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Abstract: A transiting test using vehicle-driving passive wind is a novel experimental technique
to perform aerodynamic tests, proposed by the authors. However, this low-cost, short-cycle, and
symmetrical test method can be influenced by many factors. In this paper, a comparative study on the
influence of road types on a transiting test of aerodynamic coefficient measurements is presented. The
tests were carried out on three different roads (expressway, viaduct highway, and tunnel highway);
for each road type, structure models with and without end plates were investigated. For all the road
types, measured turbulence intensity (around 4%) was similar to that of the wind tunnel test under
the following conditions: 3 ◦C temperature, 42% humidity, 0.28 m/s natural wind speed, vehicle
driving in a straight line with stable speed, and no traffic flow. All the tests were conducted under
the above conditions. To deal with the interference components in the original data signals obtained
from a viaduct highway and tunnel highway, a low-pass filter with a 1 Hz cutoff frequency was
used. With wind attack angles changing, the tendency of the aerodynamic coefficients of the test
model in the transiting test showed satisfactory consistency with that of the wind tunnel test; and the
results exhibited fine repeatability. Regarding the drag coefficients, the test model with end plates
was in good agreement with those from the wind tunnel test. Compared with the wind tunnel test,
the results of expressway showed the best consistency, considering turbulence intensity, pavement
surface roughness, and other factors. Thus, the transiting test in future research should be conducted
on the expressway, with end plates installed on both ends of the structure model.

Keywords: transiting test; road types; aerodynamic coefficient of structures; natural wind; acceleration
signal

1. Introduction

In recent years, with the continuous developments of construction techniques and
building materials, it is becoming increasingly common to find high-rise buildings and
long-span bridges. These lightweight and slender structures have lower damping and
stiffness and are prone to being damaged by strong wind, thus causing massive casualties
and large economic losses. Therefore, wind is one of the key loads in the structural design of
high-rise buildings [1,2] and long-span bridges [3,4]. For optimizing wind-resistant design
of structures, aerodynamic coefficients play a significant part in numerical calculation and
stability analysis. Research approaches of analyzing structural wind-resistant characteristics
mainly include field measurement, theoretical analysis, numerical simulation, and the
wind tunnel test. Field-measured data contain the most reliable first-hand information
of wind loads [5,6], and can also provide checks on the numerical simulation and wind
tunnel tests. Limited by various uncontrollable factors like topography and meteorology,
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however, the field experiments might be in a complicated situation in reality. Theoretical
analysis can provide an analytical solution to aerodynamic coefficients, which were in good
agreement with the experimental results [7]. For complicated cases, however, analytical
techniques are still in progress. Numerical simulation has the advantages of low cost
and flow visualization. In addition, with the presence of various finite element programs,
complex wind field simulation problems can be solved effectively. Nevertheless, due to the
huge computational burden in numerical simulation, validation of the wind tunnel test is
important and necessary [8,9]. The wind tunnel test possesses advantages like wind field
of good controllability and reliable test results with high accuracy, which contribute to its
wide use in the following fields: civil, aeronautic, and aerospace engineering [10–13]. On
the other hand, however, the wind tunnel test is time-consuming and expensive.

In order to find a test method alternative to the wind tunnel test, the transiting test
using vehicle-driving passive wind is developed by the authors [14,15]. This low-cost
and short-cycle test method showed good ability to perform wind resistance analyses [16],
compared with the wind tunnel test. The testing results showed good agreement with
the wind tunnel tests, demonstrating the reliability of this technique. However, before
this can fully mature, many issues have to be solved. The transiting test will undoubtedly
be affected by considerable interferences from natural outdoor conditions. Therefore,
interference mitigations for the transiting test are taken into account.

