

}
,

where the total number of sequences is n, s = 1, 2, · · · , n. If the discontinuity distance
h = (ls + ps)− (ls−1 + ps−1) between adjacent sequences is less than one period (K), we
consider that the sequence point between the discontinuities has a sag, and based on the
above method, the (c2) region in the (c) region can be identified as an anomaly.

Figure 7 shows the results of anomaly detection using the FPSA for voltage sag data
(id 01), where the dashed lines indicate the respective start and end positions of the anomaly
and the shaded portion is the anomaly segment. According to Figure 7, it can be concluded
that the start and end positions of the A-phase are 1406 and 2694, respectively (those of the
B-phase are 1405 and 2746 and the C-phase are 1404 and 2718).

2.2. Clustering Analysis of Voltage Sag Events

In this section, shapeDTW and spectral clustering are used to match and cluster voltage
anomaly waveforms, so as to achieve the normalization of voltage sag events. The clustering
analysis method is mainly divided into two steps. The first step uses shapeDTW to calculate
the shape similarity between the anomaly curves extracted by the FPSA. The second step
uses the obtained similarity values from the first step to construct the similarity matrix of
spectral clustering, and then, the voltage anomaly curve is classified by spectral clustering.

2.2.1. Waveform Matching Based on Shapedtw

The DTW was first introduced in the 1970’s for audio analysis by [25,26] before being
used for general time series analysis. By minimizing the cumulative distance between the
signals (x(i))1≤i≤M and (y(j))1≤j≤Q (time series), DTW provides a non-linear alignment
optimal path between these two time series. It is a relatively straightforward process that
first estimates the distance map d between the signals with elements di,j given by:

di,j = (x(i)− y(j))2 (2)
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(a)

(b)

(c)

Figure 7. FPSA for voltage sag data (id 01), where subfigures (a–c) represent the three-phase voltage
sag data respectively.
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A cumulative distance map D with elements Di,j is then computed from the distance
map d. Di,j represents the minimal accumulated distance to reach the point (i, j) starting
from the origin (1, 1). It is given by:

Di,j = di,j + min


Di,j−1

Di−1,j

Di−1,j−1

i = 2, . . . , M j = 2, . . . , Q , (3)

where we have the following initial conditions:

D1,1 = d1,1, (4)

D1,j =
j

∑
p=1

d1,p, j = 1, . . . , Q, (5)

Di,1 =
i

∑
q=1

dq,1, i = 1, . . . , M. (6)

This cumulative distance is used to define a warping path between signals (x(i))1≤i≤M
and (y(j))1≤j≤Q, denoted φxy :

φxy :

 [[1; S]] −→ [[1; M]]× [[1; N]]

s 7−→ φxy(s) = (φx
xy(s), φ

y
xy(s))

(7)

φxy verifies several constraints:

1. The monotonicity constraint guarantees the time ordering.

2. The boundary constraints: φxy(1) = (1, 1) and φxy(S) = (M, Q).

3. The step size conditions: 0 ≤ φx
xy(s)− φx

xy(s− 1) ≤ 1 and 0 ≤ φ
y
xy(s)− φ

y
xy(s− 1) ≤ 1

∀s ∈ 2 . . . S; see Equation (3).

This path minimizes the final cumulative distance. Its length S depends on the signals
to be aligned and is determined during the DTW process.

Figure 8 presents two examples of DTW alignments between two time series, with
Figure 8a,b showing the alignments between series and Figure 8c,d showing the cumulative
distance maps D and the warping paths in green for these two examples.

Although DTW obtains a global optimal solution, it does not necessarily achieve
locally sensible matchings. Concretely, two temporal points with entirely dissimilar local
structures may be matched by DTW. To address this problem, [27] proposed an improved
alignment algorithm, named shape dynamic time warping (shapeDTW), which enhances
DTW by taking pointwise local structural information into consideration.

ShapeDTW is a temporal alignment algorithm, which consists of two sequential steps:
Firstly, represent each temporal point by some shape descriptor, which encodes structural
information of local subsequences around that point; in this way, the original time series
is converted into a sequence of descriptors. Secondly, use DTW to align two sequences
of descriptors. The shapeDTW time series alignment procedure is shown in Figure 9 [27].
This section mainly uses the shapeDTW algorithm to calculate the shape similarity between
voltage sag sequences extracted by the FPSA.

