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Abstract: The antlion optimization algorithm (ALO) is one of the most effective algorithms to solve
combinatorial optimization problems, but it has some disadvantages, such as a long runtime. As
a result, this problem impedes decision makers. In addition, due to the nature of the problem, the
speed of convergence is a critical factor. As the size of the problem dimension grows, the convergence
speed of the optimizer becomes increasingly significant. Many modified versions of the ALO have
been developed in the past. Nevertheless, there are only a few research articles that discuss better
boundary strategies that can increase the diversity of ants walking around an antlion to accelerate
convergence. A novel exponential-weighted antlion optimization algorithm (EALO) is proposed
in this paper to address slow convergence rates. The algorithm uses exponential functions and a
random number in the interval 0, 1 to increase the diversity of the ant’s random walks. It has been
demonstrated that by optimizing twelve classical objective functions of benchmark functions, the
novel method has a higher convergence rate than the ALO. This is because it has the most powerful
search capability and speed. In addition, the proposed method has also been compared to other
existing methods, and it has obtained superior experimental results relative to compared methods.
Therefore, the proposed EALO method deserves consideration as a possible optimization tool for
solving combinatorial optimization problems, due to its highly competitive results.

Keywords: metaheuristic; antlion optimization; particle swarm optimization

1. Introduction

In the last decade, metaheuristic optimization techniques have been introduced as
primary techniques for finding an optimal solution to financial, industrial, and engineering
optimization problems [1]. The issues include portfolio models, media selections, sales
territory realignments, sales call scheduling, and electric and gas distribution problems.
Modern optimization problems have become increasingly complex; conventional methods
consume too much time solving these problems, especially as the problem dimensions
increase. Increasing the size of the situation makes the convergence speed of the optimizer
more significant and important.

Optimization involves finding the best value in a functional constraint using math-
ematical methods. However, real-world optimization problems are often nonlinear and
higher order, and traditional mathematical procedures cannot provide exact theoretical
solutions. There are two types of optimization problems, continuous optimization prob-
lems and combinatorial optimization problems. Continuous optimization problems have
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continuous variables, while combinatorial problems have discrete variables. Discrete-
space optimization problems are called combinatorial optimization (CO) problems, while
continuous-space optimization problems have different solutions [2]. Three algorithms
exist to solve combinatorial optimization problems, including exact, approximation, and
metaheuristic [3]. Metaheuristic algorithms and approximation algorithms have a shorter
runtime than exact algorithms. They may not, however, be as precise as exact algorithms.
In most cases, worst-case guarantees are provided when designing approximation algo-
rithms; therefore, the algorithms are not scalable [3]. Many CO problems are NP-hard and
do not have polynomial-time solutions. Metaheuristic algorithms have accordingly been
developed to solve these problems.

Metaheuristic algorithms solve combinatorial optimization problems and reasonably
determine approximate optimal solutions. Metaheuristic methods are often derived from
observations of nature. The goal is to find, generate, or select heuristics or partial search
algorithms that can provide a satisfactory solution to an optimization problem, especially
when the information is incomplete, imperfect, or analyzed with limited computing re-
sources [4]. Unlike exact methods, metaheuristics cannot guarantee optimal solutions for
specific problems. In many implementations of metaheuristic algorithms, stochastic values
are added for optimization, so the solution found changes with the set of random variables
generated and is slightly different every time it is run. By searching for many feasible
solutions to CO problems, metaheuristics can often find solutions with less computational
effort. Metaheuristics are, therefore, practical methods for solving CO problems.

Numerous metaheuristic algorithms have been developed, including the genetic algo-
rithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), and gray
wolf optimizer (GWO). Recent trends have shown that antlion optimization algorithms
have helped optimize CO problems. In 2015, Seyedali Mirjalili proposed the ant-lion opti-
mizer (ALO) [5], an optimization algorithm based on the hunting behavior of antlions. After
using the ALO algorithm, the search space is explored better, local optima are avoided, and
the convergence rate is improved. A total of six hundred articles concerning ALO studies
were published in 2020 [6] and have been applied to many fields, such as computer science,
medicine, engineering, mathematics, and energy. For ALO, many variant algorithms have
been proposed. In addition to using basic enhancement methods, some researchers have
combined their ALO algorithms with other machine learning algorithms to achieve multi-
objective solutions. The ALO algorithm can be improved by replacing the roulette-wheel
ant update equation with a process based on the rank of decreasing orders for all random
walks [7] and by using modified decreasing boundaries, instead of step-by-step reduction
to shrink the boundary [8]. A random walk, a reproduction, a sliding method, elitism, and
a selection method were proposed by Kılıç and Yüzgeç [9]. However, there are only a few
research papers addressing better boundary strategies that increase the diversity of ants
walking around an antlion. We propose an exponential-weighted ant lion optimization
(EALO) algorithm to fill this research gap, by increasing the diversity of ants sliding into
the trap and accelerating convergence.

