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Abstract: With the development of information technology, it has become increasingly important
to use intelligent algorithms to diagnose mechanical equipment faults based on vibration signals
of rolling bearings. However, with the application of high-performance sensors in the Internet of
Things, the complexity of real-time classification of multichannel, multidimensional sensor signals is
increasing. In view of the need for intelligent methods for fault diagnosis methods of mechanical
equipment, the generalization ability of fault diagnosis models also needs to be further strengthened.
In this context, in order to make fault diagnosis intelligent and efficient, a bearing fault diagnosis
method based on spectrum map information fusion and convolutional neural network (CNN) is
proposed. First, short-time Fourier transform (STFT) is used to analyze the multichannel vibration
signal of the rolling bearing and obtain the frequency domain information of the signal over a period
of time. Second, the information fusion is converted into two-dimensional (2D) images, which
are input into CNN for training, and the bearing fault identification model is obtained. Next, the
frequency domain information of each signal is converted into a 2D spectrum map, which is used as
a CNN training dataset to train a bearing fault identification model. Finally, the diagnostic model is
validated using the existing datasets. The results show that the accuracy of fault diagnosis using the
proposed bearing is greater than 99.4% and can even reach 100%. The proposed method considerably
reduces the workload of the diagnosis process, with strong robustness and generalization ability.

Keywords: bearing fault diagnosis; STFT; CNN

1. Introduction

Rolling bearings are an important part of rotating mechanisms and are widely used
in industrial equipment and transportation equipment in various fields. Bearings are also
the most vulnerable part to damage in mechanical equipment, reflecting the health of
mechanical components. Studies show that bearing defects account for 40% of faults in
large machinery and 90% of faults in small machinery [1–4]. At present, rolling bearings
generally lack real-time state monitoring and fault diagnosis during the operation process,
and equipment maintenance generally depends on manual experience, which is associated
with considerably uncertainty; if faults cannot be dealt with in time, the service life of
the equipment can be considerably reduced. Vibration generated during the operation
of rolling bearings can reflect the health status of equipment. Real-time monitoring of
vibration signals during the operation of bearings is a common method to judge the
condition of equipment [5–8].

Rolling bearings exist in large numbers in mechanical equipment with rotating mech-
anisms and are widely used in industrial equipment and transportation equipment in
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various fields. Bearings are also the most vulnerable part to damage in mechanical equip-
ment, reflecting the health of mechanical components. Studies have shown that 40% of
large mechanical failures are caused by bearing failures, and such failures account for
as much as 90% of the failure causes of small mechanical equipment [1–4]. At present,
mechanical equipment generally lacks real-time health assessment and fault diagnosis for
rolling bearings. The maintenance of mechanical equipment generally relies on manual
experience, which is associated with considerable uncertainty. Failure to deal with faults
in time can considerably reduce the service life of equipment. Vibration generated during
the operation of rolling bearings can reflect the health status of equipment. Real-time
monitoring of vibration signals during the operation of bearings is a common method to
judge the condition of equipment [5–8].

The diagnosis of vibration signals initially relies on the judgment of manual experi-
ence to estimate the health of equipment. This method is suitable for small mechanical
equipment, but in the face of multimechanism combinations of mechanical systems, such
a method cannot be relied upon to make a correct judgment. Therefore, more intelligent
diagnosis methods need to be further developed. The core of traditional intelligent diag-
nosis methods is feature extraction and classification following signal acquisition. Many
researchers have investigated the use of bearing signals to diagnose the health status of me-
chanical equipment and have achieved important results [9–14]. Wu et al. [15] proposed an
improved quantum-excited differential evolution algorithm using Mexh wavelet function
to improve the global search ability of the algorithm and avoid the problem of excessively
rapid convergence of the algorithm. Compared with other comparison methods, Wu et al.
achieved better optimization performance in rolling bearing vibration data classification.
Ali et al. [16] proposed a new indicator to improve fault detection ability by considering
all frequency bands with valuable diagnostic information by combining square envelope
spectra. Yi et al. [17] diagnosed local faults of rolling bearings by extracting pulse features.
Haidong et al. [18] proposed a new intelligent method for fault diagnosis of rolling bearings
called integrated depth autoencoder (EDAE), which overcame the dependence on manual
feature extraction.