Remark 2. Reference [27] gave fourshape descriptors: piecewise aggregate approximation (PAA),
discrete wavelet transform (DWT), slope, and derivative. Derivative is used in this paper.

2.2.2. Spectral Clustering Based on shapeDTW

The spectral clustering algorithm is based on the spectral theory of graph theory
and is widely used in image segmentation, computer vision, and pattern recognition.
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Spectral clustering is a class of methods based on eigen-decompositions of graph affinity
matrices. Given a set of data points S = {x1, . . . , xn}, a weighted graph G = (V, E) is
first constructed for which every vertex corresponds to a point in S and each edge is
weighted by the similarity between the connected points. The Laplacian graph L [28] is
then derived from the adjacent matrix W of G, and the eigenvectors of L are computed.
Finally, the traditional K-means method is applied to the low-dimensional representations
of the original data. There are many spectral clustering algorithms that are based on the
above procedures [29–31].

(a) (b)

(c) (d)

Figure 8. Illustration of a DTW process for aligning two pairs of signals (one per column). The first
row: the matching between points of two pairs of signals (in red and black) is symbolized by grey
lines. The second row: superimposition of the warping path on the cumulative distance matrix
D. Yellow areas of D correspond to larger cumulative distances, whereas green ones correspond
to smaller ones. The first case of alignment (a,c) is an example of speech data. The second case of
alignment (b,d) is an example of voltage sag data. The two pairs of signals are the phase A of voltage
sag data id 01 and 02, respectively.

Figure 9. Pipeline of shapeDTW. shapeDTW consists of two major steps: encode local structures by
shape descriptors, and align descriptor sequences by DTW. Concretely, we sample a subsequence
from each temporal point and further encode it by some shape descriptor. As a result, the original
time series is converted into a descriptor sequence of the same length. Then, we align two descriptor
sequences by DTW and transfer the found warping path to the original time series.

In this paper, our proposed shapeDTW spectral clustering algorithm is developed in
the Jordan–Weiss (NJW) framework [31]. Therefore, the NJW algorithm is briefly reviewed
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as Algorithm 1, for the sake of completeness. Algorithm 1 mainly involves the determination
of the number of clusters k, the calculation of affinity matrix W, and the calculation of
Laplacian matrix L.

Algorithm 1 NJW spectral clustering algorithm.

Input: Dataset S = {x1, . . . , xn} in R1 and the number of clusters k

Output: k-way partition of the input data

Construct the affinity matrix W:

W =



w11 w12 · · · w1n

w21 w22 · · · w2n

...
...

. . .
...

wn1 wn2 · · · wmn


;

2: The degree matrix D is defined as the diagonal matrix with the degrees d1, . . . , dn on

the diagonal,

D =



d1 0 · · · 0

0 d2 · · · 0
...

...
. . .

...

0 0 · · · dn


, where di =

n

∑
j=1

wij;

Compute Laplacian matrix L;

4: Compute the k eigenvectors of L, e1, e2, . . . , ek, which are associated with the k largest

eigenvalues, and form the matrix X = [e1, e2, . . . , ek];

Renormalize each row to form a new matrix Y ∈ <n×k with Yij = Xij/
(

∑j X2
ij

)1/2
, so

that each row of Y has a unit magnitude;

6: Treat each row of Y as a point in Rk, and partition the n points (n rows) into k clusters

via a general cluster algorithm, such as the K-means algorithm;

Assign the original point xi to the cluster c if and only if the corresponding row i of the

matrix Y is assigned to the cluster c.

(1) There are mainly three methods for determining the number of clusters k: elbow
method, average silhouette method, and gap statistic method. In this paper, we adopted
the average silhouette method for determining the number of clusters k.

