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Abstract: The product’s manufacturing process has an evident influence on product quality. In
order to control the quality and identify the critical procedure of the product manufacturing process
reasonably and effectively, a method combining genetic back-propagation (BP) neural network
algorithm and grey relational analysis is proposed. Firstly, the genetic BP neural network algorithm
is used to obtain the key quality characteristics (KQCs) in the product manufacturing process. At
the same time, considering the three factors that have an essential impact on the quality of the
procedures, the grey correlation analysis method is used to establish the correlation scoring matrix
between the procedure and the KQCs to calculate the criticality of each procedure. Finally, taking
the manufacturing process of the evaporator as a case, the application process of this method is
introduced, and four critical procedures are identified. It provides a reference for the procedure
quality control and improvement of enterprise in the future.

Keywords: manufacturing process; procedures quality; genetic BP neural network; key quality
characteristics; critical procedure

1. Introduction

With the change of the VOC (Voice of Customer) environment and enterprise manu-
facturing mode, the direction of market competition has gradually changed from price to
non-price, and product quality plays an essential role in non-price aspects. For manufactur-
ing enterprises, the product formation needs to go through a series of a complex processes
such as research, design, manufacturing, use, and feedback. The manufacturing process
is one of the most important links. Controlling procedure quality is the core content of
quality management in the manufacturing process, and it is also a hotspot of research in
the manufacturing field [1,2]. However, the manufacturing process is often composed of
many procedures. Monitoring all procedures will require a lot of labor costs and economic
costs, and it is difficult to find the main problems.

According to the complexity of the processing procedure in the product manufacturing
process, the procedure can be divided into general procedure, special procedure, and critical
procedure. Among them, the critical procedure affects the use and function reliability of the
product [3]. At the same time, the critical procedure is also the crucial link to manufacturing
process quality control, and the effective identification of the critical procedure is the basis
of quality control in the product manufacturing process [4]. Therefore, it is necessary to
divide the criticality of the procedure. Through the investigation, it is found that most
enterprises still have problems in dividing the procedure criticality in China. For example,
it mainly relies on product design documents and the experience of product designers, and
lacks theoretical support. In this field, relevant scholars have summarized the problem of
procedure criticality classification from two aspects [5].
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On the one hand, some scholars believe that the identification of critical procedure
should be from the perspective of the KQCs of products. The procedure that plays a
decisive role in the KQCs of products are determined to be critical procedure [6–8]. There
are many QCs (Quality Characteristics) involved in the product formation process, and the
importance of these QCs is different. For targeted management, QCs need to be grouped
into a certain level. Furthermore, the QCs with the most significant extent are called
key QCs [9,10]. Wang et al. proposed an elastic network method to identify KQC in
multi-procedure manufacturing, which solved the multiple collinear problems of QCs and
was also influential in solving group effects [11]. Jin et al. developed an interval-valued
spherical fuzzy ORESTE method based on a 3D mass model to sort KQCs [12]. Ma et al.
believed that the identification of KQC helped to reduce the scope of quality detection
and improving detection efficiency. They proposed the Mahalanobis–Taguchi System
(MTS) based on the RELIEFF algorithm, which combined the least-squares regression
with the state-space model to identify KQCs [13]. Wang et al. proposed an improved
IGSA algorithm based on reverse learning and immune algorithm, which combined the
advantages of filtering efficiency and high-precision packaging to solve the problem of
high-quality feature output dimension [14]. The critical procedure determined by this
method are subjective and one-sided, ignoring the impact of the manufacturing process on
product quality.

On the other hand, some scholars also believe that identifying critical procedure should
establish an analysis model of influencing factors between processes, which can calculate
the criticality. For this analysis method, some scholars start from different perspectives,
such as product design, manufacturing, and quality inspection process [15–17]. Some other
scholars have made subsequent studies on this issue. Zheng et al. used the improved
quality loss function to focus on identifying the process in the hub assembly procedure,
considering cost factors and relative quality loss, laying a foundation for subsequent quality
control [18]. Xu et al. proposed the concept of the process node of the ship sub-shop by
using the graph theory method and constructed the calculation model of the criticality
of the procedure node. One can identify critical procedure by taking correlation degree,
quality level, and influence degree as influencing factors among procedure [19]. Latchoumy
P et al. calculated the process faults in the grid through the reliability execution model
to determine the critical procedure [20]. Yuan et al. used the improved random matrix to
establish the association between the manufacturing process and product features. Then,
based on the adjusted feature data, the process results were expressed by fuzzy triangular
numbers. Finally, one can identify critical procedure based on D-S evidence fusion rules [21].
Although this method considers the factors affecting the procedure, it lacks the analysis of
product quality.