The following section reviews relevant research, including the GA, ACO, GWO, and
PSO algorithms. Section 3 describes the ALO algorithm. Our EALO approach to improving
the convergence rate is presented in Section 4, and Section 5 presents the experimental
results on benchmark objective functions. Finally, Section 6 concludes the paper.

2. Literature Review

Since 1975, over one hundred metaheuristic algorithms [6] have been inspired by
nature to solve complicated optimization problems that cover science, technology, engineer-
ing, etc. Holland proposed the genetic algorithm in 1975 [10], which is the foundation of all
evolutionary algorithms and seeks to optimize exploration in space utilizing self-replication.
Their evolutionary algorithms form a family, encoding a potential solution to a specific
problem. This solution creates codes with a chromosome data structure and applies specific
operators to recombine these structures to preserve critical information within a generation.
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After many generations (iterations) of evolution, chromosomes containing meaningful
information are held, and the codes of unimportant chromosomes are discarded. During
the development of each generation, random values are added randomly to enhance the
ability of evolution to achieve optimized results.

The genetic algorithm consists of a population, chromosomes, and genes. A gene is
the basic coding unit, a chromosome is an entity, a collection of genes, and the population
is a set of chromosomes. In the beginning, the genetic algorithm needs to determine
the population’s size (population size). The fitness function calculates the chromosomes’
quality and screens out chromosomes with better fitness values. The fitness value is a
numerical performance metric used to determine chromosomes’ fitness level, and different
fitness functions correspond to other calculation methods in different application scenarios.
The genetic algorithm sets the fitness value after each iteration. When the fitness value of
the group of chromosomes reaches the target fitness value, the group of chromosomes is the
solution to be found. An implementation of a genetic algorithm that is problem-dependent
has the following two main phases: the problem encoding and the evaluation function [11].
The first phase in implementing a genetic algorithm is to generate an initial population
(typically randomly). The second phase consists of selection, crossover, and mutation.
Selection is applied to create an intermediate population. According to the fitness values
corresponding to different chromosomes, the group is more likely to be selected when the
fitness values are higher to ensure that good gene sequences will be retained. There are
many methods of selection, which have been discussed in past literature. Crossover is the
mating of two genes to produce new chromosomes. The crossover of the two chromosomes
is also controlled by mating probability. There are also many methods of crossover, such
as single-point, multipoint, etc. Mutations make changes to specific genes on selected
chromosomes. The mutation will also change according to the mutation probability. After
the crossover, mutation is necessary, as the mutation prevents the result from falling into a
local optimum.

After the genetic algorithm, the particle swarm algorithm [12] is also a well-known
evolutionary computation algorithm. This algorithm has attracted the attention of academia,
due to its advantages of easy implementation, high precision, and fast convergence and
has shown its superiority in solving practical problems. Dr. Kennedy and Dr. Eberhart
proposed it in 1995, which originated from research on the predation behavior of birds. The
algorithm was originally inspired by the regularity of the flocking activities of flying birds
and then used the wisdom of crowds to establish a simplified model. The particle swarm
optimization algorithm is based on observing the behavior of animal clusters. It uses the
sharing of information by individuals in the group to move the whole group to produce
an evolution process from disorder to order in the problem-solving space to obtain the
optimal solution. It starts from a random solution and finds the optimal solution through
iteration. It evaluates the quality of the solution through fitness, but it is simpler than
the genetic algorithm rules. It does not have the crossover and mutation of the genetic
algorithm operations, which finds the global optimal by following the currently searched
optimal value.