Using the traditional signal analysis method can preliminarily solve the bearing
fault diagnosis problem. However, in modern industry, large mechanical and electrical
equipment has become increasingly complex and is required to run continuously under
different working conditions. The data generated also presents new characteristics, such
as large quantity, variety and complex form. With the continuous progress of intelligent
algorithms, convolutional neural networks have been used to diagnose vibration signals
in recent years [19–24]. Levent et al. [25] used a one-dimensional (1D) convolutional
neural network for real-time diagnosis of bearing faults, with the characteristics of compact
structure and self-adaptation. Duy-tang et al. [26] used the method of directly inputting
the vibration signal into a deep learning algorithm without using any feature extraction
technology and achieved high diagnostic accuracy and robustness in a noisy environment.
Liang et al. [27] used a deep convolutional transfer learning network to diagnose bearing
faults with fewer samples in order to cope with the problem of insufficient data.

At present, most of researchers are using 1D bearing vibration signal recognition
directly, whereas fewer researchers are turning the 1D vibration signal into a 2D signal
to make full use of the neural network for identification of 2D image feature extraction
ability, which has achieved a higher recognition accuracy. However, there are still some
shortcomings with respect to training time, complexity and recognition for diagnosis with
small sample datasets [28–32]. Therefore, in this paper, we propose a bearing fault diagnosis
method based on spectrum map information fusion and a convolutional neural network.
First, the 1D signal is converted into a 2D spectrum map using STFT. Under the condition
of limited sample data, several mainstream convolutional neural network architectures are
compared, and the VGG (Visual Geometry Group) neural network is selected as the training
network. Finally, the lowest 99.4% and the highest 100% fault diagnosis accuracies are
obtained in a test on the Case Western Reserve University (CWRU) dataset, and 99.8% fault
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diagnosis accuracy is also obtained in a test on different datasets, which shows that the
method can effectively diagnose bearing faults according to the vibration signal and obtain
good results with different datasets.

2. Methods
2.1. VGG Convolutional Neural Network (CNN)

Current mainstream CNN models include AlexNet, GoogLeNet and the VGG network.
Among them, the VGG network proposed by the Visual Geometry Group of Oxford
University in 2014 is a neural network applied in image classification and recognition, with
excellent feature extraction capabilities. The network contains 13 convolutional layers and
3 fully connected layers. VGG stacks multiple 3× 3 convolution kernels to replace the
large convolution kernels in traditional neural networks. Multiple convolution kernels
effectively expand the number of channels. The pooling layer is used to reduce the width
and height, making the constructed neural network more efficient, deeper, wider and less
computationally intensive for large-scale neural networks [33]. The VGG network uses
the ReLU function as the activation function. Unlike the Tanh and Sigmoid functions, the
ReLU function is an unsaturated function, which means that it does not reduce the error
of backpropagation, and the network converges faster, which can considerably reduce the
training time. Based on these advantages, the fault diagnosis model uses the VGG network
structure, which is shown in Figure 1.
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Figure 1. VGG network structure.

There was an excessive number of weight parameters of VGG-16, with three full-
connection layer parameters accounting for a large proportion. The original parameter
setting of VGG-16 was to complete 1000 classifications, with fewer signal classifications.
Therefore, the first two fully connected layers only use half of the original number of
nodes, namely 2048 nodes, and the third fully connected layer has 10 nodes corresponding
to the classification category so as to improve the recognition accuracy and efficiency of
the model.

2.2. Data Segmentation

The vibration signal of the bearing is a continuous 1D time series, so different data
segmentation methods should be selected according to the signal type. The vibration
signals should be sequentially and equally intercepted into different small segments, and
the signal interval of each segment should be long enough to capture the local features of
the signal. However, the number of sampling points in the original dataset is fixed; the
more sampling points each sample contains, the fewer the samples. A smaller number
of samples is not conducive to training of neural networks. Before the experiment, the
influence of samples with different data length pairs on the results should be tested, and the
optimal data segmentation length should be selected according to the model recognition
accuracy [34,35]. The main dataset is the bearing vibration data from the CWRU dataset,
using the single-channel drive-end (DE) accelerometer data.
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For determination of data length, the data are not processed, and 2D images are
drawn directly by the matplotlib function. The obtained datasets are shown in Table 1,
and 9 signals of different lengths are shown in Figure 2. A total of 9 groups of datasets
of different lengths are tested, i.e., 100, 300, 500, 700, 900, 1100, 1300, 1500 and 1700. The
number of datasets constructed by 9 different sample lengths is the same, and the specific
number is given in Table 1. The number of concrete can be divided into 10 categories:
normal; inner race, 0.007 mils; ball, 0.007 mils; outer race, 0.007 mils; inner race, 0.014 mils;
ball, 0.014 mils; outer race, 0.014 mils; inner race, 0.021 mils; ball, 0.021 mils; outer race,
0.021 mils.

