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Abstract: Two different strategies are provided to generate solutions to the three-dimensional heat
diffusion equation. The first strategy is inspired by the well-known one-dimensional heat polynomial,
which consists of an infinite set of polynomials, which are solutions to the one-dimensional heat
diffusion equation. The second strategy is based on an exponential type function. None of the
solutions presented here can be obtained by the method of separation of variables. The mathematical
developments proving that, indeed, the particular solutions generated with both strategies satisfy
the three-dimensional heat diffusion equation are presented. The analytical solutions are validated
by generating the corresponding numerical solutions with the method of finite differences. When
comparing both analytical and numerical solutions, it is found that they are identical. In addition,
as part of the results, it is found that there are exponential solutions that reproduce the behavior of
polynomial solutions. Finally, an example of the use of heat polynomials in engineering applications
is provided.

Keywords: three-dimensional heat diffusion equation; partial differential equation; analytical solu-
tions; heat polynomial

1. Introduction

A heat diffusion equation is a partial differential equation (PDE) that models the
spatial distribution and the time evolution of temperature in a body under specific initial
and boundary conditions [1–4], it is widely used in heat transfer process [5–7], and it can
be formulated from one to three spatial dimensions and one temporal dimension, in such
case it would contain a transient state. It can also be found in rectangular, cylindrical, and
spherical coordinates.

The classic way to solve the one-dimensional heat diffusion equation is through the
method of separation of variables. In this method, the initial condition is approximated
by an infinite number of sinusoidal terms, or more specifically, by a Fourier series. The
solution to the heat equation will have as many terms as addends have been employed to
approximate the initial condition [8]; therefore, this method is also referred to as the Fourier
method and is used in [9,10].

Heat polynomials are polynomials that are solutions to the one-dimensional heat
diffusion equation [11]. They were defined by Laplace in 1810 and studied by Cheby-
shev in 1859 [12]. Later in 1684, Hermite wrote about them, so they became known as
“Hermite Polynomials” [13,14]. Applications of the heat polynomial are diverse, and they
are extensively discussed in [15]. A first example of its use consists in determining the
temperatures distribution in a homogeneous rod when one of its ends is subjected to a
finite flow of constant surface heat. A second example of its use is the determination of
the Biot number [16], a quantity of significant importance since it provides a relationship
between heat transfer by convection and heat transfer by conduction when both are present.
Heat polynomials are defined in terms of a spatial variable x, and a temporary variable t,
so they satisfy the one-dimensional heat diffusion equation [17–19].
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Several contributions are intended to provide solutions to the heat diffusion equation.
For example, in [20,21], an analytical solution is proposed to the two-dimensional heat
diffusion equation; likewise, in [22–24], analytical and numerical solutions to the three-
dimensional heat equation are presented. Additionally, in [25], an analytical solution is
provided to equation that governs heat transfer in a cooling process. In [26,27], analytical
and semi-analytical solutions, respectively, are presented to solve heat transfer problems
on irregular or anisotropic media. Unlike previous works, in [28], the authors go further
and provide a general method to finding closed solutions to the heat diffusion equation.

Heat conduction problems are the main application that makes use of the heat diffusion
equation. The solution strategies provided in this work are aimed at solving these types
of problems, thus, some related works will be indicated. In [29,30], a problem consisting
of identifying a heat source is solved. In [31], non-local time models are used to describe
small-scale thermal processes, which incorporate heat flow memory. These models are
transformed to simpler ones that are no more complicated to solve than the classical heat
equation. In [32], the heat conduction problem is solved numerically for the new proposed
functionally graded porosity media. In [33], the inverse heat conduction problem is solved
using Trefftz functions that satisfy the heat diffusion equation, but they are characterized
by their lack of analytical form. Finally, in [34], a method to find heat conduction models
by machine learning is developed. The learned PDEs are solved by conventional numerical
methods. In diffusive convective heat transfer processes in porous media [35,36], it is also
common to find the heat diffusion equation.