PSO simulates the predation behavior of a flock of birds. A flock of birds randomly
searches for food. There is only one piece of food in this area. All birds do not know
where the food is. However, they know how far the current location is from the food. The
way to find food is to search the area around the bird closest to the food. Particle swarm
optimization is a parallel algorithm. During the whole search process, the birds pass their
respective information to each other so that other birds know their position. In the end, the
whole flock can gather around the food source; that is, the optimal solution is found [12].
On PSO, a bird is called a “particle.” All particles have a fitness value determined by
an objective function, and each particle also has a velocity that determines the direction
and distance they fly. Then, the particles follow the current optimal particle search in the
solution space. In each iteration, the particle updates itself by tracking two extremes. The
first is the optimal solution found by the particle itself, called the individual extreme value
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“pBest”. The other extreme value is the optimal solution found by the entire population,
and this extreme value is the extreme global value “gBest”. The particle decides the next
movement through its own experience and the best experience of its peers and, in this way,
finds the optimal global solution.

Dorigo et al. [13] proposed the ant colony optimization algorithm in 1991 as a novel
nature-inspired metaheuristic for traveling salesman optimization problems. The foraging
behavior of real ants inspires ACO. When searching for food, ants initially randomly
explore the area around their nest. Once the ant finds a food source, it assesses the
quantity and quality of the food and brings some back to the lair. The ants deposit a
pheromone as traces on the ground on the return trip. The amount of pheromone deposited,
depending on the quantity and quality of the food, guides other ants to the food source,
and this pheromone will be emitted at a certain rate. Ants communicate indirectly through
pheromone trajectories, enabling them to find the shortest path between the nest and the
food source [14].

A significant advantage of ant colony algorithms is that they are robust in solving
problems compared to other heuristic algorithms. A slight modification to the basic ant
colony algorithm model can be applied to other problems and leads to improved solutions.
A population-based evolutionary algorithm, or ant colony algorithm, is easily parallelized
and has inherent parallelism. Various heuristic algorithms may be combined with ant
colony algorithms to enhance performance. In addition, a slow convergence speed may
result in falling into a local optimum.

Using swarm intelligence, the gray wolf optimizer [15] simulates the predatory be-
havior of gray wolves. The first algorithm based on this was proposed by the Australian
scholar Mirjalili et al. in 2014. Gray wolves are assigned attack and predation duties to
complete the predation process, thus contributing to global optimization. The gray wolf
has an interesting social hierarchy based on social dominance. There is one male and one
female leader, known as an alpha. They decide what to hunt, where to sleep, when to wake
up, and more. The second tier of gray wolf authority is beta. Betas are subordinate wolves
who assist the alphas in making decisions and enforcing discipline within the pack. A
beta reinforces alpha commands throughout the pack and provides feedback to the alpha.
Omega is the lowest ranking gray wolf. Omega wolves must always submit to all other
dominant wolves to catch prey. In GWO, the process of hunting can be divided into the
following three phases: encirclement, pursuit, and attack. Gray wolves represent feasi-
ble solutions in the solution space of the gray wolf algorithm. The three best-positioned
gray wolves in the group are alphas and betas. These three wolves will move around
and pursue prey until they find it (optimal solution) during the hunting process. During
every positioning round, a new alpha and beta will be selected based on the merits of
the position. In this step, each gray wolf in the wolf pack will walk a certain distance
toward the three optimal gray wolves. Gray wolves will move to the three highest-ranking
individuals in their group.

The GWO algorithm has been widely used in engineering optimization problems
compared with GA, PSO, and ACO because of its simple structure, few parameters, and
ease of operation. Even so, the convergence speed is slowed, due to the lack of diversity
in optimization. When faced with complex optimization problems, it has low solution
accuracy and easy early convergence to a local optimum.

ALO [5] is an algorithm for evolutionary computation. Over six hundred studies
have shown the importance and superiority of the ALO algorithm, as mentioned in the
first section [6]. The ant lion optimizer offers global optimization, few adjustment param-
eters, high convergence accuracy, robustness, and other benefits. The antlion algorithm
has three roles, including ant, antlion, and elite. An ant symbolizes the solution; it walks
randomly but slides toward the antlion because of the trap. Antlions represent the optimal
local solution, which is updated after each random walk based on the fitness values of
the ants and antlions. The elites represent the optimal global solution. Each update of
all antlions will select the antlion with the highest evaluation value as the elite antlion to
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prevent falling into the optimal local solution. With continuous iteration, a better solution
is found near the optimal local solution, and finally, a more accurate global optimal solution
is found. In the following section, we describe the antlion optimization algorithm.