This paper investigates the influence of road types on the transiting test, based on the
analysis of experimental aerodynamic forces measured by dynamometric force balance,
thereby providing references of the optimum road type for transiting test in future research.
The effect of end plates together with influence of road types was evaluated in the transiting
test where a triangular cross-sectional body is considered as the test model. Transiting
tests were implemented on three different roads (expressway, viaduct highway, and tunnel
highway); for each road type, the test model with and without end plates was investigated.
That is, six test conditions in total were considered. Firstly, the impact of natural wind
obtained using the ultrasonic anemometer and the turbulence intensity measured by the
pitot tube were analyzed. Secondly, a data processing method was presented based on
the analysis of the time and frequency domains of the aerodynamic forces and vibration
accelerations in the corresponding direction. Finally, the optimum road type for the
transiting test is determined by comparing and analyzing the aerodynamic coefficients of
the test model in all test conditions. A general schematic is shown in Figure 1, showing the
procedure for each test.
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Figure 1. Schematic of the testing procedure.
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The structure of the paper is organized as follows: Section 2 documents the experimen-
tal setup, including experimental devices, test model, test conditions, specific assumptions,
and theoretical model. Section 3 presents the results from the transiting test and the discus-
sion, analyzing the influence of the road types on the transiting test. Section 4 closes the
paper by giving some conclusions on this research.

2. Experimental Setup
2.1. Experimental Devices

The prism test model was supported by a steel frame and mounted on the experimental
platform on top of the vehicle roof (see Figure 2). Experimental devices are mainly divided
into three subsystems: the aerodynamic forces and vehicle speed testing systems on the
vehicle roof (Figure 1) and vibration testing system inside the vehicle (Figure 3). Figure 4 is
a simplified flowchart showing the data acquisition process of the three subsystems.
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Figure 4. Data acquisition systems of the transiting tests.

The aerodynamic force testing system consists of force balance (model NOS-C901)
and the corresponding intelligent control instrument (model MCK-F). The former can
be used to measure the force conditions of the prism model, and the latter is capable of
real-time display and data storing. The force balance and prism model are connected by
bolts. The vehicle speed testing system includes pitot tube, high frequency pressure sensors,
and the corresponding demodulation instrument. The vibration testing system including
ultra-low frequency vibration accelerometers (model 941B) and the corresponding data
acquisition instrument (model INV3062T) aims at measuring the vibration accelerations
in the corresponding direction of lift and drag forces. Four mainly test devices were
investigated in total, as shown in Table 1.

Table 1. Description of the transiting test devices.

Test Devices Purpose

Ultra-low-frequency accelerometers and Data collecting instrument Measurement of wind speed and direction
Pitot tube and Demodulation instrument Measurement of air pressure

Vibration accelerometer and Intelligent control instrument Measurement of vibration acceleration
Force balance Measurement of lift and drag forces.

2.2. Prism Model and Test Conditions

Two-dimensional isosceles triangular cross-section bodies have been analyzed in
previous research [17,18], whose aerodynamic coefficients were measured with an angle
of 30◦ at the main vertex. As shown in Figure 5, the maximum characteristic length and
span of the test model are 0.100 m and 0.145 m, respectively. The plexiglass model is rigidly
connected with the experimental platform through the steel frame, thus assuring accurate
experimental results with high vehicle speeds. The Cruise Control System enables the
vehicle to drive at a constant speed of 72 km/h (20 m/s), the same as the wind velocity in
the wind tunnel. For vehicle yaw angles less than 8◦, the maximum vehicle speed correction
required was less than 1%, and no corrections were made for yaw [19,20]. The Reynolds
number was particularly high so that it might be neglected for the aerodynamic coefficients
of the model [19,20].

Expressway, tunnel highway, and viaduct highway are three typical test sites for
the transiting test. Pavement of these sites presents high strength, great rigidity, and
good stability. In addition, these roads were made of asphalt, there were expansion joints
above the viaduct, and the slope of the tunnel pavement was large, while the slope of the
expressway was small.



