Unsteady Natural Convection in an Initially Stratified Air-Filled Trapezoidal Enclosure Heated from Below
Abstract
:1. Introduction
2. Problem Formulations
3. Timestep and Grid Dependency Tests
4. Validation
5. Results and Discussions
5.1. Development of the Transient Flow
5.1.1. Flow at the Early Stage
5.1.2. Transitional Stage
5.1.3. Flow at the Steady or Unsteady Stage
5.2. Impact of Rayleigh Numbers on the Progress of the Flow
6. Heat Transfer
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | aspect ratio |
g | gravitational force (m/s2) |
L, H | half-length and height of the enclosure (m) |
ln | dimensionless length of the horizontal wall |
n | dimensionless coordinate normal to the horizontal wall |
s | dimensionless coordinate along the horizontal wall |
t | time (s) |
P | Pressure (N/m2) |
Nu | Nusselt number |
Pr | Prandtl number |
Ra | Rayleigh number, gβ(Th − Tc)H3/νκ |
T | dimensional temperature (K) |
T∞ | dimensional ambient temperature (K) |
Th | dimensional temperature of the heated bottom wall (K) |
Tc | dimensional temperature of the cooled top wall (K) |
ΔT | temperature difference, (Th − Tc) |
u, v | dimensional velocity components (m/s) |
U, V | dimensionless velocity components |
x, y | dimensional horizontal and vertical coordinates |
X, Y | dimensionless horizontal and vertical coordinates |
β | thermal expansion coefficient (1/K) |
κ | thermal diffusivity (m2/s) |
ν | kinematic viscosity (m2/s) |
ρ | density (kg/m3) |
τ | dimensionless time |
Δτ | dimensionless timestep |
θ | dimensionless temperature |
References
- Patterson, J.; Imberger, J. Unsteady natural convection in a rectangular cavity. J. Fluid Mech. 1980, 100, 65–86. [Google Scholar] [CrossRef]
- Kuhn, D.; Oosthuizen, P.H. Unsteady natural convection in a partially heated rectangular cavity. J. Heat Transfer. 1987, 109, 798–801. [Google Scholar] [CrossRef]
- Ma, J.; Xu, F. Unsteady natural convection and heat transfer in a differentially heated cavity with a fin for high Rayleigh numbers. Appl. Therm. Eng. 2016, 99, 625–634. [Google Scholar] [CrossRef]
- Wen, X.; Wang, L.-P.; Guo, Z. Development of unsteady natural convection in a square cavity under large temperature difference. Phys. Fluids 2021, 33, 084108. [Google Scholar] [CrossRef]
- Saha, S.C. Unsteady natural convection in a triangular enclosure under isothermal heating. Energy Build. 2011, 43, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Armfield, S.W.; Patterson, J.C. Unsteady natural convection in a water-filled isosceles triangular enclosure heated from below. Int. J. Heat Mass Transf. 2008, 51, 2637–2650. [Google Scholar] [CrossRef]
- Saha, S.C.; Patterson, J.C.; Lei, C. Natural convection and heat transfer in attics subject to periodic thermal forcing. Int. J. Therm. Sci. 2010, 49, 1899–1910. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.C.; Patterson, J.C.; Lei, C. Natural convection in attics subject to instantaneous and ramp cooling boundary conditions. Energy Build. 2010, 42, 1192–1204. [Google Scholar] [CrossRef] [Green Version]
- Bhowmick, S.; Saha, S.C.; Qiao, M.; Xu, F. Transition to a chaotic flow in a V-shaped triangular cavity heated from below. Int. J. Heat Mass Transf. 2019, 128, 76–86. [Google Scholar] [CrossRef]
- Bhowmick, S.; Xu, F.; Molla, M.M.; Saha, S.C. Chaotic phenomena of natural convection for water in a V-shaped enclosure. Int. J. Therm. Sci. 2022, 176, 107526. [Google Scholar] [CrossRef]
- Wang, X.; Bhowmick, S.; Tian, Z.F.; Saha, S.C.; Xu, F. Experimental study of natural convection in a V-shape-section cavity. Phys. Fluids 2021, 33, 014104. [Google Scholar] [CrossRef]