The main objective of this article is to provide two different strategies to generate
closed solutions to the three-dimensional heat diffusion equation with transient state and
without heat generation. These strategies consist of formulas that generate scalar fields of
two different types, polynomial and exponential, which satisfy the heat diffusion equation
in three dimensions analytically. At the end of the study, it is concluded that each strategy,
in effect, generates an infinite number of solutions to the three-dimensional heat diffusion
equation. In addition, two findings are made, the first one is an intrinsic relationship
between the coefficients of the one-dimensional polynomials and the coefficients of three-
dimensional polynomials, and the second one is a relation between the polynomial solution
and the exponential solution. The application of the obtained results is shown by using
a heat polynomial to describe a heat conduction phenomenon. Through Remark 1, one-
dimensional heat diffusion equation is introduced.

Remark 1. The one-dimensional heat diffusion Equation (1) is obtained from Fourier’s law and the
principle of conservation of energy.

∂u(x, t)
∂t

= α
∂2u(x, t)

∂x2 ; (1)

where u : V → R with V ⊂ R2 is a scalar field that represents the temperature distribution in the
body of study and constitutes the unknown function in the heat diffusion equation; both x and t are
the independent variables, x represents the spatial variable, while t represents the temporal variable.
Literal α is the thermal diffusivity measured in m2/s and it is calculated as kt/

(
ρcp
)
, where kt is

the thermal conductivity measured in W/m·K, ρ is the density of the body measured in kg/m3, and
cp is its thermal capacity measured in J/kg·K.

To facilitate the identification of the literals used, in Table 1 the description of each
number of the parameters used throughout the entire text is presented.
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Table 1. Nomenclature used in this study.

Symbol Definition Units

u, uN , uN,q Temperature K
x, y, z Spatial variables m

t Temporal variable s
α Thermal diffusivity m2/s
kt Thermal conductivity W/m·K
ρ Density kg/m3

cp Specific heat J/kg·K

q
′′
s

Finite flow of constant surface
heat W/m2

c(k) Discrete sequence -
βi, γ Constants -

q Boolean variable -
i, j, k Iterative variables -

N, p Natural number greater than
zero -

∇2 Laplacian operator -
V Region of the solution domain -

w Mathematical function of
spatial variables -

As background, the heat polynomial is presented. Typically, a single formula is
presented to generate them, but here a slight novelty is introduced. Two formulas that are
distinguished by the parity of the exponents for the spatial variable x will be presented.
The use of one or the other is left to the user’s choice. The user must only establish the
value of the literal N ∈ N, which will be the number of terms in the polynomial. For each
formula, a recursive equation of variable parameters is attached, which serves to generate
the coefficients of each term in the heat polynomial. Likewise, the initial condition for the
recursive equation is provided.

Equation (2) generates polynomials with even exponents for the spatial variable, while
Equation (3) generates polynomials with odd exponents for the spatial variable. In both
cases, obtaining the coefficients c(k) is performed recursively, as shown.

uN(x, t) =
N

∑
k=1

c(k) · α−N+k+1x2(N−k)tk−1 (2a)

c(k) =
1

k− 1
(2N − 2k + 2)(2N − 2k + 1)c(k− 1) (2b)

c(1) = 1 (2c)

uN(x, t) =
N

∑
k=1

c(k) · αk−2x2(N−k)+1tk−1 (3a)

c(k) =
1

k− 1
(2N − 2k + 2)(2N − 2k + 3)c(k− 1) (3b)

c(1) = 1 (3c)

The recursive equations attached to Equations (2) and (3) were solved, so equa-
tions generating the heat polynomials with such built-in solutions are rewritten in
Equations (4) and (5), respectively.
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uN(x, t) =
N

∑
k=1

(2N − 2)!
(k− 1)!(2N − 2k)!

α−N+k+1x2(N−k)tk−1 (4)

uN(x, t) =
N

∑
k=1

(2N − 1)!
(k− 1)!(2N − 2k + 1)!