Processes 2022, 10, 1471 5 of 16

Processes 2022, 10, x FOR PEER REVIEW 5 of 16 
 

 

the vehicle to drive at a constant speed of 72 km/h (20 m/s), the same as the wind velocity 

in the wind tunnel. For vehicle yaw angles less than 8°, the maximum vehicle speed cor-

rection required was less than 1%, and no corrections were made for yaw [19,20]. The 

Reynolds number was particularly high so that it might be neglected for the aerodynamic 

coefficients of the model [19,20]. 

    

(a) (b) (c) (d) 

Figure 5. Prism model used in the transiting tests. (a) 30° Angle of attack, (b) 60° Angle of attack, (c) 

90° Angle of attack, (d) 120° Angle of attack. 

Expressway, tunnel highway, and viaduct highway are three typical test sites for the 

transiting test. Pavement of these sites presents high strength, great rigidity, and good 

stability. In addition, these roads were made of asphalt, there were expansion joints above 

the viaduct, and the slope of the tunnel pavement was large, while the slope of the ex-

pressway was small. 
Moreover, these sites are closed to passengers and non-motors to ensure high speed 

driving. Six test conditions were investigated in total, as shown in Table 2. Wind attack 

angles of the test model range from 30° to 120°, with an increment of 30°. To cancel the 

errors during the tests, three repeated tests were designed for each test conditions. The 

averaging results of three repeated tests were assumed to be the reliable final results. 

Table 2. Description of the transiting test conditions. 

Test Conditions Road Types 
End Plate 

Conditions 

Wind At-

tack Angles 

Acquisition 

Time 

Expressway, no end plates 
Expressway 

No end plates 

30°, 60°, 90°, 

120° 
100 s 

Expressway, end plates End plates 

Viaduct highway, no end plates Viaduct high-

way 

No end plates 

Viaduct highway, end plates End plates 

Tunnel highway, no end plates Tunnel high-

way 

No end plates 

Tunnel highway, end plates End plates 

2.3. Specific Assumptions 

This novel test method might be influenced by many factors. In standard practice of 

wind engineering, wind characteristics are usually classified by the terrain type over 

which the wind prevails. Previous research [21,22] has demonstrated that terrain rough-

ness, wind strength, and traffic density are the basis to classify measured on-road turbu-

lence data into different segments. Surrounding road conditions, such as upstream wakes 

of other moving vehicles nearby and roadside obstacles, also have an impact on the aero-

dynamic coefficients [23,24]. In other words, on-road wind characteristics experienced by 

the moving vehicle and the test model are greatly influenced by the road conditions. While 

Figure 5. Prism model used in the transiting tests. (a) 30◦ Angle of attack, (b) 60◦ Angle of attack,
(c) 90◦ Angle of attack, (d) 120◦ Angle of attack.

Moreover, these sites are closed to passengers and non-motors to ensure high speed
driving. Six test conditions were investigated in total, as shown in Table 2. Wind attack
angles of the test model range from 30◦ to 120◦, with an increment of 30◦. To cancel the
errors during the tests, three repeated tests were designed for each test conditions. The
averaging results of three repeated tests were assumed to be the reliable final results.

Table 2. Description of the transiting test conditions.

Test Conditions Road Types End Plate Conditions Wind Attack Angles Acquisition Time

Expressway, no end plates Expressway No end plates

30◦, 60◦, 90◦, 120◦ 100 s

Expressway, end plates End plates
Viaduct highway, no end plates Viaduct highway No end plates

Viaduct highway, end plates End plates
Tunnel highway, no end plates Tunnel highway No end plates