Table 1. Training set and verification set.

Class Nor IR0.007 B0.007 OR0.007 IR0.014 B0.014 OR0.014 IR0.021 B0.021 OR0.021

Train 2196 1091 1102 1097 1096 1096 1095 1098 1098 1102
Val 243 121 122 121 121 121 121 121 121 122
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to the number of data points: (a) 100 points, (b) 300 points, (c) 500 points, (d) 700 points, (e) 900 points,
(f) 1100 points, (g) 1300 points, (h) 1500 points and (i) 1700 points.

Nine single-channel datasets of different lengths were trained using convolutional
neural network training. The data length of a single sample in all subsequent experiments
presented in this paper was ultimately determined according to the training results of
single-channel DE datasets and the accuracy of bearing fault diagnosis of the obtained
model. Figure 3 shows the training results; the precision of training increases with an
increased number of data points. However, when a single sample contains more than
900 data points, the precision of the model declines, and loss function values begin to
change. Therefore, 900 data points were chosen as a sample.
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After the length of each sample is determined, the data are divided according to the
time series, as shown in Formula (1). The signal intervals do not overlap; x is the current
time point, and n is the selected signal interval length.

T(x− n) ≤ T(x) ≤ T(x + n) x ∈ (n, 2n, . . . , xn) (1)

A data segment after segmentation is shown in Figure 4. When 900 data points are
divided into one sample, each sample is guaranteed to contain a cycle and comprehensive
fault features.
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2.3. Spectral Analysis of Short-Time Fourier Transform (STFT)

Fourier transform can decompose a signal into several frequency components; each
sinusoidal component has its own frequency and amplitude. Fourier transform can only
determine which frequency components a signal contains for a period of time, but it can-
not accurately determine the time when each frequency component appears. Therefore,
it is possible to obtain similar spectrograms by analyzing signal fragments in different
time domains. Therefore, Fourier transform is not suitable for signals with irregular peri-
odic changes. The bearing vibration signal is a non-stationary signal containing different
frequency components.

Therefore, it is not simple to use Fourier transform to analyze the spectrum of the
signal. In order to avoid the loss of time information by Fourier transform of the entire
sequence, local frequency parameters can be introduced, and Fourier transform can be used
locally in the signal. By adding a window to intercept the segment of the signal, a window
function (w(t)) is defined, as in Formula (2). The window function is moved to a certain
center point (τ) and multiplied by the original signal to obtain the truncated signal (y(t)).
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y(t) = x(t)w(t− τ0) (2)

Then, Fourier transform is used to analyze the truncated signal (y(t)) and obtain the
spectral distribution (X(ω)) of a segmented sequence according to Formula (3).

X(ω) = F(y(t)) =
∫ +∞

−∞
x(t)w(t− τ0)e−jωtdt (3)

In real applications, because the signal is a discrete point sequence, the spectrum
sequence (X[N]) is obtained. For the convenience of expression, we define the function
S(ω, τ) in Formula (4), which represents the spectral result (X(ω)) after transforming the
original function when the center of the window function is τ [36].

S(τ, ω) = F(x(t)w(t− τ)) =
∫ +∞

−∞
x(t)w(t− τ)e−jωtdt (4)

Corresponding to the discrete scene, S(ω, τ) is a two-dimensional matrix, and each
column represents the result sequence of windowing the signal at different positions and
performing Fourier transform on the obtained signal segment. After completing the Fourier
transform operation of the first segment, the window function is moved to τ0, and the
moving distance is generally less than the width of the window so as to ensure that there is
a certain overlap between the two windows before and after, which we call overlap. The
above operations are repeated, and the window is continuously slid to perform Fourier
transform on the data truncated by the window to obtain the spectral results (S(ω, τ)) of
all segments from τ0 to τN [37,38], as shown in Figure 5.
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Figure 5. The process of short-time Fourier transform.

The result of Fourier transform of each window is a complex two-dimensional matrix;
each column of this matrix is the spectrum of a window, and the number of columns in
the matrix is equal to the number of segments of the signal divided by the window. This
is used to determine the magnitude of the complex number to obtain the real amplitude
value; then, the color block is used to represent the amplitude of each column. The higher
the amplitude, the brighter the color block, and the lower the amplitude, the darker the
color block, the specific operation process is shown in Figure 6.