(2) The methods for calculating the affinity matrix W are mainly the ε-neighborhood
graph, k-nearest neighbor graph, and fully connected graph. In this paper, the fully con-
nected graph is used to calculate W.

wij = wji =

 exp(
−‖xi−xj‖2

2σ2 ), i 6= j

0 , i = j
(8)
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where
∥∥xi − xj

∥∥2 represents the Euclidean distance between xi and xj. In this paper, xi and
xj represent the voltage filtering sequence. Since the lengths of xi and xj are different, the
Euclidean distance between xi and xj cannot be calculated. For this, we used the shapeDTW
similarity between xi and xj instead of the Euclidean distance between xi and xj. Then,

wij = wji =

 exp(
−shapeDTW(xi ,xj)

2Sσ2 ), i 6= j

0 , i = j
(9)

where shapeDTW(xi, xj) represents the shapeDTW similarity between xi and xj. We aimed
to improve spectral clustering by shapeDTW, so that it can cluster datasets of voltage
filtering sequences.

(3) There are mainly three methods for the calculation of Laplacian matrices L: unnor-
malized Laplacian matrices, random walk Laplacian matrices, and symmetric Laplacian
matrices [29]. In this paper, we adopted symmetric Laplacian matrices, so:

L = D−1/2(D−W)D−1/2. (10)

2.3. Procedure Flow Chart of the Methodology

A procedure flow chart of the proposed methodology is presented in Figure 10.

Figure 10. Procedure flow chart of the methodology.

3. Empirical Analysis
3.1. Data

To verify the effectiveness of the method proposed in this paper, real data samples
from a voltage sag monitoring system were selected. These data recorded the voltage sag
events that occurred in Beijing in May 2018. In total, twenty valid samples were retained
after excluding invalid samples. These samples belonged to three types of sag events. The
sag types and number of data samples are shown in Table 1. According to the process in
Figure 10, firstly, the start position and end position of the anomaly of the voltage sag data
are detected. Secondly, the anomaly waveform is extracted. Thirdly, the anomaly waveform
is classified to achieve the classification purpose of the voltage sag events.

Table 1. The sag types and number of data samples.

Type Number id

1 10 01, 02, 03, 04, 05, 06, 07, 08, 09, 10

2 6 11, 12, 13, 14, 15, 16

3 4 17, 18, 19, 20
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3.2. Empirical Results

To illustrate the accuracy of the FPSA detection results, we compared the FPSA with
the RMS method [16]. The results are shown in Table 2, where “RMS” represents the root
mean square of the half-period refresh voltage detection method and “FPAS” represents
the FPSA. The formula for calculating the RMS is as follows:

Urms(k) =

√√√√√ 1
N

(k+1) N
2

∑
i=1+(k−1) N

2

u2(i) (11)

where N is the number of sampling points per period (K = 256), u(i) is the instantaneous
value of the voltage waveform acquired for the ith time, and k is the calculated window
(k = 1, 2, · · · , K). The threshold of the detection voltage was set to 0.9 pu according to the
definition of a voltage sag.

Table 2. Detection results of voltage ([start position, stop position]).

id
A-Phase B-Phase C-Phase

RMS FPSA RMS FPSA RMS FPSA

01 [1600,1888] [1406,2694] [1602,1893] [1405,2746] [1605,1886] [1404,2718]

02 [1569,1950] [1461,2848] [1604,1912] [1460,2797] [1610,1945] [1460,2627]

03 [1593,1862] [1379,2768] [1556,1885] [1379,2718] [1560,1886] [1377,2680]

04 [1627,1818] [1420,2663] [1612,1896] [1419,2747] [1607,1903] [1417,2704]

05 [1591,1860] [1381,2793] [1586,1879] [1376,3233] [1580,1888] [1376,2944]

06 [1611,1895] [1409,2802] [1601,1902] [1407,3050] [1609,1899] [1407,2714]

07 [1563,1847] [1364,2782] [1567,1866] [1364,2706] [1568,1857] [1363,2667]

08 [1598,1777] [1376,2985] [1603,1786] [1373,2932] [1607,1791] [1371,2934]

09 [1591,1804] [1394,2870] [1586,1810] [1393,2735] [1593,1805] [1392,2694]

10 [1530,1910] [1427,2868] [1528,1905] [1426,2755] [1550,1912] [1425,2677]

11 [1431,1885] [1368,2263] [1422,1887] [1408,2600] [1431,1879] [1369,2330]