Tunnel highway, end plates End plates

2.3. Specific Assumptions

This novel test method might be influenced by many factors. In standard practice
of wind engineering, wind characteristics are usually classified by the terrain type over
which the wind prevails. Previous research [21,22] has demonstrated that terrain roughness,
wind strength, and traffic density are the basis to classify measured on-road turbulence
data into different segments. Surrounding road conditions, such as upstream wakes
of other moving vehicles nearby and roadside obstacles, also have an impact on the
aerodynamic coefficients [23,24]. In other words, on-road wind characteristics experienced
by the moving vehicle and the test model are greatly influenced by the road conditions.
While driving in a tunnel, the drag forces of the vehicles intensified as a result of the
blockage effect [25,26]. In the wind tunnel test, for a vehicle model moving on the viaduct
with high speed, evident noise signals might be caused by plenty of interfering factors, such
as bidirectional conversion bracket vibrations and guide rail irregularity [27]. Therefore,
three representative road types (expressway, viaduct highway, tunnel highway), which
span the range of terrain and traffic conditions that vehicles commonly traverse, were
selected as test sites to study the influence on the measurement of aerodynamic coefficients
in the transiting test. In both the wind tunnel test [28,29] and transiting test [14], end plates
are commonly used for reducing the effect of the flow on both ends, thus ensuring nominal
two-dimensional flow. In [14], the research work focuses on the effect of end plates on
the transiting test for measuring aerodynamic coefficients, and the optimum shape and
size were studied deeply. However, in this work, for a certain condition (without or with
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a certain kind) of end plates, the influence of different road types on the aerodynamic
coefficient measurement is the main issue.

To mitigate the interfering factors in the transiting tests, several actions were taken
(listed in Table 3). The impacts of natural wind and heavy traffic density were successfully
reduced by carrying out the tests at night. During a transiting test, the test model may
be subjected to interferences from not only crosswind and road side obstacles but also
vehicle vibration [30,31]. Large error would be produced if one calculates aerodynamic
forces directly based on the original signals [32]. Therefore, the original data were prop-
erly processed using a low-pass filter with a cutoff frequency of 1 Hz to calculate the
aerodynamic coefficients.

Table 3. Mitigations to cancel interferences for the transiting test.

Interfering Factors Interference Mitigations

Vibrations induced by irregular motion of the vehicle Tests conducted in straight road with flat surface, use of Cruise
Control System

Ancillary facilities (road greening, etc.) along the highway Vehicle driven in center of the lane
Traffic density Tests carried out at night

Natural wind, temperature, and humidity Tests done with 0.28 m/s natural wind speed, 3 ◦C temperature,
and 42% humidity

Boundary layer (less than 10 cm) of the vehicle roof At least a distance of 30 cm between the test model and
experimental platform

Vibration of the test model Use of steel frame to fix the plexiglass model to the
experimental platform

Data acquisition system Instruments placed in the vehicle with cables well arranged

In addition, the transiting test is carried out on the basis of the following assumptions.
The vehicle can run a straight line with constant velocity; the disturbance action of highways
and ancillary facilities, such as road greening, is neglected; the effects of local natural wind,
air temperature, and humidity are neglected; the air is steady and incompressible.

2.4. Theoretical Modeling

The airspeed Vair (or passive wind speed experienced by the moving vehicle, vehicle-
driving wind speed) can be defined as follows:

Vair =

√
2Pp − P0

ρ
, (1)

where P0 and Pp represent, respectively, the reference static pressure and total pressure
measured by the pitot tube; and ρ is the air density.

Drag force (FD), lift force (FL), and pitching moment (M) presented in terms of coef-
ficients per unit length; drag coefficient (CD), lift coefficient (CL), and moment coefficient
(CM) are calculated using force balance according to the following formulas:

CD =
FD(

Pp − P0
)
d

, (2)

CL =
FL(

Pp − P0
)
d

, (3)

CM =
M(

Pp − P0
)
d2 , (4)

where d is the height of the test model.
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3. Results and Discussion
3.1. Impact of Natural Wind on the Test