In this study, we used the pcolormesh() function in the matplotlib library to draw the
spectrogram. The Hanning window is used as the window function. The Hanning window
is suitable for non-periodic continuous signals to reduce the leakage phenomenon and
improve the quality of the spectrum analysis. Formula (5) is the time domain expression
for the length of the Hanning window. The length of the window function is set to 256,
with an overlap of 50%. The time-domain signal is then divided into segments using a
sliding window.
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w(n) =
1
2

[
1− cos (

2πn
N

)

]
n = 0, 1, 2, · · · , N− 1 (5)
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Figure 7 shows an effect diagram after coding. The STFT diagram is obtained when the
upper part is divided into vibration data of a single channel and the lower part is divided
into vibration data of two channels. The STFT matrices of the two channels are obtained
and added together.
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2.4. Diagnostic Methods

The process of bearing fault diagnosis based on spectrum map information fusion
and convolutional neural network proposed in this paper is shown in Figure 8. First,
according to the intercept signal and signal segment of a certain length, an appropriate
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method is selected based on 1D vibration signal processing to convert a signal fragment
to a 2D spectrum map. Then, the spectrum map dataset is divided into a training set and
a validation set according to a certain proportion. The training set is input into VGG for
training, and the validation set is input into the model to predict the fault type. The specific
steps are as follows.
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1. Sensors installed in different locations of the equipment collect vibration signals. In
this study, we used collected vibration datasets rather than real-time vibration signals.

2. The collected vibration signals are processed, the appropriate length is selected as
a sample and 1D data are processed by the STFT method. The processed 1D data
are stored as 2D images by Matplotlib. When the dataset is multidimensional, a
multichannel dataset is generated by data fusion to improve the recognition accuracy.

3. The spectrum map dataset is divided into a training set and a validation set according
to a certain proportion.

4. Appropriate neural networks are selected for training. Finally, a VGG convolutional
neural network is used to train the model on the training set to obtain the neural
network prediction model of bearing faults.

5. The trained model is deployed to mechanical equipment for fault detection.

3. Dataset

In this study, two public bearing vibration datasets were selected, namely multi-
channel, multicondition and single-channel datasets. Comparative experiments were
conducted in two datasets. First, a single-channel data validation approach was used in
dataset 1. Then, the number of channels of data was increased to observe the influence of
the channel number on diagnosis accuracy. Finally, the generalization ability of the method
under different working conditions was verified using vibration data under different
bearing loads. In dataset 2, a single-channel dataset was used to generate a spectrum map
dataset for training and validation, and the generalization ability of the method under
different hardware conditions was tested.

3.1. Dataset 1: Case Western Reserve University (CWRU) Dataset

The first dataset used in this paper is from the rolling bearing test bed of Case Western
Reserve University in the U.S., which is mainly composed of motors, bearings and load
motors [39]. The load motor is a Reliance 2 hp motor with vibration sensors mounted near
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the motor bearings and sampled at 12 kHz and 48 kHz sampling frequencies, Figure 9
shows the Case Western Reserve University rolling bearing test stand.
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The dataset includes four different bearing vibration signals: normal state, inner ring
fault, roller fault and outer ring fault. The faults are divided into three fault types, 0.007 mls,
0.014 mls and 0.021 mls, according to their severity, and the sampling frequency is 12 kHz.
The vibration signal experiment is conducted when the corresponding speed is vibration
information of DE (drive end accelerometer data) and FE (fan end accelerometer data)
channels at 1797 r/min, 1772 r/min, 1750 r/min and 1730 r/min. In the actual training,
there are 10 categories: normal; inner race, 0.007 mils; ball, 0.007 mils; outer race, 0.007 mils;
inner race, 0.014 mils; ball, 0.014 mils; outer race, 0.014 mils; inner race, 0.021 mils; ball,
0.021 mils; outer race, 0.021 mils. The 10 classification datasets at 0 HP were taken as the
main experimental object, and 1 HP, 2 HP and 3 HP were taken as the validation datasets
for the final method.