12 [1471,1927] [1409,2306] [1476,1931] [1417,2640] [1481,1933] [1409,2370]

13 [1471,1926] [1408,2306] [1478,1935] [1429,2639] [1476,1931] [1409,2370]

14 [1468,1916] [1402,2304] [1470,1918] [1399,2796] [1471,1821] [1402,2451]

15 [1404,1953] [1439,2341] [1408,1962] [1436,2707] [1402,1956] [1439,2487]

16 [1485,1928] [1406,2834] [1486,1931] [1416,2666] [1479,1929] [1406,2629]

17 [1247,2130] [971,3247] [1251,2133] [975,3275] [1248,2110] [876,3121]

18 [1161,1793] [1032,2943] [1170,1812] [923,3068] [1173,1821] [1036,3070]

19 [1249,2380] [1213,3389] [1253,2376] [1118,3515] [1257,2374] [1128,3654]

20 [1394,1613] [314,3120] [1402,1619] [314,3123] [1407,1609]] [314,3121]

From Table 2, we can conclude that the sag segments detected by the RMS are all
inside the abnormal segment detected by the FPSA, so the abnormal segment contains
more information than the sag segment. Therefore, it is reasonable to use the abnormal
segment for clustering analysis of the voltage sag events.

We used the method proposed in this paper to cluster the voltage sag events for
A-phase voltage data, B-phase voltage data, and C-phase voltage data in the voltage
sag data, respectively. The results of the clustering analysis of A-phase voltage data, B-
phase voltage data, and C-phase voltage data are shown in Tables 3–5 and Figures 11–13,
respectively. Tables 3–5 is an affinity matrix WA (WB, WC) calculated using the abnormal
waveform segment of the A-phase (B-phase, C-phase) voltage data. The area of the same
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color (gray, green, and yellow) in WA (WB, WC) represents the voltage sag caused by the
same event. The calculation method of WA (WB, WC) is in Equation (7). Figures 11–13 show
the clustering results of the abnormal voltage segments in the A-phase (B-phase, C-phase)
voltage data.

Table 3. The affinity matrix WA.

id 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

01 0.000 0.981 0.963 0.984 0.939 0.969 0.974 0.944 00.977 0.987 0.804 0.794 0.795 0.800 0.803 0.886 0.777 0.705 0.740 0.736

02 0.981 0.000 0.970 0.974 0.953 0.976 0.980 0.951 0.983 0.980 0.812 0.802 0.805 0.810 0.812 0.901 0.788 0.711 0.759 0.744

03 0.963 0.970 0.000 0.965 0.977 0.987 0.982 0.965 0.985 0.956 0.765 0.758 0.759 0.764 0.767 0.858 0.778 0.798 0.745 0.731

04 0.984 0.974 0.965 0.000 0.944 0.973 0.973 0.945 0.977 0.984 0.801 0.789 0.791 0.801 0.805 0.881 0.774 0.703 0.737 0.730

05 0.939 0.953 0.977 0.944 0.000 0.973 0.967 0.970 0.972 0.931 0.747 0.740 0.742 0.754 0.757 0.837 0.787 0.788 0.754 0.726

06 0.969 0.976 0.987 0.973 0.973 0.000 0.991 0.965 0.990 0.962 0.773 0.764 0.765 0.770 0.773 0.864 0.775 0.798 0.740 0.729

07 0.974 0.980 0.982 0.973 0.967 0.991 0.000 0.960 0.990 0.966 0.783 0.774 0.775 0.781 0.784 0.872 0.777 0.701 0.742 0.733

08 0.944 0.951 0.965 0.945 0.970 0.965 0.960 0.000 0.963 0.937 0.757 0.750 0.751 0.752 0.756 0.839 0.808 0.709 0.774 0.748

09 0.977 0.983 0.985 0.977 0.972 0.990 0.990 0.963 0.000 0.971 0.784 0.774 0.775 0.781 0.785 0.874 0.781 0.704 0.747 0.735

10 0.987 0.980 0.956 0.984 0.931 0.962 0.966 0.937 0.971 0.000 0.813 0.802 0.804 0.810 0.815 0.892 0.777 0.707 0.741 0.736