Located on the test road, the anemometer (Figure 6a) was mounted on a tripod with
the sensing element elevated to be coincident with the vehicle’s height dimension. The
ultrasonic anemometer synchronously recorded wind data in the east, north, and vertical
directions. The wind attack angles in the vertical direction were particularly small in
general, within the range of 3◦. Therefore, the wind flow was considered to be in the
horizontal direction [33]. Figure 6b shows the probability distribution of the direction and
the speed of the natural wind. The natural wind speed is approximately 0.28 m/s, and
its direction is mostly south-southwest. The ratio of the natural wind speed to airspeed
is approximately 1.4%, based on the airspeed Vair measured with the pitot tube close to
20 m/s. Thus, the impact of the natural wind on the aerodynamic coefficients of the test
model can be ignored.
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3.2. Coefficient of Variation of Vehicle-Driving Wind Speed

Turbulence intensity is the simplest way to quantify and compare the characteristics
of turbulence. It can indicate the turbulence length scale and the magnitude of turbu-
lent fluctuations, thus remarkably describing the wind field of the transiting test. The
turbulence intensity (or coefficient of variation of vehicle-driving wind speed [34]), for
all the tests conducted, as a whole (for each the road types), was close to 4%, as shown
in Table 4. Meanwhile, the coefficient of variation of vehicle-driving wind speed of the
viaduct highway was greater than those of the expressway and tunnel highway. Thus,
the wind field in the expressway test condition is the most stable, followed by the tunnel
highway, while that of the viaduct is the worst. This fact can be explained by the fact that
the test model is subjected to interferences arising from the crosswind while driving on the
viaduct highway.
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Table 4. Measured coefficient of variation of vehicle-driving wind speed (%).

Test Conditions
Wind Attack Angles

30◦ 60◦ 90◦ 120◦ Average

Expressway, no end plates 2.80 4.41 3.77 3.78 3.69
Expressway, end plates 2.55 6.78 1.93 2.62 3.47

Viaduct highway, no end plate 2.30 4.14 3.38 3.14 3.24
Viaduct highway, end plate 3.92 6.15 1.68 2.45 3.55

Tunnel highway, no end plate 2.05 3.23 2.49 1.77 2.39
Tunnel highway, end plate 3.36 3.16 2.32 1.83 2.67

Wind tunnel test [29,30] ≤4.00

The general trend of coefficient of variation of vehicle-driving wind speed reducing
with flow speed increasing can be illustrated in Figure 7, where the data were recorded on
the expressway with wind attack angles varied. As shown in Figure 7, it seems that, whilst
the data were scattered due to the nature of the wind, the differing thermal stratifications,
and the variations in local roughness, there was a distinct correlation between velocities and
intensity. These results are in accordance with those found by Watkins and Wordley [19,35].
All the tests were performed under the road speed of 20 m/s. Total wind speed of high
values represents data recorded in a headwind. However, total wind speed of low values
indicates either the influence of vehicle wakes or strong tail winds, thereby causing a
velocity deficit visible via the pitot tube. That is, the coefficient of variation of vehicle-
driving wind speed, which is greater than 4%, might be caused by these effects.
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Figure 7. Coefficient of variation of vehicle-driving wind speed of the wind field measured on
the expressway.

3.3. Stability Analysis of the Aerodynamic Forces and Vibration Accelerations

The time histories of all tests were visually inspected to check for evident transient
events and unacceptable trends of the mean value. Then, time histories of the aerodynamic
forces and vibration accelerations in corresponding directions were analyzed in time and
frequency domains. The duration of each test is 40 s, and the sampling frequency is 50 Hz.
The test results of the same road type are similar. Thus, Figures 8–10 only present the time
histories of the aerodynamic forces at wind attack angle of 30◦ and vibration accelerations
in corresponding directions under test conditions of no end plates. From Figures 8–10, a
noise component was observed in the vibration accelerations of the viaduct highway and
tunnel highway compared with the expressway. This phenomenon is due to the expansion
joints of the viaduct highway and speed bumps of the tunnel highway. In general, vibration
acceleration was usually divided into horizontal acceleration and vertical acceleration;
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due to the location of vibration source and other factors, there will be noise in vibration
acceleration. Most measurements of vibration processes at the present time were made
using vibration acceleration sensors (accelerometers), and the acceleration was converted
into a vibration velocity or a vibration displacement by electrical methods. The vibration
acceleration signal reflects the fluctuating range of the time histories of lift and drag forces,
thus showing irregularity of the road surface. Various interfering factors, such as test model
vibration and pavement irregularity, can cause evident noise signals when the vehicle
moves on the viaduct highway and tunnel highway at a high speed. Thus, the original data
must be preprocessed in a proper way.
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Figure 8. Time histories of aerodynamic forces (at wind attack angle of 30°) and vibration accelera-