3.2. Dataset 2: Society for Machinery Failure Prevention Technology (MFPT) Dataset

Dataset 2 is an open access dataset published by the Society for Machinery Failure
Prevention Technology. The MFPT dataset classifies bearing faults into three categories—
baseline conditions, outer race faults and inner race fault conditions—with outer-race faults
containing two different fault types. In this study, the MFPT dataset is used to verify the
generalization ability of fault diagnosis using spectrum maps. In actual training, the labels
are divided into four categories: baseline conditions, outer-race fault conditions, more
outer-race fault conditions and inner-race fault conditions [40].

4. Experiment and Analysis

All experiments in described this paper were run on a Lenovo laptop running Win-
dows 10 64-bit operating system with an Intel Core i7 processor, Nvidia RTX 2060 graphics
card and 16 GB of RAM. Python programs and Keras deep learning library were used to
complete data processing and neural network model building. In the experiment, 90% of
the spectrum map dataset is divided into a training set, and 10% is divided into a validation
set. The learning rate of the model is set to 0.0001, there are 20 training iterations in total
and the number of training samples in each iteration is 32.

4.1. Evaluation Index and Method
4.1.1. Loss Function and Accuracy

The model is evaluated using a loss function, which is a non-negative function used to
calculate the difference between the neural network model’s prediction of the vibration
signal segment and the true label of the signal segment. With the training of the neural
network, the value of the loss function decreases, and the lower the final loss function value,
the higher the recognition accuracy of the model. In the bearing fault diagnosis experiment,
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the cross-entropy loss function, which is a loss function widely used in multiclassification
problems, is chosen to measure the distance between different direction vectors. The
calculation formula is expressed as Formula (6). In the formula, m represents the category
of classification, n is the total number of samples and yic is a sign function. When the
predicted value of the model is equal to the true value, the value of the sign function is 1;
otherwise, it is 0. pic is the probability that a certain class of samples (i) is predicted to be c.

Loss =
1
n ∑

i

m

∑
c=1

yic log(pic) (6)

Accuracy is another important indicator for evaluating the classification performance
of neural network models. A certain number of samples is input into the neural network for
prediction, and the proportion of correct prediction results is accuracy. The calculation for-
mula for accuracy is defined in Formula (7), where FP represents the number of categories
predicted incorrectly, TP represents the number of a categories correctly predicted, TN
represents the number of another category that is correctly predicted and FN represents
the number of another category that is incorrectly predicted.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

4.1.2. Confusion Matrix

The confusion matrix is used to visualize the prediction results and can represent the
proportion of correct or incorrect predictions for each category in the form of a graph. The
specific generation process is shown in Figure 10. In the figure, there are two categories:
0 and 1. The diagonal line is the proportion of each category recognized correctly, and the
remaining positions are the proportion of a category recognized as other categories.
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4.1.3. Clustering Analysis

The confusion matrix can represent the prediction effect of the model, but it cannot
intuitively illustrate the correlation between the various categories. In order to observe the
error and correct distribution of the prediction results, t-distributed stochastic neighbor
embedding (t-SNE) technology is used for analysis. t-SNE can represent the fully connected
layer data of CNN prediction in two dimensions so as to observe the error distribution of
each category after prediction [41].

4.2. CWRU Experiment Results
4.2.1. DE Single-Channel Data

Using a 2D spectrum map method to process bearing data of DE channel bearings
under 0 HP load, the dataset was divided at ratio of 1:9, and the sample dataset was obtained
as shown in Table 2. In order to verify the effectiveness of the proposed spectrum map–
convolutional neural network method, Table 2 also includes three different 2D methods: the
direct drawing method, the GADF method and the MTF method. Direct rendering means
that bearing signals are directly converted into a 2D spectrum map using plt functions
in the Matplotlib package in Python without any processing. When multichannel signals
are contained, multichannel vibration signals are fused into a 2D spectrum map. The
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time-domain signal is encoded using the Gram angular difference field (GADF) to generate
a Gram angular field image (GAF) containing the fault features. The Markov transition field
(MTF) coding method uses the MTF matrix to encode the time series into a 2D spectrum
map, and the 2D spectrum map corresponds to the 1D time series of the bearing vibration
signal and contains the characteristics of the time series [42].

Table 2. CWRU single-channel dataset.