The ALO algorithm has several disadvantages, including many iterative calculations
and a limited range of applications. Several improvements have been made to ALO in the
literature [6,16]. To solve feature selection problems, Emary et al. [17] proposed a binary
ant lion optimizer (BALO). Its solutions are binary [0, 1]. In the first approach, binary
solutions were obtained through random walks around the selected antlion. In this article,
the second approach applies the original ALO method, which uses continuous steps as
thresholds. After that, the appropriate threshold function is applied. The improved antlion
optimization (IALO) algorithm proposed by Kumar et al. [7] optimizes power extraction
from partially shaded solar photovoltaic panels during the rainy season by sorting all
random walks of ants in decreasing order. This is carried out by orienting them toward the
antlions from higher rank to lower rank to replace the original roulette wheel procedure.

Kılıç and Yüzgeç [9] improved the ALO algorithm by applying a tournament selection
method to the parallel machine scheduling problem, thus improving the algorithm’s
performance. In the original ALO algorithm, the ant’s walking mechanism is iterated as
many times as possible. In this study, however, a fifth of the maximum number of iterations
was used to reduce run time. Additionally, a randomly selected variable option has been
used to improve accuracy and speed during the phase of sliding ants toward the antlion.
Finally, the roulette wheel was replaced with a tournament. In [18], Kılıc and Yüzgeç
proposed a novel approach to solving quadratic assignment problems based on tournament
selection called TALO. In contrast to the original ALO algorithm, in this article, when the
ant’s position is outside the search space, they return to the search space again. Using this
mechanism, the ants could take random walks in the search space.

A dynamic adaptive ant lion optimizer (DAALO) for route planning of unmanned
aerial vehicles is presented in this paper [19]. A random walk is updated by Levy flight,
making it easier to escape local optima in ALO. Additionally, ALO’s performance is im-
proved, including meeting speed, convergence accuracy, and stability, by using the popula-
tion’s development rate as feedback. In two different environments, including one with a
city model and one with a mountain model, the proposed algorithm is superior.

For the operation parameters of an electric furnace, Ksiazek et al. [20] proposed a
simulation and positioning system based on a modified ALO algorithm. With a state
flipping approach, the values of the optimal model are assigned to agents calculated in
parallel populations. To achieve better results, the values for lower fitness value agents
are flipped. Hence, the proposed heuristic is more dynamically adaptable to the model. It
also proposed some additional modifications to deploy search efficiently across the entire
domain to avoid local minima. There are often optimal recitative power dispatch problems
in power systems. Consequently, Rajan et al. [21] proposed improvements to ALO’s search
capabilities. In the elite stage of the original ALO, a new weighted elite concept was
introduced to enhance the exploratory nature of the algorithm. Modified ALO (MALO)
intelligently balances exploration and exploitation, enhancing ALO’s hunting ability. To
determine the optimal generator voltage, tap position of tap changer transformers, and volt
amps reactive (VAR) output of shunt capacitors, both ALO and MALO are used. This is
carried out to optimize objectives such as active power loss, total voltage deviation, and
voltage stability metrics.

Jiang et al. [22] proposed a modified ant lion optimizer algorithm (IALO) to enhance
the accuracy of short-term wind predictions. IALO-BP predicts models based on backward
propagation neural networks with the improved ant lion optimizer algorithm (IALO). To
improve the convergence speed and generalization ability of BP neural networks, this
model uses IALO to optimize its weights and thresholds. IALO-BP neural networks are
superior to other BP models, and their prediction values are close to the actual values.
Liu et al. [23] proposed a self-adapting ALO algorithm, where A is the fitness value of
the antlion participating in the roulette wheel and P is the average fitness value of all
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the antlions. If A < A*P*rand, then A participates in the round; otherwise, it does not
participate. Additionally, it is suggested to use dynamic scale coefficients when calculating
ants and elite antlions. This is in addition to adaptive boundary strategies to improve and
increase the diversity of ants when they walk around antlions. In this study, self-adaptive
boundary strategies will be compared with each other, as explained in Section 5.