Currently, the research on identifying critical procedure in the manufacturing pro-
cess mainly focuses on these two aspects. However, in the face of changing customer
requirements [22], both methods have limitations. As it is subjective and one-sided to
identify critical procedure in product manufacturing from only one perspective, product
and procedure quality are not considered comprehensively. Therefore, this study proposes
a method combining the genetic BP neural network algorithm with grey correlation analysis
and comprehensively analyzes the above two angles. Comprehensive analysis of product
QCs and product manufacturing process overcomes the problem of singularity and solves
the shortcomings in the above problems. At the same time, when obtaining the KQCs of
the product, customer requirements are considered to make the results more realistic. In
addition, identifying critical procedure is conducive to controlling product quality. The
research on quality control mainly focuses on creating quality control charts [23]. Quality
data often come from complex processes or uncertain environments, and it is crucial to
choose appropriate statistical methods. According to the studies [24–28], neutrosophic
statistics can be applied in the industry if fuzziness, uncertainty, and indeterminacy in
product quality attribute or control chart parameter or proportion of non-conforming items.
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Therefore, it is feasible to use neutrosophic statistics to expand this study, which will be the
content of our subsequent research.

The article explains the specific operation process through an enterprise case. Ac-
cording to the final results, the method in the article is feasible, and the results have been
affirmed by enterprise managers. Therefore, under the background of product diversifi-
cation, this study can not only grasp information regarding customer requirements but
can also produce products that meet customer requirements based on this information. In
addition, identifying critical procedure can better help the manufacturing industry reduce
the economic losses caused by the out-of-control process. To reflect the idea of the article,
the flow structure of the article is especially drawn, as shown in Figure 1.
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2. Obtain KQCs with Genetic BP Neural Network

The research object of this section is to obtain the KQCs of products based on customer
requirements. Market-owned services and products must meet customers’ requirements,
which is often mentioned in Six Sigma management. The customer is unprofessional.
Only by mapping the requirements reflected by customers to the QCs of the product
manufacturing process can we obtain the KQCs of the product more reasonably.

2.1. Mapping Process of Product QCs

Using genetic BP neural network algorithm and taking customer requirements as
input to obtain the KQCs of products, it is necessary to know the mapping law of QCs in
the whole product life cycle, which includes demand analysis, development, and design,
production, use, maintenance, feedback, and recovery of products [29].

Product development requires designers to obtain product demand information from
customers and their industries and then form customer demand indicators. Through
product design, the QCs of customer demand are decomposed, transformed, and reorga-
nized into engineering specifications and requirements for different design stages, forming
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the QCs of a design process. The evolution of the QCs of design process to QCs of the
manufacturing process is that technicians organize raw material processing, component
assembly, and other production tasks according to design documents and information,
and finally form the QCs of the manufacturing process. After using the product, cus-
tomers will provide feedback regarding the experience and opinions to managers, forming
customer needs.

As can be seen from Figure 2, product QCs begin with customer demand and end with
customer feedback. To obtain the KQCs of the product manufacturing process, you must
go through the product design stage: this is a complex many-to-multiple mapping process,
that is, between multiple customer demand indicators and multiple quality characteristics,
and the problem solving is tedious. To simplify the problems, this section proposes to
directly capturing KQCs in the manufacturing process by customer requirements [30].
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2.2. The Genetic BP Neural Network Theory

In obtaining key quality characteristics in the manufacturing process of products, the
process is a complex nonlinear process between multi-input customer requirements and
multi-output quality characteristics. For this kind of complex nonlinear mapping problem,
it is necessary to use a model that can solve this kind of problem, such as the Kriging
model, radial basis function, the BP neural network, etc. However, the Kriging model
handles a complicated and large amount of calculation, the radial basis function has high
requirements for the selection of central point data, and the parameters are not easy to
determine, so it is inconvenient to implement [31–33]. Studies have shown that the error
Back-Propagation (BP) algorithm of a 3-layer network structure can approximate any func-
tion with arbitrary accuracy to solve complex nonlinear mapping problems [34]. However,
BP neural network also has defects, such as poor robustness and sensitivity to different
initial connection weights of the network. A genetic algorithm is a kind of algorithm with
good global characteristics which can optimize the BP neural network [35]. Therefore, the
genetic BP neural network algorithm is more suitable for fitting this relationship.

2.2.1. BP Neural Network

The principle of the BP neural network is to reverse update weights and thresholds
using the gradient descent method. The mean square error between the expected value
and the actual value of the network is minimized. Its 3-layer network structure includes an
input layer, an output layer, and a hidden layer, as shown in Figure 3.
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In Figure 3, input vector is X = (x1, x2, · · · , xn), the hidden layer vector is
H = (h1, h2, · · · , hm), the output layer vector is Y = (y1, y2, · · · , yk), and the desired

output vector is Y′ = (y′1, y′2, · · · , y′k). wij is the connection weight between the in-
put layer and the implied layer. vjk is the connection weight between the implicit layer
and the output layer. αj is the hidden layer threshold, βk is the output layer threshold
(i = 1, 2, · · · n; j = 1, 2, · · · , m).

2.2.2. Design of Genetic BP Neural Network

• Set up BP neural network: Two main parameters (weight and threshold) of the BP
neural network are adjusted by a genetic algorithm. The hidden layer activation func-
tion is set as an S-type transfer function, as shown in the equation f1(x) = 1/1 + e−x,
the output layer activation function is set to a linear transport function, as shown in
the equation f2(x) = ax + b, and take the mean square error as the loss function, as

shown in the equation MSE =
k
∑

i=1
(yi − y′ i)

2/k.