Label 0 1 2 3 4 5 6 7 8 9
Normal IR0.007 B0.007 OR0.007 IR0.014 B0.014 OR0.014 IR0.021 B0.021 OR0.021

Draw
directly

244 121 123 122 122 122 122 122 122 123
27 13 13 13 13 13 13 13 13 13

GADF
244 121 123 122 122 122 122 122 122 123
27 13 13 13 13 13 13 13 13 13

MTF
244 121 123 122 122 122 122 122 122 123
27 13 13 13 13 13 13 13 13 13

STFT
244 121 123 122 122 122 122 122 122 123
27 13 13 13 13 13 13 13 13 13

The datasets generated from four 2D methods are trained with the same VGG neural
network, and the training results are shown in Figures 11 and 12 and Table 3. In Figure 11,
the upper part is the loss function value of the training set and verification set, and the
lower part is the accuracy value of the training set and verification set. Figure 11 and
Table 3 show the final loss value and accuracy value after training of the dataset generated
by the four 2D methods. The accuracy of the direct rendering method, GADF method,
MTF method and STFT method was 93.8%, 78.1%, 79.7% and 100%, respectively, on the
validation set. The vibration data processing method of STFT achieves the lowest loss
value and the highest accuracy in both the training set and the verification set with a high
convergence speed.

The confusion matrix and t-SNE technique were used to visualize the prediction
results of the four methods, as shown in Figure 13. The error classification of the direct
drawing method is mainly that 30% of 0.014 mils Ball faults are incorrectly identified as
0.014 mils outer-race faults, 50% of 0.014 mils outer-race faults are incorrectly identified
as 0.007 mils ball faults and 25% of 0.021 mils ball faults are misidentified as 0.007 mils
ball faults. Accordingly, misidentified categories are mixed up in the cluster graph. The
error classification of the GADF method is mainly that 35% of 0.014 mils inner-race faults
are incorrectly identified as 0.021 mils outer-race faults, 40% of 0.014 mils ball faults are
misidentified as 0.007 mils ball faults and 0.021 mils ball faults and 80% of 0.014 mils outer-
race failures are misidentified as 0.007 mils ball and 0.021 mils ball failures. Accordingly,
misidentified categories are mixed up in the cluster graph. The misclassification of the MTF
method is mainly that 55% of the 0.007 mils ball failures are misidentified as 0.014 mils
outer-race faults and 0.021 mils ball faults, 45% of 0.014 mils ball faults are incorrectly
identified as 0.007 mils ball faults and 0.021 mils ball faults, 25% of 0.014 mils outer-race
failures are misidentified as 0.007 mils ball failures and 0.021 mils ball failures and 30% of
0.021 mils ball failures are incorrectly identified as 0.007 mils ball failures and 0.014 mils
outer-race failures. Accordingly, misidentified categories are mixed up in the cluster graph.
The STFT method obtains almost error-free obfuscation matrices and well-defined clusters.
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Method Train Loss Val Loss Train Acc Val Acc
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4.2.2. Dual-Channel Data of DE and FE

In the single-channel data test, the method of using the STFT to generate the spectrum
map achieved good results in fault identification of the 1D vibration signal. In order to
verify the effectiveness of this method in multichannel data, DE and FE dual-channel data
are used to generate datasets for training. In the dual-channel experiment, three different
2D methods—the direct rendering method, GADF method and MTF method—were also
used for comparison, and the number of samples was the same as that of the single channel.
The training results using the dual-channel data are shown in Figure 14. In part (a) of
the figure, the loss function values of the model in the training set and the validation set
are shown, and part (b) shows the accuracy values of the training set and the validation
set. Compared with the single-channel dataset, the accuracy of the VGG network training
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obtained by direct rendering method, GADF method, MTF method and STFT method was
been improved, and STFT still performed best in VGG.
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The training results of single-channel data and multichannel data when using STFT
method are compared in Figure 15. In the training set, the influence of single-channel
and dual-channel data on the fault identification accuracy is not significant, and good
identification accuracy is obtained. However, in the validation set, the loss function value
and accuracy of dual-channel data are more stable than that of single-channel data, which
indicates that the STFT method can effectively utilize multichannel information and achieve
improved fault identification accuracy in the VGG network after multichannel data processing.
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4.2.3. Evaluation under Different Load Conditions

The above experiments prove that the proposed model is effective for single-channel
and multichannel data under the condition of fixed power, and the multichannel data
diagnosis accuracy is better. The training accuracy of data processing by STFT method is the
highest. In reality, machines runs under different working conditions, so it is necessary to
verify the diagnostic accuracy of the proposed method under different working conditions.
1D bearing vibration data under 1 HP, 2 HP and 3 HP loads are processed by STFT method
and trained on a VGG neural network. The datasets generated under the four working
conditions are shown in Table 4.