3. Antlion Optimization Algorithm

ALO is a widely used and effective optimization method proposed by Mirjalili [5].
Antlions undergo a two-phase life cycle, larval and adult, and they can live up to three years
in the wild. The life cycle occurs primarily in the larval stage and only 3–5 weeks during
the adult phase. The ALO mimics the behavior of the antlion, which in its larval phase digs
in the sandy soil to hunt for prey. Antlions dig a cone-shaped pit in the sand as a trap for
hunting their primary targets, ants, and they wait at the bottom of the pit. After discovering
that the prey is in the pit, the antlion attempts to capture it. To enable prey to slide to the
bottom of the pit, antlions throw sand toward the edge of the pit. When the prey is caught,
it is dragged beneath the soil to be consumed. To prepare for the next hunt, the antlion will
throw out the remaining prey and repair the pit after it has consumed the prey.

The hunting behavior of antlions can be formulated as a mathematical model and
applied to numerous optimization problems. There are two populations used in the ALO
algorithm, ants and antlions. The search space consists of two types of species, ants that
represent solutions to the problem and move randomly and antlions hidden in random
locations within the search space. Both are defined in the two matrices, MA and MAL,
as follows:

MA =

A11 . . . A1d
...

. . .
...

An1 · · · And

 MAL =

AL11 . . . AL1d
...

. . .
...

ALn1 · · · ALnd

 (1)

where MA and MAL are the populations of the ants and the antlions, respectively, and both
are matrices of the same size; d is the dimensions of the solution; and n is the number of
the populations.

In general, ants move randomly. The random walk of ants is modeled as given in
Equation (2).

X(t) = [0, C(2r(t1)− 1), . . . , C(2r(tT)− 1)] (2)

where X(t) is the random walk matrix; C is the function that calculates the cumulative sum;
t is the step of random walk (iteration in the study); and T is the maximum number of
iterations. Finally, r(t) is a stochastic function defined as follows:

r(t) = {1 i f rand > 0.5, 0 i f rand ≤ 0.5} (3)

where rand is a random number generated with a uniform distribution in [0, 1]. To keep
the ant’s position within the boundaries of the search space and prevent the ants from
overshooting, the following normalization function is used for the random walk of the ants.

Xt
i =

(
Xt

i − ai
)
×
(
qt

i − pt
i
)

(bi − ai)
+ pt

i (4)

where pt
i and qt

i are the minimum and maximum values of the lower and upper boundaries
for the i-th variable at the t-th iteration, respectively; ai is the minimum of the random walk
of the i-th variable; and bi is the maximum of the random walk in the i-th variable. In one
step of the iteration process, each ant is assumed to be in the trap of only one antlion and is
selected by the roulette wheel mechanism, according to its fitness value.

To simulate ant entrapment in antlion pits, the position of the chosen antlion is used
to update the minimum and maximum boundaries of the ants’ random walks.

pt
i = pt + Antliont

j (5)
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qt
i = qt + Antliont

j (6)

where pt and qt are the minima and maximum values of all the variables at the t-th iteration,
pt

i is the minimum of all variables for the i-th ant, qt
i is the maximum of all variables for the

i-th ant, and Antliont
j shows the position of the selected j-th antlion at the t-th iteration.

To mimic the sliding of an ant toward the bottom of the antlion pit, the boundaries of
random walks should be adaptively decreased as follows:

pt =
pt

I
(7)

qt =
qt

I
(8)

where I is a ratio, t is the current iteration, pt is the minimum value of all the variables at
the t-th iteration, and qt is the maximum value of all the variables at the t-th iteration. In
the above equations, I is defined as follows:

I = 10ω t
T

(9)

where t is the current iteration, T is the maximum number of iterations, and ω is defined
based on the current iteration (ω = 2 when t > 0.1T, w = 3 when t > 0.5T, w = 4 when
t > 0.75T, w = 5 when t > 0.9T, and w = 6 when t > 0.95T). The parameter ω is used to adjust
the accuracy level of exploitation.

In the optimization process, antlions update their positions according to the fitness
values of the ants. If the ant has a better fitness value than the selected antlion, then it
changes its position to the latest position of the hunted ant. The following equation is
presented for the antlion catching the ant and reconstructing the pit.