• Initial population: The weights and thresholds of the BP neural network are encoded
by actual number coding. The population size is 80 and the evolutionary generation is
100 generations.

• Fitness function of a genetic algorithm: Genetic algorithm takes the individual with
the most prominent fitness value as the optimal individual. Therefore, the reciprocal
of the mean square error is selected as the fitness function, as shown in Equation (1).

Fitness = 1/MSE = k/
k

∑
i=1

(
yi − y′ i

)2 (1)

• Genetic operators: Use the most common genetic operators, namely roulette selec-
tion, simulated binary crossover, and polynomial mutation operators, using an elite
retention strategy. Set crossover probability to 0.8 and mutation probability to 0.1.

2.3. KQCs in the Product Manufacturing Process

To obtain the KQCs of the product, the production process is divided into two parts,
as shown in Figure 1. Firstly, we should carry out from customer requirements to get the
importance of customer requirements indicators, and then get the mapping relationship
between customer requirements and quality characteristics. This is based on customer
requirements as input and product quality characteristic evaluation value as output. It is
further possible to calculate the KQCs of the product manufacturing process.

2.3.1. Calculate Customer Requirements Indicator’s Importance

The network model for determining the importance of customer requirements indica-
tors based on the genetic BP neural network is shown in Figure 3. Take customer demand
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index as input and the customer total evaluation value as the output. The actual output of
the genetic BP neural network model is as follows.

outputk = f2

[
q

∑
k=1

vjk f1(
m

∑
j=1

wijxi − αj )− βk

]
(2)

MATLAB software trains the network, and the mean square error is calculated. If the
mean square error does not meet the set conditions, back propagation is carried out, and
the weights and thresholds are updated until the needs are met, and the training stops. The
weights and thresholds remain unchanged after the movement. We can use functions to
get wij and vjk , and calculate the relative importance of customer demand indicators, as
shown in Equation (4).

Qi =
m

∑
j=1

∣∣∣wijvjk

∣∣∣(i = 1, 2, · · · , n) (3)

Qi
′ =

m
∑

j=1

∣∣∣wijvjk

∣∣∣
n
∑

i=1

m
∑

j=1

∣∣∣wijvjk

∣∣∣ (4)

2.3.2. Determination of Mapping Degree

There is a correlation between customer requirements and QCs, and the genetic BP
neural network is used to fit the correlation to describe the mapping degree quantitatively.
With customer demand index as the re-input of the network model, but with product QCs
evaluation value as the output, the mapping degree between customer demand index
and QCs is calculated using Equation (5). To objectively obtain the evaluation value of
QCs, we compare and score the opinions of most experts and finally get the evaluation
value of each quality characteristic in the manufacturing process, using analytical hierarchy
process to analyze the opinions of each expert, and the final calculation results are shown
in Appendix A.

Qik =
m

∑
j=1

∣∣∣wijvjk

∣∣∣(i = 1, 2, · · · , n) (5)

Calculate the importance of QCs in the production process and determine the KQCs,
as shown in Equation (6). Where Aj is the calculation formula of the vital value of KQCs,
it is called the relative importance of KQCs. The numerator is the multiplication of the
importance of customer requirements and the above mapping. The denominator plays the
role of normalization.

Aj =

n
∑

i=1
|Qi
′ ×Qik|

m
∑

j=1

n
∑

i=1
|Qi
′ ×Qik|

(i = 1, 2, · · · , n; j = 1, 2, · · · , m) (6)

The KQCs of the manufacturing process are determined according to Pareto Principle,
which provides the basis for determining the critical procedure in the manufacturing pro-
cess.

3. Identify Critical Procedure in the Manufacturing Process

Product quality and performance are closely related to each procedure in the manufac-
turing process. Identify the critical procedure in the manufacturing process. The purpose
is to control the manufacturing process effectively. On the other hand, as far as possible,
reduce the economic and labor cost of quality control.
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3.1. Determine the Correlation Degree Scoring Matrix

The correlation between KQCs and procedure is ambiguous. According to the basic
principle and characteristics of grey correlation analysis, grey correlation analysis is used
to evaluate the correlation. Additionally, three influencing factors between processes are
considered, combined with the representation of the reachable matrix in the directed graph.
Firstly, the reachable matrix of each procedure in the production process is A =

[
aij
]

n×n.
Where n is the number of procedure, the aij represents the reachable relationship between
procedure i and j. If the value of aij is 1, it means reachable between processes; otherwise,
it means unreachable.

The impact degree of each procedure in the manufacturing system can be calculated
as Equation (7).

Ci =

n
∑

j=1
aij

n
(7)

In order to facilitate the understanding of the calculation part of the case, it is hereby
explained. The procedure reachability corresponding to the KQCs is 1, and the reachability
of the other procedure is calculated below. The denominator is the number of KQCs corre-
sponding to the procedure to the beginning and end of the procedure, and the numerator
decreases the order of 1 [36]. According to Equation (8), establish the scoring matrix of
influencing factors between processes.