αk−2x2(N−k)+1tk−1 (5)

Note that the linear combination of two or more generated heat polynomials is also a
solution to the heat diffusion equation in its one-dimensional form (1).

2. Materials and Methods

In this section the two strategies for generating analytical solutions to the three-
dimensional heat diffusion equation will be presented, but before that, this equation will
be introduced through Remark 2.

Remark 2. The equation that describes the propagation of heat in an isotropic and homogeneous
medium in three dimensions is presented in Equation (6).

∂u(x, y, z, t)
∂t

= α

[
∂2u(x, y, z, t)

∂x2 +
∂2u(x, y, z, t)

∂y2 +
∂2u(x, y, z, t)

∂z2

]
(6)

This equation written in a compact form is presented in Equation (7).

∂u
∂t

= α∇2u; (7)

where u : V → R, with V ⊂ R4 is a scalar field that represents the temperature distribution in the
body of study and it is the unknown function in the heat diffusion equation. Literals x, y, z are the
spatial coordinates, and t is the temporary variable, all of them are independent variables. Similar to
in Equation (1), parameter α is the thermal diffusivity measured in m2/s.

2.1. Polynomial Solution Strategy

The formula whose goal is to generate polynomials that are solutions to the three-
dimensional heat diffusion equation will be presented, but before that, two simple parame-
ters must be defined by the user.

1. The parameter N constitutes the number of terms that the polynomial will have
for each spatial variable, so this literal can only take values from the set of natural
numbers, that is, N ∈ N.

2. For each N selected, it will be possible to generate two different solutions that will
be distinguished by the parity of the exponents of the spatial variables x, y, and z.
The parameter that allows choosing one solution or another is q. If q = 1, then all the
exponents of the spatial variables will be even, while if q = 0, then they will be odd.

Another simple additional parameter involved in this strategy is denoted by the literal
p, it depends only on the literal N, and it is calculated as follows.

q = 1→ p = 2N

q = 0→ p = 2N − 1
(8)
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In Equation (9), the formula to generate polynomials, which are solutions to the
three-dimensional heat diffusion equation, is presented.

uN,q(x, y, z, t) =
N

∑
k=1

c(k) ·
[

β1xp−2k+2 + β2yp−2k+2 + β3zp−2k+2
]
(αt)k−1

+ q
(

2
N

)
(β1 + β2 + β3)c(N)(αt)N (9a)

c(k) =
(p− 2k + 4)(p− 2k + 3)

k− 1
c(k− 1) (9b)

c(1) = 1 (9c)

Note from Equation (9) that only when q = 1 does the generated polynomial contain
an additional term that is a function of the temporary variable only. Note also that, as
for the one-dimensional heat polynomials, a recursive equation is used to generate the
coefficients of the spatial variables. The literals β1, β2, and β3, meanwhile, are arbitrary real
constants.

The recursive equation attached to Equation (9) has been solved, so this equation is
rewritten in Equation (10).

uN,q(x, y, z, t) =
N

∑
k=1

p!
(k− 1)!(p− 2k + 2)!

[
β1xp−2k+2 + β2yp−2k+2 + β3zp−2k+2

]
(αt)k−1

+ q
2 · p!

N!(p− 2N + 2)!
(β1 + β2 + β3)(αt)N

(10)

Two polynomials will then be generated from this formula, one with even exponents
and one with odd exponents for the spatial variables. The proofs that both are solutions to
the three-dimensional heat equation will be presented.

Let N = 2 and q = 1, then p = 4. The generated polynomial is presented in
Equation (11).

u2,1(x, y, z, t) =β1x4 + β2y4 + β3z4

+ 12β1x2αt + 12β2y2αt + 12β3z2αt

+ 12(β1 + β2 + β3)α
2t2

(11)

It will be verified that the polynomial appearing in Equation (11) is, indeed, a solution
of the three-dimensional heat diffusion equation. Below, the derivatives of this polynomial
that were made according to the Equation (6) are shown.