Table 4. CWRU dataset of four load conditions.

Label 0 1 2 3 4 5 6 7 8 9
Normal IR0.007 B0.007 OR0.007 IR0.014 B0.014 OR0.014 IR0.021 B0.021 OR0.021

HP 0
244 121 123 122 122 122 122 122 122 123
27 13 13 13 13 13 13 13 13 13

HP 1
484 122 121 123 122 122 122 122 122 122
53 13 13 13 13 13 13 13 13 13

HP 2
484 122 122 121 122 122 122 122 122 122
53 13 13 13 13 13 13 13 13 13

HP 3
485 123 122 123 122 122 122 122 122 122
53 13 13 13 13 13 13 13 13 13

Bearing vibration datasets under four different working conditions were trained by
a VGG neural network, and the training results are shown in Table 5, Figures 16 and 17.
Under four different working conditions, the accuracy of the 1 HP load is the lowest, at
99.4%. With 0 HP, 2 HP and 3 HP loads, 100% accuracy was obtained in the validation set.
According to the confusion matrix and cluster graph, the bearing fault diagnosis data under
four working conditions all have confusion matrices with almost no error and clusters with
clear boundaries.
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Table 5. Final loss and accuracy of four load conditions.

HP Train Loss Val Loss Train Acc Val Acc

HP 0 0.0 0.0 1.0 1.0
HP 1 0.002 0.057 0.999 0.994
HP 2 0.0 0.0 1.0 1.0
HP 3 0.0 0.0 1.0 1.0

4.3. MFPT Experiment Results

The MFPT dataset was divided into four categories: baseline conditions, outer-race
fault conditions, more outer-race fault conditions and inner-race fault conditions. The
bearing vibration signals were converted into 2D images by STFT method. Because the
MFPT dataset only contains single-channel vibration data, the generated 2D image also
contains single-channel data. The dataset was divided at a ratio of 1:9, and the sample
dataset was obtained as shown in Table 6.

Table 6. MFPT dataset.

Label 0 1 2 3
Baseline Outer-Race Fault More Outer-Race Faults Inner-Race Fault

MFPT
1756 1757 1021 1021
195 195 113 113

VGG neural network training was used for 20 epochs of training, and the training
results are shown in Figure 18. A loss value of 0.011 and 99.7% accuracy were obtained on
the test set, and a loss value of 0.008 and 99.8% accuracy were obtained on the verification
set. According to the confusion matrix and cluster graph, four kinds of bearing faults are
diagnosed by this method, and a confusion matrix with almost no errors and a cluster
graph with clear boundaries are obtained. This shows that the method still has good
generalization ability in different datasets and for different bearing fault diagnoses.
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5. Conclusions

In the process of bearing fault diagnosis, calculation is complicated, and the accuracy
needs to be improved. In this paper, a bearing fault diagnosis method based on spectrum
map information fusion and convolutional neural network is proposed to realize the rapid
fault diagnosis of single- and multichannel bearing signals using VGG convolutional
neural networks. First, 1D bearing vibration data are processed by STFT to obtain a 2D
spectrum graph. Then, datasets are divided, and a VGG neural network is used for training
and diagnosis. Different channels, HP and bearings were adopted in the experiment. In
dataset 1, the fault diagnosis accuracy is 100% for identification of single-channel vibration
signals. Compared with common 1D data processing methods, the accuracy is the highest
and the convergence speed is the fastest. When a dual-channel vibration signal is used for
fault diagnosis, the two-channel model is more stable and converges faster. The lowest
and highest fault diagnosis accuracies of 99.4% and 100%, respectively, are obtained in the
case of 0–3 HP. In dataset 2, the parameters of vibration signals are different from those of
dataset 1, and 99.8% fault diagnosis accuracy is obtained. Thus, when converting 1D time
series into 2D images for fault diagnosis, the STFT transformation method can effectively
represent the feature information in the signal. The VGG network structure has better
classification performance for fault diagnosis. The combination of STFT data processing
and VGG convolutional neural networks can make full use of multichannel data in bearing
vibration signals and reduce the complex process of feature extraction so as to rapidly
diagnose bearing faults in mechanical equipment with strong robustness and effectiveness.
In the future work, the intelligent method will continue to be improved for bearing fault
diagnosis, and the method will be applied in practical scenarios.
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