Correlation Score = Impact Degree× Risk Coefficient×Work Steps× Procedures Quality (8)

In the above formula, the risk coefficient refers to the risk level information contained
in the process related to the manufacturing system. Additionally, it is a measure of process
risk in PFMEA. According to the literature [37], its quantitative description is as follows.

IS(vi) = − log2

[(
10− S(vi)

)
/10

]
IO(vi) = − log2

[(
10−O(vi)

)
/10

]
ID(vi) = − log2

[(
10− D(vi)

)
/10

]
I(vi) = IS(vi) + IO(vi) + ID(vi)

where S, O, and D respectively represent the severity, probability level, and difficulty of
detection of each procedure in PFMEA; I(vi) is the information content of each procedure.
If the procedure contains more information, the higher the risk level. The risk coefficient
index is normalized, and the normalized is shown in Formula (9). In this paper, the
experimental data of this part are shown in Appendix A.

I(vi)
′ =

I(vi)

10
(9)

3.2. Grey Correlation Degree Calculation

The principle of grey correlation analysis is to judge whether the sequence curves are
closely related according to the similarity of their geometric shapes. The closer the turns
are, the greater the correlation between the corresponding sequences. Grey correlation
analysis was used to construct the scoring matrix. Complete the following steps.

3.2.1. Determine the Analysis Sequence

The analysis sequence is divided into reference sequence and comparison sequence.
Reference sequence can reflect the behavior characteristics of the system and is marked
as Y = (Y0(1), Y0(2), · · · , Y0(k))

T ; the comparison sequence is a series of factors that
affect the behavior of a system, similar to independent variables, and is marked as
Xi = {Xi(1), Xi(2), · · · , Xi(k)|k = 1, 2, · · · , n}, i = 1, 2, · · · , m.
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3.2.2. Dimensionless Processing of Data

To simplify the calculation, the most commonly used mean change method is adopted
in this section.

Xi(k)
′ =

Xi(k)
Xi(k)

(10)

where Xi(k)
′ is the dimensionless value after data processing, Xi(k) is the mean value,

and Xi(k) is the initial value. Select the maximum value of each row of the associa-
tion scoring matrix as the optimal value to determine the reference sequence, marked as
Y0(k) = Max(Xi(k)′).

3.2.3. Calculated Correlation Degree

The results of grey correlation analysis reflect the degree of correlation among different
systems under some factors. The absolute difference between each comparison sequence
and the reference sequence is calculated. Thus, the minimum and maximum differences at
both ends are determined as follows.

min
i

min
k

∣∣∣Y0(k)− Xi(k)
′
∣∣∣

max
i

max
k

∣∣∣Y0(k)− Xi(k)
′
∣∣∣

where k values for 1, 2, · · · , n, i values for 1, 2, · · · , m. Where m represents the number
of comparison sequence objects. According to the Formula (11), the correlation degree
between the KQCs and the influencing factors in the procedure is calculated, and the
critical procedure identification calculation matrix is determined. Where ρ is the resolution
coefficient, evaluated in (0, 1) and normally is 0.5.

Rij =
min

i
min

k

∣∣∣Y0(k)− Xi(k)
′
∣∣∣+ ρ·max

i
max

k

∣∣∣Y0(k)− Xi(k)
′
∣∣∣∣∣∣Y0(k)− Xi(k)

′
∣∣∣+ ρ·max

i
max

k

∣∣∣Y0(k)− Xi(k)
′
∣∣∣ (11)

3.3. Calculated Procedures Criticality

The criticality of procedure refers to the importance of procedure in the manufacturing
system. After calculating the correlation degree between the procedure and the KQCs,
the criticality calculation matrix of the procedures is constructed based on the importance
degree of the KQCs, and the calculation results of the criticality are divided according to
the Pareto Principle. The criticality calculation matrix is shown in Table 1.

Table 1. Calculation matrix of procedures criticality.

KQCs KQC 1 KQC 2 · · · KQC i Procedures
Criticality

Importance Degree w1 w2 · · · wi

Procedure 1 R11 R12 · · · R1i ∑wiR1i

Procedure 2 R21 R22 · · · R2i ∑wiR2i
...

...
... · · · ...

...
...

... · · · ...
Procedure k Rk1 Rk2 · · · Rki ∑wiRki

4. Case Study

This section will take the manufacturing process of the evaporator as an example
to apply and explain the proposed method. In addition, at the end of this section, the
differences between this study and existing studies are discussed. Through analysis, the
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results in this paper have been fully affirmed by enterprise managers and proves its
effectiveness and applicability. In addition, the customer mainly expounds the customer’s
demand for evaporator QCs from the three characteristics of practicability, structural
elements, and economy, and each feature contains specific demand indicators. At the
same time, the manufacturing process of some type of evaporator is given. Figure 4 is a
two-dimensional sketch of the evaporator.
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4.1. Obtaining KQCs and Their Importance

Through a survey of customer requirements and enterprise profiles, 40 data samples
were obtained. The 40 data samples contain ten customer requirements indicators and
12 QCs, numbered 1–10 and QC1–QC12, respectively, as shown in Appendix A.