Antliont
j = Antt

i i f f
(

Antt
i
)
> f

(
Antliont

j

)
(10)

where f is the objective function, which obtains a fitness value.
Keeping the best solution obtained at each optimization process step is necessary.

Thus far, the fittest antlion has been preserved and is considered an elite. It should be
capable of influencing the movement of all ants during optimal steps. This optimization
process step is modeled by the following equation:

Antt
i =

Rt
A + Rt

E
2

(11)

where Antt
i indicates the position of the i-th ant at the t-th iteration, Rt

A denotes the random
walk around the antlion selected by the roulette wheel at the t-th iteration, and Rt

E denotes
the elite antlion obtained by Equation (10).

The ALO algorithm architecture is as Figure 1,
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4. The Proposed Algorithm: EALO

If we are trying to find the maximum or minimum value of a function in an optimiza-
tion problem, For instance, if one considers the problem of solving F(X1, X2..., Xn), these Xs
represent the parameters of the problem, which may or may not be independent; these Xs
form a set of variables. Utilizing the optimization algorithm, we can find the most effective
combination of variables in the shortest amount of time.

There are several things researchers look for in optimization algorithms, including
the ability to explore space, ability to exploit space, obtaining optimal global solutions, not
falling into local optimums, and speed of convergence. The aim of the study is to investigate
how fast convergence can occur. When solving optimization problems, several variables
are involved, which will profoundly affect the execution time. As the number of variables
increases, the execution time will increase nonlinearly. To enhance the convergence rate,
we selected the improved antlion optimization algorithm.

Compared with some other optimization algorithms, the antlion optimization al-
gorithm can avoid falling into local optima and achieve convergence to the optimal
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solution [5,18]. Despite its advantages, the antlion optimization algorithm has a draw-
back. Since it uses decreasing procedures for shrinking the boundary, it does not converge
as fast as it should, as shown in Equation (9). The parameter ω in Equation (9) is used to
adjust the accuracy level of exploitation only and the (t/T) parameter is a linear function.
When the number of iterations is getting larger, the convergence speed cannot be increased
as fast as it can do. To increase the diversity of ants around the antlion and accelerate the
convergence rate, the following function is proposed in this study:

I = 10ω t
T

(
exp

(
t
T

)
·rand·η

)
η = 1, 2, 3 (12)

where rand is a random number between intervals of (0, 1); t is the current iteration; T
is the maximum number of iterations; ω is defined based on the current iteration (ω = 2
when t > 0.1T, w = 3 when t > 0.5T, w = 4 when t > 0.75T, w = 5 when t > 0.9T, and
w = 6 when t > 0.95T); and EXP is the exponential function with (t/T). η is a deviation
variable used to control the degree to which the convergence speed curve accelerates as
the number of iterations increases. The next section’s experiments show that an η of 20 is
sufficient to speed up the convergence. The exponential function significantly accelerates
the convergence speed, so the enhanced ALO algorithm is called the exponential-weighted
ant lion optimization (EALO) algorithm.

Hence, the pseudocode of the EALO algorithm is defined as Algorithm 1,

Algorithm 1: The exponential-weighted antlion optimization (EALO) algorithm

Input: Objective function, population size, maximum iteration number, the value of η

Output: The elite antlion and its fitness value
Step 1: Initialize positions of ants and antlions randomly
Step 2: Calculate the fitness values of ants and antlions using the objective function
Step 3: Find the best antlions and assume one is the elite
Step 4: while (iteration < Maximum iteration)

for every ant
Select an antlion using the roulette wheel method
Calculate I using Equation (12)
Update p and q using Equations (7) and (8)
Create a random walk using the equation Equation (2)
Normalize the random walk using Equation (4)
Update the position of the ant using Equation (11)

end for
Calculate the fitness values of all ants
Replace antlion with its respective ant if it is fitter using Equation (10)
Update elite if an antlion becomes fitter than the elite

end while
Step 5: Return the elite and its fitness value

5. Experimental Study on Benchmark Functions

An exponential-weighted ant lion optimization algorithm was implemented in MAT-
LAB R2021b using a Core i5 processor at 2.8 GHz. In the following research experiments,
with regard to the graphs that explore the convergence curve, the horizontal axis represents
the number of iterations, and the vertical axis represents the best fitness value obtained
so far. Experimental results using the proposed approach are presented in this section. In
addition, we compared the proposed method with the original ant lion algorithm [5], the
particle swarm optimization algorithm [12] and gray wolf optimizer [15].