- Iyican, L.; Bayazitoglu, Y.; Witte, L.C. An analytical study of natural convective heat transfer within a trapezoidal enclosure. J. Heat Transf. 1980, 102, 640–647. [Google Scholar] [CrossRef]
- Iyican, L.; Witte, L.C.; Bayazitoglu, Y. An Experimental Study of Natural Convection in Trapezoidal Enclosures. J. Heat Transf. 1980, 102, 648–653. [Google Scholar] [CrossRef]
- Lee, T. Computational and experimental studies of convective fluid motion and heat transfer in inclined non-rectangular enclosures. Int. J. Heat Fluid Flow 1984, 5, 29–36. [Google Scholar] [CrossRef]
- Lam, S.W.; Gani, R.; Symons, J.G. Experimental and Numerical Studies of Natural Convection in Trapezoidal Cavities. J. Heat Transf. 1989, 111, 372–377. [Google Scholar] [CrossRef]
- Lee, T.S. Mixed laminar heat and fluid flow in flow-through opened trapezoidal cooling chambers of low aspect ratios. Int. J. Numer. Methods Heat Fluid Flow 1991, 1, 31–49. [Google Scholar] [CrossRef]
- Lee, T.S. Numerical experiments with fluid convection in tilted nonrectangular enclosures. Numer. Heat Transfer Part A Appl. 1991, 19, 487–499. [Google Scholar] [CrossRef]
- Perić, M. Natural Convection in Trapezoidal Cavities. Numer. Heat Transf. Part A Appl. 1993, 24, 213–219. [Google Scholar] [CrossRef]
- Sadat, H.; Salagnac, P. Further results for laminar natural convection in a two-dimensional trapezoidal enclosure. Numer. Heat Transf. Part A Appl. 1995, 27, 451–459. [Google Scholar] [CrossRef]
- Kuyper, R.A.; Hoogendoorn, C.J. Laminar natural convection flow in trapezoidal enclosures. Numer. Heat Transfer Part A Appl. 1995, 28, 55–67. [Google Scholar] [CrossRef]
- Boussaid, M.; Djerrada, A.; Bouhadef, M. Thermosolutal transfer within trapezoidal cavity. Numer. Heat Transfer, Part A Appl. 2003, 43, 431–448. [Google Scholar] [CrossRef]
- Moukalled, F.; Darwish, M. Natural Convection in a Trapezoidal Enclosure Heated from the Side with a Baffle Mounted on Its Upper Inclined Surface. Heat Transf. Eng. 2004, 25, 80–93. [Google Scholar] [CrossRef]
- Natarajan, E.; Roy, S.; Basak, T. Effect of Various Thermal Boundary Conditions on Natural Convection in a Trapezoidal Cavity with Linearly Heated Side Wall(s). Numer. Heat Transfer, Part B Fundam. 2007, 52, 551–568. [Google Scholar] [CrossRef]
- Hammami, M.; Mseddi, M.; Baccar, M. Numerical study of coupled heat and mass transfer in a trapezoidal cavity. Eng. Appl. Comput. Fluid Mech. 2007, 1, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, E.; Basak, T.; Roy, S.J. Natural convection flows in a trapezoidal enclosure with uniform and non-uniform heating of bottom wall. Int. J. Heat Mass Transf. 2008, 51, 747–756. [Google Scholar] [CrossRef]
- Basak, T.; Roy, S.; Pop, I. Heat flow analysis for natural convection within trapezoidal enclosures based on heat line concept. Int. J. Heat Mass Transf. 2009, 52, 2471–2483. [Google Scholar] [CrossRef]
- Tracy, N.I.; Crunkleton, D.W. Oscillatory natural convection in trapezoidal enclosures. Int. J. Heat Mass Transf. 2012, 55, 4498–4510. [Google Scholar] [CrossRef]
- Mustafa, A.W.; Ghani, I.A. Natural convection in trapezoidal enclosure heated partially from below. Al-Khwarizmi Eng. J. 2012, 8, 76–85. [Google Scholar]
- da Silva, A.; Fontana, E.; Mariani, V.C.; Marcondes, F. Numerical investigation of several physical and geometric parameters in the natural convection into trapezoidal cavities. Int. J. Heat Mass Transf. 2012, 55, 6808–6818. [Google Scholar] [CrossRef]