This study uses three layers of genetic BP neural network structure. The number of
input layer neurons is 10, and the number of output layer neurons is 1. However, the
number of neurons in the hidden layer cannot be given directly, so we need to determine
the value range according to the empirical formula [38,39], which is m <

√
(n + q) + a.

Where, n is the number of neurons in input layer, q is the number of neurons in the output
layer, and a is the constant with a value range of (1, 10). Therefore, the number of neurons in
the hidden layer ranges from 4 < m < 13. Through the simulation experiment, we determine
that when m = 7, the genetic BP neural network can achieve the best fitting accuracy. The
momentum factor is 0.8, and the learning rate is 0.1. The initial weights and thresholds were
optimized by a genetic algorithm with a total size of 80 and 100 iterations. Training samples
are used to train the genetic BP neural network. The comparison of training accuracy is
shown in Figure 5, and the sample size is 40 groups.
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When the model training is finished, we can get the connection weights of each
layer and put the results into Formula (3), from which we can calculate the importance
of customer demand indicators. At the same time, it is necessary to build a table that can
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reflect the mapping relationship between customer demand indicators and product QCs.
As shown in Table 2, the above calculation results of customer demand importance are
on the left side of the table. In addition, we also need to know the relationship between
customer demand and product QCs. Therefore, it is necessary to change the output in the
model and take the evaluation value of product QCs as the output to reconstruct a mapping
network that reflect the relationship between customer demand and QCs. However, the
connection weights in the network represent the degree of association between customer
demand and QCs, which is called the mapping degree. In this way, the degree of mapping
between the two relationships is calculated using Formula (5), and the results are filled
into Table 2. Finally, based on the above calculation results, the Formula (6) is used to
calculate the importance value of product QCs. The last row of the table is the result of the
importance calculation of each QC, denoted by Aj in Formula (6). According to the Pareto
Principle, we chose the important few as the KQCs. The three KQCs are identified as QC3,
QC5, and QC8.

Table 2. Table of mapping between VOC and QCs.

Qi
’ QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9 QC10 QC11 QC12

1 0.068 0.076 0.035 0.162 0.045 0.404 0.154 0.144 0.256 0.139 0.143 0.111 0.127
2 0.101 0.025 0.178 0.361 0.106 0.174 0.145 0.280 0.594 0.188 0.053 0.130 0.298
3 0.091 0.041 0.060 0.163 0.086 0.425 0.164 0.106 0.220 0.105 0.044 0.131 0.077
4 0.128 0.131 0.053 0.045 0.015 0.006 0.081 0.013 0.057 0.035 0.124 0.029 0.031
5 0.081 0.169 0.042 0.007 0.289 0.477 0.022 0.229 0.150 0.147 0.096 0.116 0.241
6 0.086 0.064 0.017 0.096 0.178 0.283 0.128 0.026 0.041 0.136 0.061 0.043 0.045
7 0.106 0.017 0.000 0.148 0.032 0.134 0.086 0.097 0.076 0.098 0.030 0.017 0.183
8 0.124 0.064 0.057 0.243 0.159 0.284 0.066 0.084 0.201 0.042 0.062 0.218 0.159
9 0.128 0.051 0.177 0.027 0.108 0.173 0.048 0.091 0.211 0.115 0.165 0.098 0.000
10 0.087 0.022 0.049 0.162 0.155 0.236 0.030 0.189 0.245 0.098 0.080 0.000 0.258
Aj 0.045 0.049 0.096 0.077 0.165 0.061 0.082 0.138 0.072 0.060 0.062 0.092

4.2. Grey Relational Analysis Identifies Key Procedure

After investigation, it is found that the primary defects of the evaporator include
inverted sheet, copper tube, welding, and refrigerant defects. Enterprises mainly rely on
subjective experience to control the production process without systematic and scientific
identification of critical procedure, resulting in frequent quality problems. Table 3 shows
the process flow of the evaporator manufacturing process. In combination with the grey
correlation analysis method, this section will analyze the critical degree of each procedure.
This will provide a new way for manufacturing enterprises, which can effectively control
the production process, especially in the face of a multi-procedure manufacturing process.

Table 3. Procedure requirements and data related to the product manufacturing process.

Serial
Number Name Cause of Quality Procedure

Quality
Work Step
Quantity Risk Coefficient

1 Aluminum foil fin online Large-scale rewinding 21 3 0.364
2 Fixed aluminum foil fin Copper tube defects 33 2 0.306
3 Install left bracket Copper tube defects 26 3 0.274
4 Fill nitrogen No nitrogen 27 3 0.347
5 Copper tube plastic Copper tube twisted 24 2 0.157
6 Insert copper tube Not insert 18 2 0.225
7 Welding Welding leakage or blocking 18 4 0.306
8 Welding inspection Unchecked 17 2 0.177
9 Check for fluency Unchecked 20 3 0.321