tions in the corresponding direction, with test conditions of expressway and no end plates. 
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Figure 9. Time histories of aerodynamic forces (at wind attack angle of 30°) and vibration accelera-

tions in the corresponding direction, with test conditions of viaduct highway and no end plates. 

Figure 8. Time histories of aerodynamic forces (at wind attack angle of 30◦) and vibration accelerations
in the corresponding direction, with test conditions of expressway and no end plates.
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Figure 9. Time histories of aerodynamic forces (at wind attack angle of 30°) and vibration accelera-

tions in the corresponding direction, with test conditions of viaduct highway and no end plates. 

Figure 9. Time histories of aerodynamic forces (at wind attack angle of 30◦) and vibration accelerations
in the corresponding direction, with test conditions of viaduct highway and no end plates.
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Figure 11. Spectrum diagrams of the aerodynamic force (at wind attack angle of 30°) and vibration 

accelerations in the corresponding direction under test condition of no end plates and expressway. 

Figure 10. Time histories of aerodynamic forces (at wind attack angle of 30◦) and vibration accelera-
tions in the corresponding direction, with test conditions of tunnel highway and no end plates.
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The spectrum diagrams (Figures 11–13) of the aerodynamic forces at a wind attack
angle of 30◦, and vibration accelerations in corresponding directions under test conditions
of no end plates were obtained by performing Fast Fourier Transform. Figure 11 shows
the fluctuation of lift and drag forces and vibration accelerations in the frequency domain,
under test condition of expressway and no end plates.
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Figure 11. Spectrum diagrams of the aerodynamic force (at wind attack angle of 30°) and vibration 

accelerations in the corresponding direction under test condition of no end plates and expressway. 

Figure 11. Spectrum diagrams of the aerodynamic force (at wind attack angle of 30◦) and vibration
accelerations in the corresponding direction under test condition of no end plates and expressway.
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Figure 13. Spectrum diagrams of the aerodynamic force (at wind attack angle of 30°) and vibration 

accelerations in the corresponding direction under test condition of no end plates and tunnel highway. 
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Figure 14. Time histories of the aerodynamic forces in conditions of viaduct highway and no end 

plates, at a wind attack angle of 30°. 

Figure 12. Spectrum diagrams of the aerodynamic force (at wind attack angle of 30◦) and vibration ac-
celerations in the corresponding direction under test condition of no end plates and viaduct highway.
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Figure 13. Spectrum diagrams of the aerodynamic force (at wind attack angle of 30°) and vibration 

accelerations in the corresponding direction under test condition of no end plates and tunnel highway. 
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Figure 14. Time histories of the aerodynamic forces in conditions of viaduct highway and no end 

plates, at a wind attack angle of 30°. 

Figure 13. Spectrum diagrams of the aerodynamic force (at wind attack angle of 30◦) and vibration
accelerations in the corresponding direction under test condition of no end plates and tunnel highway.

A large error would be produced if one calculates aerodynamic forces directly based
on the original signals. To avoid the error, a low-pass filter of 4 Hz [28] had been adopted
in previous research when processing the original data. Figures 12 and 13 indicate that the
frequency fluctuation of the accelerations is concentrated mainly between 1 Hz and 4 Hz,
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thereby resulting in signal disturbance that corresponds to the main frequency band of the
spectrum diagrams of the aerodynamic forces under test conditions of no end plates for
viaduct highway and tunnel highway. Thus, the aerodynamic coefficients’ calculation of
the test model with conditions of viaduct highway and tunnel highway was filtered using
a low-pass filter to cancel the interference of the vehicle vibration on aerodynamic forces
measurement. Different from [28], the cutoff frequency here was chosen as 1 Hz.