11 0.804 0.812 0.765 0.801 0.747 0.773 0.783 0.757 0.784 0.813 0.000 0.985 0.985 0.967 0.963 0.920 0.686 0.776 0.699 0.657

12 0.794 0.802 0.758 0.789 0.740 0.764 0.774 0.750 0.774 0.802 0.985 0.000 0.988 0.967 0.965 0.916 0.669 0.762 0.690 0.629

13 0.795 0.805 0.759 0.791 0.742 0.765 0.775 0.751 0.775 0.804 0.985 0.988 0.000 0.966 0.964 0.917 0.680 0.770 0.695 0.652

14 0.800 0.810 0.764 0.801 0.754 0.770 0.781 0.752 0.781 0.810 0.967 0.967 0.966 0.000 0.982 0.916 0.686 0.767 0.702 0.665

15 0.803 0.812 0.767 0.805 0.757 0.773 0.784 0.756 0.785 0.815 0.963 0.965 0.964 0.982 0.000 0.921 0.682 0.770 0.697 0.656

16 0.886 0.901 0.858 0.881 0.837 0.864 0.872 0.839 0.874 0.892 0.920 0.916 0.917 0.916 0.921 0.000 0.763 0.864 0.770 0.727

17 0.777 0.788 0.778 0.774 0.787 0.775 0.777 0.808 0.781 0.777 0.686 0.669 0.680 0.686 0.682 0.763 0.000 0.867 0.939 0.885

18 0.705 0.711 0.798 0.703 0.788 0.798 0.701 0.709 0.704 0.707 0.776 0.762 0.770 0.767 0.770 0.864 0.867 0.000 0.838 0.811

19 0.740 0.759 0.745 0.737 0.754 0.740 0.742 0.774 0.747 0.741 0.699 0.690 0.695 0.702 0.697 0.770 0.939 0.838 0.000 0.843

20 0.736 0.744 0.731 0.730 0.726 0.729 0.733 0.748 0.735 0.736 0.657 0.629 0.652 0.665 0.656 0.727 0.885 0.811 0.843 0.000

Table 4. The affinity matrix WB of B-phase voltage sag data.

id 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

01 0.000 0.986 0.977 0.986 0.942 0.972 0.985 0.952 0.985 0.986 0.777 0.777 0.777 0.858 0.854 0.874 0.800 0.877 0.720 0.734

02 0.986 0.000 0.973 0.985 0.935 0.969 0.984 0.948 0.985 0.988 0.766 0.765 0.766 0.845 0.842 0.863 0.797 0.876 0.722 0.732

03 0.977 0.973 0.000 0.978 0.955 0.978 0.986 0.966 0.986 0.967 0.786 0.786 0.787 0.859 0.856 0.884 0.805 0.879 0.713 0.730

04 0.986 0.985 0.978 0.000 0.947 0.975 0.983 0.954 0.985 0.984 0.776 0.776 0.777 0.852 0.850 0.872 0.802 0.880 0.727 0.735

05 0.942 0.935 0.955 0.947 0.000 0.967 0.951 0.975 0.949 0.930 0.779 0.777 0.776 0.839 0.834 0.855 0.833 0.907 0.747 0.754

06 0.972 0.969 0.978 0.975 0.967 0.000 0.979 0.976 0.979 0.963 0.779 0.778 0.778 0.858 0.852 0.873 0.817 0.893 0.724 0.744

07 0.985 0.984 0.986 0.983 0.951 0.979 0.000 0.960 0.991 0.979 0.783 0.783 0.783 0.862 0.858 0.882 0.804 0.879 0.714 0.732

08 0.952 0.948 0.966 0.954 0.975 0.976 0.960 0.000 0.960 0.942 0.776 0.776 0.776 0.840 0.840 0.865 0.833 0.910 0.750 0.759

09 0.985 0.985 0.986 0.985 0.949 0.979 0.991 0.960 0.000 0.981 0.782 0.783 0.784 0.862 0.858 0.882 0.802 0.879 0.715 0.731

10 0.986 0.988 0.967 0.984 0.930 0.963 0.979 0.942 0.981 0.000 0.763 0.764 0.764 0.842 0.840 0.859 0.792 0.870 0.722 0.730