5.1. Benchmark Functions

In this study, we analyzed twelve benchmark functions published in the literature [5] to
investigate how the proposed algorithm performs. By comparing optimization algorithms
with these functions, we were able to compare the performance of the algorithms. In
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Table 1, different characteristics that are used for algorithm analysis are summarized, and
in Figure 2, their 3D graphs are depicted.

Table 1. Benchmark functions.

F Dim Range Fmin Formulations

F1 30 (−100, 100) 0
n
∑

i=1
x2

i

F2 30 (−10, 10) 0
n
∑

i=1
|xi|+

n
∏
i=1
|xi|

F3 30 (−100, 100) 0 n
∑

i=1
(

i
∑

j−1
xj)

2

F4 30 (−100, 100) 0 maxi{|xi|, 1 ≤ i ≤ n}

F5 30 (−30, 30) 0 n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

F6 30 (−100, 100) 0
n
∑

i=1
(|xi + 0.5|)2

F7 30 (−5.12, 5.12) 0
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

F8 30 (−1.28, 1.28) 0
n
∑

i=1
iX4

i + random[0, 1)

F9 30 (−600, 600) 0 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1

F10 30 (−50, 50) 0

π
n {10sin(πyi) +

n
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)

]
+(yn − 1)2}+

n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4 u(xi, a, k, m) =

{
k(xi − a)m i f xi > a

0 i f − a < xi < a; k(−xi − a)m i f xi < −a

F11 30 (−50, 50) 0
0.1 + {sin2(βπx1) +

n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
}

+0.1(xn − 1)2[1 + sin2(2πxn)
]
+

n
∑

i=1
u(xi, 5, 100, 4)

F12 4 (−5, 5) 0.0003 11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2

5.2. The Property of Variable η

In Equation (12), a deviation variable η is used to control the amount to which the
convergence speed curve accelerates with increasing iterations. η is an integer ranging
from 1 to a fairly large value. To determine how large the η value should be, we conducted
the following experiments: number of search agents (i.e., number of ants, equivalence to
number of antlions) is 40; number of iterations is 500; benchmark function F4 is used; and
the η values 1, 5, 10, 20, and 30 have been used to test which is the most suitable fit and
compare it to the original ALO algorithm. Figure 3 shows the results of the experiment. As
η increases, the convergence curve of the EALO deviates from the convergence curve of the
original ALO algorithm, especially as the number of iterations increases.

In Figure 3, it can be observed that when the η value increases, EALO’s convergence
speed increases. By comparing the convergence curve with an η value equal to 30 and
an η value equal to 20, we observe that the degree of deviation is almost the same, and
the speed of convergence has not greatly improved. These results can also be observed in
other benchmark functions, such as F6 in Figure 4. As a result, an initial parameter value of
η = 20 was chosen for the following experiments.
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In Figure 5, it illustrates the different η value (η = 1, 10, 20, 30) convergent results of
EALO with benchmark functions from F1 to F12 except F4 and F6. Although η = 30 is better
than η = 20 for some benchmark functions, it is reasonable to use η = 20 in this study for
the following experiments.
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5.3. Convergence Analysis

Another literature-cited method was included in this experiment to better understand
the effectiveness of the proposed EALO’s convergence rate. Using the trigonometric sin
function for weighting, Liu et al. [23] proposed a method to speed up convergence rates.
The formula is as follows:

I = 10ω t
T
(0.5 + sin

(
tπ
2T
·rand

)
) (13)

This method is called saALO here. After selecting all the benchmark functions, the
optimal solutions were determined by searching 30 agents over 500 iterations with η equal
to 20. Some of the experimental results are illustrated in Figure 6.

The above results demonstrate that the proposed EALO method (represented by the
red line) significantly outperforms the original ALO method (represented by the blue line).
Table 2 summarizes the optimal solutions for those twelve benchmark functions.

The superiority of the EALO algorithm increases with the number of iterations, which
is significantly better than the original ALO algorithm and the saALO algorithm. In
Figure 7, we show the experimental results for benchmark functions F1 and F10 at 500 and
1000 iterations.
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Table 2. The optimal solutions (i.e., elites’ fitness value) of the experiment.