10 Secure hoods Install the dislocation 23 2 0.332
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Table 3. Cont.

Serial
Number Name Cause of Quality Procedure

Quality
Work Step
Quantity Risk Coefficient

11 Tie the line Omit 16 1 0.306
12 Charge high-pressure test Unchecked 19 4 0.306
13 Test it with helium Unchecked 26 3 0.274
14 Refrigerant injection Miss filling refrigerant 27 4 0.257
15 Install PTC Large installation error 12 3 0.199
16 A hot-melt adhesive Plastic wire drawing 30 4 0.364
17 Tie the insulation pipe Omit 26 1 0.438
18 Install insulation pipe Not up to requirements 26 2 0.284
19 Products offline Damaged 27 2 0.232

Based on the calculation process of the grey correlation analysis method, firstly, it is nec-
essary to analyze the procedure corresponding to the KQCs. Combined with Formula (7),
write the accessibility matrix of each procedure, as shown in Figure 6.
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The manufacturing process data and the reachability of each procedure have been
obtained. Following the order in Section 3.2 above, the grey correlation analysis matrix
of procedure and KQCs is determined by Equation (8). The initial scoring matrix can be
obtained by dimensionless processing of the data matrix with Equation (10). Finally, the
degree of grey correlation is calculated through Formula (11), and the critical procedure
is determined accordingly. The final results of the example are shown in Table 4 below.
The results show that we have identified four critical procedures, which are step 7, step 9,
step 14, and step 16. For enterprises, identifying critical procedure can better control the
multifaceted losses caused by product quality problems.

Table 4. Calculation result table of procedure criticality.

KQC1 KQC2 KQC3 Procedure
CriticalityWeighted Value 0.0960 0.1650 0.1380

1 0.3333 0.4228 0.4512 0.1640
2 0.3437 0.4580 0.4819 0.1751
3 0.3589 0.5163 0.5310 0.1929
4 0.3945 0.6971 0.6700 0.2454
5 0.3421 0.4522 0.4769 0.1733
6 0.3488 0.4766 0.4978 0.1808
7 0.4315 1.0000 0.8661 0.3259
8 0.3486 0.4547 0.4969 0.1771
9 0.4508 0.7055 1.0000 0.2977
10 0.4300 0.5719 0.7188 0.2348
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Table 4. Cont.

KQC1 KQC2 KQC3 Procedure
CriticalityWeighted Value 0.0960 0.1650 0.1380

11 0.3522 0.4243 0.4739 0.1692
12 0.5993 0.6403 0.8541 0.2810
13 0.5970 0.5663 0.7083 0.2485
14 0.9097 0.5984 0.7693 0.2922
15 0.3725 0.4162 0.4620 0.1682
16 1.0000 0.6153 0.8028 0.3083
17 0.3697 0.4146 0.4596 0.1673
18 0.3622 0.4102 0.4533 0.1650
19 0.3370 0.3948 0.4313 0.1570

4.3. Comparison Study

In this section, we will compare the methods in reference [40]. This method belongs to
the analysis of problems from the perspective of the manufacturing process. It takes graph
theory as the model and determines the critical procedure by constructing the influence
degree calculation formula and the unqualified degree calculation formula. With product
processing technology as the background, the directional graph model of procedure nodes
is drawn, as shown in Figure 7. The above data was used to apply the literature method,
and the results were calculated and compared with the results in this paper, as shown in
Figure 8.
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It can be seen from Figure 8 that the results show a decreasing trend using the methods
in the references. This indicates that the starting procedure in the manufacturing process
should be identified as the critical procedure. It is not consistent with the actual production
situation. However, through comparative research, it is found that the method of this
paper takes into account the impact of KQCs on procedure quality and also considers the
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influencing factors between processes which make the identification of critical procedure
more objective and reasonable.

5. Conclusions

In the face of the increasingly fierce market competition, the article takes customer
demand as the starting point and proposes a method for quality control of the product
manufacturing process. Firstly, the genetic BP neural network is used to fit the correlation
degree between customer demand and QCs. Then, obtain the KQCs of the product manu-
facturing process, and show the specific calculation process and the important calculation
results of the KQCs. The results show that the BP neural network optimized by a genetic
algorithm can achieve a better fitting effect and improve the accuracy of this calculation.
At the same time, the effects of three factors on procedures are considered. The correla-
tion degree matrix is constructed by the grey correlation analysis method to calculate the
critical degree of procedure, avoiding the problem of single evaluation factors. Taking the
evaporator manufacturing process of an enterprise as a case, the realization process of this
method was introduced, and the results indicate the feasibility of the proposed method.
In the future, the critical procedure should be paid attention to in the process of product
manufacturing to improve product quality effectively.

The purpose of this study is to find out the critical procedure that can affect product
quality and function. It can be said that this study is paving the way for the implemen-
tation of product quality control methods. However, this study also needs to expand the
content of product quality control. At present, the more effective way of quality control
is to design a control chart. After reading a large number of literature, it is found that
neutrosophic statistics can handle sample data well when it is incomplete, inaccurate, and
fuzzy. Therefore, in future research on how to design a quality control chart, we will choose
neutrosophic statistics as the research method.
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Appendix A

Table A1. Product QCs evaluation value.