11 0.777 0.766 0.786 0.776 0.779 0.779 0.783 0.776 0.782 0.763 0.000 0.990 0.994 0.911 0.914 0.891 0.745 0.758 0.654 0.738

12 0.777 0.765 0.786 0.776 0.777 0.778 0.783 0.776 0.783 0.764 0.990 0.000 0.991 0.909 0.913 0.890 0.740 0.753 0.652 0.730

13 0.777 0.766 0.787 0.777 0.776 0.778 0.783 0.776 0.784 0.764 0.994 0.991 0.000 0.910 0.914 0.891 0.739 0.753 0.651 0.730

14 0.858 0.845 0.859 0.852 0.839 0.858 0.862 0.840 0.862 0.842 0.911 0.909 0.910 0.000 0.985 0.972 0.713 0.769 0.612 0.659

15 0.854 0.842 0.856 0.850 0.834 0.852 0.858 0.840 0.858 0.840 0.914 0.913 0.914 0.985 0.000 0.981 0.713 0.773 0.614 0.658

16 0.874 0.863 0.884 0.872 0.855 0.873 0.882 0.865 0.882 0.859 0.891 0.890 0.891 0.972 0.981 0.000 0.716 0.784 0.615 0.652

17 0.800 0.797 0.805 0.802 0.833 0.817 0.804 0.833 0.802 0.792 0.745 0.740 0.739 0.713 0.713 0.716 0.000 0.902 0.902 0.885

18 0.877 0.876 0.879 0.880 0.907 0.893 0.879 0.910 0.879 0.870 0.758 0.753 0.753 0.769 0.773 0.784 0.902 0.000 0.841 0.819

19 0.720 0.722 0.713 0.727 0.747 0.724 0.714 0.750 0.715 0.722 0.654 0.652 0.651 0.612 0.614 0.615 0.902 0.841 0.000 0.858

20 0.734 0.732 0.730 0.735 0.754 0.744 0.732 0.759 0.731 0.730 0.738 0.730 0.730 0.659 0.658 0.652 0.885 0.819 0.858 0.000
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Figure 11. Clustering result based on A-phase voltage sag data.

From Tables 3–5, we can see that the value of the same color area is obviously larger
than the value of the blank area, indicating that the abnormal waveform segment of the
voltage sag caused by the same event is more similar. It can be obtained from Figures 11–13
that the clustering accuracy of the clustering analysis method proposed in this paper is
100% for the voltage sag data (id 01–20).

Table 6 shows the clustering results of the affinity matrix of different abnormal voltage
segments using the average of the affinity matrix of the voltage data of phase A, phase B,
and phase C, where WABC = WA+WB+WC

3 . WABC has the same clustering results as WA,
WB, and WC.
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Figure 12. Clustering result based on B-phase voltage sag data.

Figure 13. Cont.
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Figure 13. Clustering result based on C-phase voltage sag data.

Table 5. The affinity matrix WC of C-phase voltage sag data.

id 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

01 0.000 0.967 0.947 0.980 0.917 0.966 0.974 0.909 0.972 0.978 0.932 0.935 0.932 0.958 0.957 0.955 0.702 0.786 0.714 0.678

02 0.967 0.000 0.978 0.946 0.949 0.946 0.954 0.954 0.954 0.924 0.961 0.894 0.944 0.954 0.886 0.962 0.679 0.757 0.691 0.659

03 0.947 0.978 0.000 0.960 0.964 0.984 0.975 0.961 0.976 0.925 0.898 0.901 0.897 0.911 0.912 0.949 0.764 0.833 0.768 0.728

04 0.980 0.946 0.960 0.000 0.932 0.975 0.981 0.924 0.979 0.955 0.928 0.932 0.928 0.946 0.947 0.949 0.711 0.795 0.726 0.683

05 0.917 0.949 0.964 0.932 0.000 0.954 0.946 0.982 0.946 0.941 0.877 0.879 0.876 0.891 0.891 0.939 0.808 0.882 0.805 0.768