The stationarity level of the test data was characterized by the coefficients of varia-
tion [19,20]. The time histories of the aerodynamic forces without end plates before and
after filtering at wind attack angle of 30◦ under test conditions of viaduct highway and
tunnel highway are presented in Figures 14 and 15, respectively. For tests on viaduct
highway without end plates (Figure 14), the coefficients of variation of the drag force before
and after filtering are 8.46% and 5.27%, respectively; and those of lift forces are 5.42% and
3.25%, respectively. For tests on the tunnel highway without end plates (Figure 15), the
coefficients of variation of the drag force before and after filtering are 7.19% and 3.36%,
respectively; and those of lift forces are 6.71% and 3.77%, respectively. The fluctuation of
the aerodynamic forces is effectively diminished and becomes stable after filtering.
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Figure 12. Spectrum diagrams of the aerodynamic force (at wind attack angle of 30°) and vibration 

accelerations in the corresponding direction under test condition of no end plates and viaduct high-

way. 
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Figure 13. Spectrum diagrams of the aerodynamic force (at wind attack angle of 30°) and vibration 

accelerations in the corresponding direction under test condition of no end plates and tunnel highway. 
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Figure 14. Time histories of the aerodynamic forces in conditions of viaduct highway and no end 

plates, at a wind attack angle of 30°. 
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Figure 16. Comparisons of the aerodynamic coefficients of the test model with end plates measured 

by the wind tunnel test and transiting tests. 

Figure 15. Time histories of the aerodynamic forces in conditions of tunnel highway and no end
plates, at a wind attack angle of 30◦.

3.4. Influence of Road Types on Aerodynamic Coefficients

Aerodynamic coefficients of the test model calculated using Formulas (1)–(4) by the
measured data are compared in Figures 16 and 17. The tendency of the aerodynamic
coefficients of the model under three test conditions (road types) of the transiting test with
the changing of wind attack angles shows satisfactory consistency with a wind tunnel test.
The error of the results between the transiting and the wind tunnel tests is mainly caused by
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differences in test devices and experimental environments. With the increase of wind attack
angles, drag coefficients of the test model firstly increase and then decrease. By contrast, lift
coefficients of the model decrease with the increasing wind attack angles. The results of the
expressway are most consistent with the wind tunnel test, followed by the tunnel highway,
while the viaduct highway is the worst due to crosswind and expansion joints. Results in
Figures 16 and 17 illustrate that the drag coefficients obtained under the tunnel highway
test condition are greater than those of the viaduct highway due to the blockage effect.
From Figures 16 and 17, for the wind attack angle of 30◦, all the six conditions showed
good results compared with that of the wind tunnel test, while the test model with end
plates on the expressway was the best. With wind attack angles increasing, however, even
though all the six test conditions exhibited a larger difference with wind tunnel tests, the
test model with end plates on the expressway still showed good consistency, and had better
results compared with the other test conditions.
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Figure 17. Comparisons of the aerodynamic coefficients of the test model without end plates mea-
sured by the wind tunnel test and transiting tests.

In general, the repeatability error refers to the RMS error of the aerodynamic coef-
ficients of the same test model under the same test condition through non-continuous
repeated tests. Three times repeatability precisions under six test conditions are shown in
Table 5. The minimum drag and lift coefficients repeatability errors are 0.45 × 10−2 and
0.46 × 10−2, respectively. The maximum drag and lift coefficients repeatability errors are
5.98 × 10−2 and 5.58 × 10−2, respectively. The repeatability errors are within ±6%, thus
verifying the good repeatability of the transiting tests carried out and the high precision
of results.
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Table 5. Three times repeatability precision (×10−2) of aerodynamic coefficients from transiting tests
conducted.