- Gholizadeh, M.M.; Nikbakhti, R.; Khodakhah, J.; Ghasemi, A. Numerical study of double diffusive buoyancy forces induced natural convection in a trapezoidal enclosure partially heated from the right sidewall. Alex. Eng. J. 2016, 55, 779–795. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, K.; Sahebjamei, M.; Ahmadpour, A. Natural convection heat transfer and entropy generation in a porous trapezoidal enclosure saturated with power-law non-Newtonian fluids. Heat Transf. Eng. 2020, 41, 982–1001. [Google Scholar] [CrossRef]
- Gowda, K.G.B.M.; Rajagopal, M.S.; Aswatha; Seethramu, K.N. Numerical Studies on Natural Convection in a Trapezoidal Enclosure with Discrete Heating. Heat Transf. Eng. 2019, 41, 595–606. [Google Scholar] [CrossRef]
- Saha, S.C.; Khan, M. A review of natural convection and heat transfer in attic-shaped space. Energy Build. 2011, 43, 2564–2571. [Google Scholar] [CrossRef] [Green Version]
- Armfield, S.; Street, R. The Fractional-Step Method for the Navier–Stokes Equations on Staggered Grids: The Accuracy of Three Variations. J. Comput. Phys. 1999, 153, 660–665. [Google Scholar] [CrossRef]
- Armfield, S.; Street, R. An analysis and comparison of the time accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids. Int. J. Numer. Methods Fluids 2002, 38, 255–282. [Google Scholar] [CrossRef]
- Armfield, S.; Street, R. A comparison of staggered and non-staggered grid Navier--Stokes solutions for the 8:1 cavity natural convection flow. ANZIAM J. 2004, 46, C918–C934. [Google Scholar] [CrossRef] [Green Version]
- Leonard, B.P.; Mokhtari, S. ULTRA-SHARP Non-oscillatory Convection Schemes for High-Speed Steady Multidimensional Flow, NASA TM 1-2568 (ICOMP-90-12); NASA Lewis Research Centre: Sandusky, OH, USA, 1990. [Google Scholar]
- Drazin, P.G.; Reid, W.H. Hydrodynamic Stability; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- McLaughlin, J.B.; Orszag, S.A. Transition from periodic to chaotic thermal convection. J. Fluid Mech. 1982, 122, 123–142. [Google Scholar] [CrossRef]
- Bhowmick, S.; Xu, F.; Zhang, X.; Saha, S.C. Natural convection and heat transfer in a valley shaped cavity filled with initially stratified water. Int. J. Therm. Sci. 2018, 128, 59–69. [Google Scholar] [CrossRef]
- Cui, H.; Xu, F.; Saha, S.C. A three-dimensional simulation of transient natural convection in a triangular cavity. Int. J. Heat Mass Transf. 2015, 85, 1012–1022. [Google Scholar] [CrossRef]
Grids and Time Steps | Average Value of the Temperature | Percentage of the Variance |
---|---|---|
225 × 75 and Δτ = 0.01 | 0.306495 | 1.42% |
300 × 100 and Δτ = 0.01 | 0.310895 | - |
300 × 100 and Δτ = 0.005 | 0.313003 | 0.68% |
375 × 125 and Δτ = 0.01 | 0.309845 | 0.34% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahaman, M.M.; Bhowmick, S.; Mondal, R.N.; Saha, S.C. Unsteady Natural Convection in an Initially Stratified Air-Filled Trapezoidal Enclosure Heated from Below. Processes 2022, 10, 1383. https://doi.org/10.3390/pr10071383
Rahaman MM, Bhowmick S, Mondal RN, Saha SC. Unsteady Natural Convection in an Initially Stratified Air-Filled Trapezoidal Enclosure Heated from Below. Processes. 2022; 10(7):1383. https://doi.org/10.3390/pr10071383
Chicago/Turabian StyleRahaman, Md. Mahafujur, Sidhartha Bhowmick, Rabindra Nath Mondal, and Suvash C. Saha. 2022. "Unsteady Natural Convection in an Initially Stratified Air-Filled Trapezoidal Enclosure Heated from Below" Processes 10, no. 7: 1383. https://doi.org/10.3390/pr10071383
APA StyleRahaman, M. M., Bhowmick, S., Mondal, R. N., & Saha, S. C. (2022). Unsteady Natural Convection in an Initially Stratified Air-Filled Trapezoidal Enclosure Heated from Below. Processes, 10(7), 1383. https://doi.org/10.3390/pr10071383