06 0.966 0.946 0.984 0.975 0.954 0.000 0.987 0.950 0.987 0.944 0.912 0.915 0.911 0.929 0.929 0.945 0.746 0.824 0.752 0.713

07 0.974 0.954 0.975 0.981 0.946 0.987 0.000 0.940 0.989 0.951 0.921 0.925 0.921 0.938 0.938 0.939 0.731 0.814 0.740 0.701

08 0.909 0.954 0.961 0.924 0.982 0.950 0.940 0.000 0.940 0.948 0.871 0.875 0.870 0.884 0.885 0.941 0.814 0.883 0.812 0.772

09 0.972 0.954 0.976 0.979 0.946 0.987 0.989 0.940 0.000 0.964 0.895 0.846 0.858 0.889 0.838 0.941 0.734 0.815 0.743 0.704

10 0.978 0.924 0.925 0.955 0.941 0.944 0.951 0.948 0.964 0.000 0.939 0.940 0.939 0.960 0.960 0.962 0.687 0.764 0.695 0.663

11 0.932 0.961 0.898 0.928 0.877 0.912 0.921 0.871 0.895 0.939 0.000 0.987 0.996 0.956 0.955 0.949 0.677 0.751 0.684 0.662

12 0.935 0.894 0.901 0.932 0.879 0.915 0.925 0.875 0.846 0.940 0.987 0.000 0.987 0.957 0.957 0.962 0.683 0.755 0.690 0.671

13 0.932 0.944 0.897 0.928 0.876 0.911 0.921 0.870 0.858 0.939 0.996 0.987 0.000 0.956 0.955 0.923 0.676 0.749 0.683 0.660

14 0.958 0.954 0.911 0.946 0.891 0.929 0.938 0.884 0.889 0.960 0.956 0.957 0.956 0.000 0.986 0.962 0.682 0.760 0.691 0.658

15 0.957 0.886 0.912 0.947 0.891 0.929 0.938 0.885 0.838 0.960 0.955 0.957 0.955 0.986 0.000 0.965 0.684 0.762 0.693 0.661

16 0.955 0.962 0.949 0.949 0.939 0.945 0.939 0.941 0.941 0.962 0.949 0.962 0.923 0.962 0.965 0.000 0.714 0.805 0.715 0.689

17 0.702 0.679 0.764 0.711 0.808 0.746 0.731 0.814 0.734 0.687 0.677 0.683 0.676 0.682 0.684 0.714 0.000 0.868 0.934 0.872

18 0.786 0.757 0.833 0.795 0.882 0.824 0.814 0.883 0.815 0.764 0.751 0.755 0.749 0.760 0.762 0.805 0.868 0.000 0.833 0.804

19 0.714 0.691 0.768 0.726 0.805 0.752 0.740 0.812 0.743 0.695 0.684 0.690 0.683 0.691 0.693 0.715 0.934 0.833 0.000 0.854

20 0.678 0.659 0.728 0.683 0.768 0.713 0.701 0.772 0.704 0.663 0.662 0.671 0.660 0.658 0.661 0.689 0.872 0.804 0.854 0.000
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Table 6. The affinity matrix WABC of voltage sag data.

id 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

1 0.000 0.978 0.962 0.983 0.933 0.969 0.978 0.935 0.978 0.984 0.838 0.835 0.835 0.872 0.871 0.905 0.760 0.856 0.725 0.716

2 0.978 0.000 0.974 0.968 0.946 0.964 0.973 0.951 0.974 0.964 0.846 0.820 0.838 0.870 0.847 0.909 0.755 0.848 0.724 0.712

3 0.962 0.974 0.000 0.968 0.965 0.983 0.981 0.964 0.982 0.949 0.816 0.815 0.814 0.845 0.845 0.897 0.782 0.870 0.742 0.730

4 0.983 0.968 0.968 0.000 0.941 0.974 0.979 0.941 0.980 0.974 0.835 0.832 0.832 0.866 0.867 0.901 0.762 0.859 0.730 0.716

5 0.933 0.946 0.965 0.941 0.000 0.965 0.955 0.976 0.956 0.934 0.801 0.799 0.798 0.828 0.827 0.877 0.809 0.892 0.769 0.749