Aerodynamic
Coefficients Test Conditions

Wind Attack Angles
30◦ 60◦ 90◦ 120◦

Drag force
coefficients

Expressway, no end plates 0.45 3.88 3.06 5.04
Expressway, end plates 1.05 4.23 0.76 2.93

Viaduct highway, no end plates 5.98 2.15 1.74 2.63
Viaduct highway, end plates 1.79 2.80 1.09 2.00

Tunnel highway, no end plates 2.36 1.10 5.38 2.49
Tunnel highway, end plates 4.50 4.83 2.65 1.70

Lift force
coefficients

Expressway, no end plates 1.30 1.36 2.35 4.64
Expressway, end plates 0.46 3.35 4.16 2.44

Viaduct highway, no end plates 5.58 3.03 2.30 1.39
Viaduct highway, end plates 2.59 2.29 1.73 1.56

Tunnel highway, no end plates 2.35 4.52 2.74 0.59
Tunnel highway, end plates 5.71 1.77 1.30 0.96

3.5. Effect of End Plates on the Aerodynamic Coefficients

Aerodynamic coefficients of the test model with and without end plates are shown
in Figure 18. No evident regularity was obtained from the lift coefficients of the test
model. The drag coefficients of the test model in the transiting test without end plates were
generally smaller, whereas those of the model with end plates showed good accordance
with the wind tunnel test. For test conditions without end plates, the flow moves from the
outer to the wake of the test model due to the difference in pressure of the leeward and
the windward sides of the test model. The end plates can resist this flow, thus resulting in
the increasing drag force. Fundamentally, end plates can decrease the influence of flow to
ensure a nominal two-dimensional flow in the section model tests [36,37].
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3.6. Comparison of the Influence of Road Types and Effect of End Plates

Average values of the aerodynamic coefficients of the test model under each test
condition were calculated. The lift coefficients of the model exhibit no particular trend.
The drag coefficients for wind attack angle of 30◦ are plotted in Figure 19, where the
trends in the aerodynamic coefficients of the test model due to changes in road types and
end plates can be better demonstrated. The data in Figure 19 demonstrate that the drag
coefficients of the test model increase with road types (from viaduct highway to tunnel
highway to expressway), but the sensitivity is not as strong as that for end plates [14].
In other words, the road type has a smaller influence on the drag coefficient of the test
model, compared with end plates. Take the example of wind attack angle of 30◦, the drag
coefficients of expressway test conditions are 0.985 with end plates and 0.821 without end
plates, while the drag coefficients of tunnel highway test conditions are 0.883 with end
plates and 0.812 without end plates.
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4. Conclusions

This paper mainly investigates the influence of road types on the transiting test for
aerodynamic coefficient measurements: expressway, viaduct highway, and tunnel highway.
The following remarks can be concluded from the experimental tests:

1. The coefficient of variation of vehicle-driving wind speed of the expressway, viaduct
highway, and tunnel highway in the transiting tests were close to or even smaller than
4% under several conditions similar to those of the wind tunnel test, as follows: 3 ◦C
temperature, 42% humidity, 0.28 m/s natural wind speed, vehicle driving at a stable
speed in straight line, and no traffic flow.

2. In the transiting test under the aforementioned conditions, the tendency of the aero-
dynamic coefficients of the test model with the change of wind attack angles showed
satisfactory consistency with that of the wind tunnel test. The results of the transiting
test demonstrated satisfactory repeatability.

3. In comparison with the wind tunnel test, the drag coefficients of the test model in the
transiting test without end plates were generally smaller, whereas those of the test
model with end plates were in good agreement with the wind tunnel test.

4. The results obtained from the expressway were the most consistent with those from
the wind tunnel test. In future research, transiting tests should be carried out on the
expressway under the aforementioned conditions, with end plates installed on both
ends of the test model.
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