Evaluation
Value QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9 QC10 QC11 QC12

Sample: 1 0.081 0.047 0.033 0.031 0.180 0.048 0.106 0.157 0.210 0.025 0.062 0.023
2 0.091 0.033 0.023 0.031 0.151 0.047 0.131 0.214 0.125 0.030 0.060 0.066
3 0.087 0.039 0.023 0.037 0.160 0.049 0.104 0.217 0.158 0.036 0.065 0.026
4 0.091 0.040 0.026 0.029 0.150 0.046 0.116 0.163 0.214 0.024 0.064 0.038
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Table A1. Cont.

Evaluation
Value QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9 QC10 QC11 QC12

5 0.039 0.020 0.027 0.060 0.153 0.064 0.198 0.104 0.188 0.040 0.086 0.022
6 0.038 0.022 0.032 0.053 0.155 0.064 0.200 0.101 0.183 0.042 0.086 0.024
7 0.037 0.021 0.032 0.057 0.137 0.068 0.209 0.112 0.179 0.041 0.085 0.023
8 0.030 0.042 0.022 0.054 0.089 0.101 0.165 0.198 0.171 0.046 0.065 0.017
9 0.030 0.042 0.025 0.054 0.090 0.103 0.148 0.202 0.176 0.048 0.068 0.016

10 0.030 0.042 0.024 0.051 0.090 0.112 0.140 0.219 0.164 0.047 0.065 0.017
11 0.031 0.038 0.021 0.051 0.096 0.105 0.140 0.215 0.166 0.046 0.076 0.017
12 0.038 0.034 0.022 0.057 0.096 0.115 0.131 0.210 0.155 0.052 0.072 0.018
13 0.033 0.043 0.021 0.053 0.101 0.100 0.148 0.201 0.155 0.052 0.074 0.019
14 0.091 0.044 0.022 0.025 0.158 0.053 0.117 0.159 0.209 0.027 0.061 0.034
15 0.077 0.043 0.022 0.028 0.161 0.050 0.125 0.159 0.210 0.027 0.061 0.038
16 0.078 0.043 0.021 0.027 0.159 0.053 0.121 0.155 0.220 0.028 0.060 0.035
17 0.076 0.044 0.018 0.028 0.177 0.056 0.116 0.133 0.198 0.029 0.062 0.064
18 0.078 0.042 0.020 0.022 0.179 0.057 0.122 0.130 0.194 0.029 0.057 0.071
19 0.061 0.041 0.047 0.080 0.112 0.071 0.146 0.120 0.171 0.037 0.095 0.020
20 0.054 0.044 0.048 0.079 0.112 0.069 0.145 0.121 0.178 0.031 0.087 0.034
21 0.084 0.048 0.030 0.025 0.168 0.060 0.106 0.196 0.158 0.025 0.068 0.034
22 0.068 0.041 0.029 0.030 0.170 0.066 0.116 0.178 0.173 0.025 0.077 0.028
23 0.065 0.047 0.031 0.024 0.169 0.063 0.112 0.178 0.183 0.024 0.075 0.029
24 0.061 0.046 0.031 0.024 0.177 0.064 0.111 0.179 0.176 0.025 0.075 0.032
25 0.075 0.044 0.027 0.028 0.170 0.063 0.100 0.183 0.171 0.025 0.077 0.038
26 0.030 0.039 0.022 0.065 0.074 0.091 0.167 0.159 0.200 0.048 0.084 0.023
27 0.038 0.037 0.021 0.066 0.072 0.086 0.166 0.159 0.205 0.042 0.080 0.029
28 0.043 0.026 0.019 0.053 0.076 0.085 0.163 0.169 0.204 0.045 0.084 0.033
29 0.051 0.031 0.019 0.060 0.069 0.096 0.154 0.160 0.209 0.049 0.079 0.025
30 0.043 0.028 0.025 0.056 0.057 0.101 0.149 0.172 0.218 0.055 0.064 0.034
31 0.043 0.021 0.024 0.067 0.181 0.060 0.146 0.115 0.150 0.044 0.124 0.025
32 0.039 0.025 0.019 0.060 0.147 0.062 0.146 0.122 0.163 0.046 0.152 0.021
33 0.038 0.019 0.021 0.059 0.165 0.063 0.133 0.141 0.156 0.045 0.135 0.026
34 0.039 0.023 0.019 0.060 0.155 0.066 0.142 0.149 0.153 0.043 0.117 0.035
35 0.073 0.024 0.020 0.051 0.132 0.070 0.131 0.158 0.156 0.034 0.118 0.033
36 0.066 0.040 0.022 0.024 0.157 0.050 0.118 0.202 0.182 0.031 0.074 0.036
37 0.061 0.039 0.020 0.024 0.149 0.051 0.120 0.211 0.182 0.031 0.079 0.034
38 0.063 0.042 0.020 0.023 0.153 0.063 0.113 0.190 0.184 0.035 0.083 0.031
39 0.060 0.038 0.026 0.026 0.147 0.064 0.110 0.215 0.180 0.029 0.074 0.033
40 0.064 0.036 0.032 0.035 0.148 0.064 0.111 0.198 0.174 0.031 0.075 0.033

Table A2. Values of risk coefficient correlation calculation parameters.