ALO saALO EALO

F1 7.6618 × 10−9 4.5673 × 10−8 6.027 × 10−11

F2 0.00037506 0.00014578 6.8061 × 10−6

F3 0.033416 0.029191 0.013887
F4 0.0048024 0.0015434 0.00023618
F5 109.5965 128.6998 9.4584
F6 6.6575 × 10−9 1.3089 × 10−8 2.2545 × 10−11

F7 27.8588 14.9244 8.9546
F8 0.029629 0.038728 0.011835
F9 0.45981 0.18441 0.068873
F10 5.0051 1.3128 × 10−8 5.9899 × 10−11

F11 6.8259 × 10−8 3.8091 × 10−7 5.5097 × 10−10

F12 0.00076687 0.00066378 0.0005845
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5.4. Comparison Results with Other ALO Algorithms

In this subsection, the proposed EALO algorithm is compared to other ALO versions
for benchmark functions. For comparison, the particle swarm optimization algorithm (also
known as PSO) and gray wolf optimization algorithm (also known as GWO) are used. The
following experiments used the same parameter values as the previous ones, meaning the
number of agents is 30, the number of iterations is 500, and the value of η is 20. Some of the
experimental results are illustrated in Figure 8.

The experimental results in Figure 8 show that the EALO algorithm has a much better
convergence rate than the PSO algorithm.
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5.5. Discussion

Figure 9 illustrates the formula as a stepped reduction using logarithms. Equation (9)
is used in the original ALO method to shrink the boundary.
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In Figure 9, the I value of formula Equation (9) shows stepping growth when the
iteration is increased to 500. The exponential weighting algorithm proposed in this study
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accelerates the convergence rate of the original ALO algorithm and makes it run smoothly.
Increasing the value of η can cause the convergence curve to deviate from the convergence
curve of the original ALO algorithm, greatly speeding up convergence.

Based on the above experimental results, it is evident from the graphs that the proposed
EALO algorithm has the fastest convergence rate. However, the proposed algorithm still
has limitations and uncertainties. Equation (12) has a random number, and this random
number is between the interval of 0, 1. This will influence the results of every experiment.

6. Conclusions

Recently, metaheuristic algorithms have become the focus of research, due to their
ability to find a reasonable solution to extremely complex optimization problems within a
limited time. The antlion optimization algorithm is one of the metaheuristic swarm-based
approaches introduced by Mirjalili in 2015 that has attracted considerable attention. The
ALO algorithm has been improved numerous times since its introduction. In addition to
escaping from local optima, the ALO algorithm and its improvements can explore large
search spaces, apply Laplace distributions or other stochastic functions instead of uniform
distributions, and employ reproduction ant-sliding and elitism methods. It is evident that
speeding up convergence is the most critical and significant improvement. Few studies
have examined better boundary strategies to increase the diversity of ants on the ground
and antlions to speed up convergence. Taking advantage of this research gap, a novel
exponential-weighted antlion optimization algorithm is presented in this study.

An improvement in the original antlion optimization algorithm consists essentially of
an adaptive shrinkage of the radius of the ants’ random walk hypersphere to accelerate
convergence. This study proposes the EALO algorithm, which is an improvement and
an innovation over the ALO algorithm. In this paper, we present a high-level innovative
method that presents a nonlinear adaptive increasing trend with a stochastic component
as the evolutionary iterations increase. Therefore, the boundary size exhibits a nonlinear
adaptive decreasing trend with randomness as the evolutionary iterations increase. To
improve the performance of the ALO, an exponential function and a deviation variable
were utilized to improve the boundary decreasing procedure. To adjust the speed of
convergence, this variable is critical.

Using twelve objective function experiments, the results demonstrated that the EALO
algorithm obtained very competitive results. The experimental results show that the proposed
EALO algorithm has significant improvements in terms of faster convergence rates compared
to the original ALO algorithm. Moreover, the proposed method has been compared with
other existing methods, such as particle swarm optimization algorithms. The results showed
that the EALO algorithm was significantly superior in terms of convergence rates.

In the future, EALO should be applied to practical problems in computer science, en-
ergy, medicine, and engineering design. It is also worthwhile investigating the constrained
conditions that may be ameliorated by this algorithm.
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