6 0.969 0.964 0.983 0.974 0.965 0.000 0.986 0.964 0.985 0.956 0.821 0.819 0.818 0.852 0.851 0.894 0.779 0.872 0.739 0.729

7 0.978 0.973 0.981 0.979 0.955 0.986 0.000 0.953 0.990 0.965 0.829 0.827 0.826 0.860 0.860 0.898 0.771 0.865 0.732 0.722

8 0.935 0.951 0.964 0.941 0.976 0.964 0.953 0.000 0.954 0.942 0.801 0.800 0.799 0.825 0.827 0.882 0.818 0.901 0.779 0.760

9 0.978 0.974 0.982 0.980 0.956 0.985 0.990 0.954 0.000 0.972 0.820 0.801 0.806 0.844 0.827 0.899 0.772 0.866 0.735 0.723

10 0.984 0.964 0.949 0.974 0.934 0.956 0.965 0.942 0.972 0.000 0.838 0.835 0.836 0.871 0.872 0.904 0.752 0.847 0.719 0.710

11 0.838 0.846 0.816 0.835 0.801 0.821 0.829 0.801 0.820 0.838 0.000 0.987 0.992 0.945 0.944 0.920 0.703 0.762 0.679 0.686

12 0.835 0.820 0.815 0.832 0.799 0.819 0.827 0.800 0.801 0.835 0.987 0.000 0.989 0.944 0.945 0.923 0.697 0.757 0.677 0.677

13 0.835 0.838 0.814 0.832 0.798 0.818 0.826 0.799 0.806 0.836 0.992 0.989 0.000 0.944 0.944 0.910 0.698 0.757 0.676 0.681

14 0.872 0.870 0.845 0.866 0.828 0.852 0.860 0.825 0.844 0.871 0.945 0.944 0.944 0.000 0.984 0.950 0.694 0.765 0.668 0.661

15 0.871 0.847 0.845 0.867 0.827 0.851 0.860 0.827 0.827 0.872 0.944 0.945 0.944 0.984 0.000 0.956 0.693 0.768 0.668 0.658

16 0.905 0.909 0.897 0.901 0.877 0.894 0.898 0.882 0.899 0.904 0.920 0.923 0.910 0.950 0.956 0.000 0.731 0.818 0.700 0.689

17 0.760 0.755 0.782 0.762 0.809 0.779 0.771 0.818 0.772 0.752 0.703 0.697 0.698 0.694 0.693 0.731 0.000 0.879 0.925 0.881

18 0.856 0.848 0.870 0.859 0.892 0.872 0.865 0.901 0.866 0.847 0.762 0.757 0.757 0.765 0.768 0.818 0.879 0.000 0.837 0.811

19 0.725 0.724 0.742 0.730 0.769 0.739 0.732 0.779 0.735 0.719 0.679 0.677 0.676 0.668 0.668 0.700 0.925 0.837 0.000 0.852

20 0.716 0.712 0.730 0.716 0.749 0.729 0.722 0.760 0.723 0.710 0.686 0.677 0.681 0.661 0.658 0.689 0.881 0.811 0.852 0.000

The results of the above empirical analysis show that the proposed method can
effectively achieve the clustering of voltage sag events.

4. Concluding Remarks

With the development of electrical power technology and expansions of the moni-
toring scope, the amount of voltage sag data has also dramatically increased over time.
The increase in the amount of voltage sag data generates a huge amount of work for
power engineers due to the need for the analysis of the data. In addition, accurate clock
synchronization between voltage sag events is difficult to achieve due to the costs of moni-
toring such power systems. Therefore, it is impossible to know whether the voltage sag
events detected by different monitoring stations correspond to the same event. Therefore,
valid information cannot be processed in time, and valuable information is discarded. The
clustering analysis method proposed in this paper is effective in solving this problem,
and the test results obtained based on real data reflect the accuracy of the approach. The
voltage anomaly waveform of voltage sags caused by the same event has a high degree
of similarity, and the voltage anomaly waveform of the voltage sags caused by different
events is significantly different. Our method can effectively judge whether voltage sags
detected by different monitoring points were caused by the same event. The range of
influence of the voltage sag event can be obtained simultaneously.
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