Procedure
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S 6 6 4 4 3 3 5 3 4 5 3 4 4 4 6 4 6 5 5
O 5 5 5 7 4 4 4 2 4 5 3 5 5 3 5 5 6 3 2
D 6 4 5 5 2 5 6 4 7 6 4 6 5 4 6 3 7 6 5

Table A3. Customer demand index survey data.

VOC Indicators Survey VOC1 VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC8 VOC9 VOC10

Sample: 1 0.85 1.00 0.90 0.85 0.90 0.75 0.60 0.70 0.85 0.65
2 1.00 1.00 0.85 0.80 0.75 0.70 0.65 0.75 0.75 0.75
3 0.90 0.95 0.95 0.90 0.95 0.65 0.75 0.80 0.70 0.65
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Table A3. Cont.

VOC Indicators Survey VOC1 VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC8 VOC9 VOC10

4 0.85 0.95 0.90 0.85 0.85 0.65 0.70 0.85 0.85 0.60
5 0.80 0.95 0.90 0.85 0.80 0.70 0.60 0.85 0.80 0.85
6 0.85 0.90 0.90 0.80 0.85 0.70 0.55 0.75 0.75 0.80
7 0.80 0.85 0.85 0.80 0.80 0.75 0.75 0.85 0.85 0.70
8 0.75 1.00 1.00 0.75 0.95 0.65 0.60 0.90 0.70 0.75
9 0.90 1.00 0.95 0.80 0.90 0.65 0.65 0.85 0.70 0.65

10 0.85 1.00 0.85 0.85 1.00 0.70 0.65 0.90 0.75 0.60
11 0.85 1.00 0.85 0.90 0.95 0.70 0.70 0.75 0.75 0.55
12 1.00 0.90 0.90 1.00 0.85 0.75 0.65 0.70 0.80 0.60
13 0.80 0.95 0.90 0.85 0.90 0.60 0.70 1.00 0.85 0.80
14 0.75 0.95 0.95 0.95 0.75 0.75 0.70 0.85 0.80 0.75
15 0.85 0.95 1.00 0.90 0.85 0.80 0.65 0.75 0.75 0.60
16 0.90 0.90 0.85 0.85 0.85 0.85 0.75 0.80 1.00 0.70
17 0.95 1.00 0.85 0.85 0.80 0.75 0.70 0.85 0.85 0.65
18 0.90 0.95 0.80 0.80 0.80 0.70 0.70 0.90 0.75 0.75
19 0.80 0.90 0.95 0.95 0.85 0.70 0.55 0.85 0.80 0.65
20 0.80 0.95 0.95 0.90 0.90 0.65 0.65 0.80 0.80 0.60
21 0.85 0.95 0.90 0.90 0.95 0.65 0.70 0.85 0.75 0.65
22 0.75 1.00 0.85 0.80 1.00 0.60 0.65 0.95 0.75 0.70
23 1.00 1.00 0.90 0.80 0.85 0.75 0.60 0.90 0.85 0.65
24 0.90 0.85 0.95 1.00 0.80 0.70 0.55 0.85 0.85 0.60
25 0.85 0.95 0.85 0.75 0.85 0.75 0.60 0.80 0.80 0.65
26 0.90 0.95 1.00 0.85 0.85 0.65 0.55 0.75 0.85 0.75
27 0.90 0.90 0.95 0.80 0.90 0.60 0.60 0.70 0.75 0.70
28 0.90 0.90 1.00 0.95 0.95 0.65 0.75 0.85 0.70 0.65
29 0.85 0.95 0.90 1.00 0.90 0.60 0.70 0.85 1.00 0.65
30 0.75 0.85 0.85 0.80 0.90 0.65 0.65 0.80 0.85 0.60
31 0.85 0.90 0.95 0.85 0.85 0.70 0.65 0.90 0.80 0.75
32 0.80 0.90 1.00 0.75 0.85 0.75 0.60 0.75 0.75 0.70
33 0.85 0.95 0.85 0.70 0.80 0.70 0.70 0.95 0.80 0.75
34 0.85 0.95 0.90 0.90 0.90 0.65 0.70 1.00 0.85 0.65
35 0.90 1.00 0.90 0.85 1.00 0.70 0.75 0.85 0.90 0.65
36 1.00 0.95 0.85 0.80 0.85 0.65 0.60 1.00 0.85 0.60
37 0.95 0.90 0.85 0.85 0.80 0.75 0.65 0.80 0.75 0.55
38 0.80 0.95 0.90 1.00 0.85 0.80 0.55 0.80 0.85 0.70
39 0.85 1.00 1.00 0.95 0.90 0.75 0.70 0.90 0.80 0.65
40 0.85 0.95 0.95 0.80 0.85 0.75 0.65 0.85 0.75 0.75

Output: VOC
comprehensive evaluation 0.800 0.815 0.835 0.820 0.810 0.845 0.825 0.805 0.800 0.800
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