∂2u
∂x2 = 12β1x2 + 24β1αt (12a)

∂2u
∂y2 = 12β2y2 + 24β2αt (12b)

∂2u
∂z2 = 12β3z2 + 24β3αt (12c)

∂u
∂t

= 12β1x2α + 12β2y2α + 12β3z2α + 24(β1 + β2 + β3)α
2t (12d)
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Substitution of (12) into (6) yields the expression shown in (13), whose identity proves
that polynomial given in (11) is a solution to the heat diffusion equation described in (6).

12β1x2α + 12β2y2α + 12β3z2α + 24(β1 + β2 + β3)α
2t ≡

α
(

12β1x2 + 24β1αt + 12β2y2 + 24β2αt + 12β3z2 + 24β3αt
)

(13)

Let N = 3 and q = 0, then p = 5. The generated polynomial is presented in
Equation (14).

u3,0(x, y, z, t) =β1x5 + β2y5 + β3z5

+ 20β1x3αt + 20β2y3αt + 20β3z3αt

+ 60β1xα2t2 + 60β2yα2t2 + 60β3zα2t2

(14)

It will be verified that the polynomial appearing in Equation (14) is, indeed, a solution
of the three-dimensional heat diffusion equation. Below, the derivatives of this polynomial
that were made according to Equation (6) are shown.

∂2u
∂x2 = 20β1x3 + 120β1xαt (15a)

∂2u
∂y2 = 20β2y3 + 120β2yαt (15b)

∂2u
∂z2 = 20β3z3 + 120β3zαt (15c)

∂u
∂t

= 20β1x3α + 20β2y3α + 20β3z3α + 120β1xα2t + 120β2yα2t + 120β3zα2t (15d)

Substitution of (15) into (6) yields the expression shown in (16), whose identity proves
that polynomial given in (14) is a solution to the heat diffusion equation described in (6).

20β1x3α + 20β2y3α + 20β3z3α + 120β1xα2t + 120β2yα2t + 120β3zα2t ≡

α
(

20β1x3 + 120β1xαt + 20β2y3 + 120β2yαt + 20β3z3 + 120β3zαt
)

(16)

After just having proved that both particular polynomial solutions satisfy to heat
diffusion equation in three dimensions, through Remark 3 a classic conclusion in the field
of differential equations is highlighted.

Remark 3. The linear combination of two or more polynomials generated from Equation (10) is
also a solution to three-dimensional heat diffusion equation.

2.2. Exponential Solution Strategy

The closed exponential solution proposed to the three-dimensional heat diffusion
equation is the following.

u(x, y, z, t) = β4e(β2
1+β2

2+β2
3)αt−(β1x+β2y+β3z) + β5 (17)

Here, x, y, and z are the spatial variables, while t is the temporal variable; all of them
are independent variables. The coefficients β1, . . . , β5 are arbitrary real constants.

For the purpose of writing the above equation in a more compact way, γ = β2
1 +

β2
2 + β2

3, and w = β1x + β2y + β3z are performed. Then Equation (17) is rewritten in
Equation (18).

u(x, y, z, t) = β4eαγt−w + β5 (18)
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As can be seen from Equation (17), the coefficient of the literal t is constituted by the
sum of the squares of the arbitrary constants β1, β2, and β3, so this coefficient cannot be
negative.

It will be verified that the exponential solution appearing in Equation (17) is, indeed, a
solution of the three-dimensional heat diffusion equation. Below, the derivatives of this
expression that were made according to Equation (6) are shown.

∂2u
∂x2 = β2

1β4eα(β2
1+β2

2+β2
3)t−(β1x+β2y+β3z) (19a)

∂2u
∂y2 = β2

2β4eα(β2
1+β2

2+β2
3)t−(β1x+β2y+β3z) (19b)

∂2u
∂z2 = β2

3β4eα(β2
1+β2

2+β2
3)t−(β1x+β2y+β3z) (19c)

∂u
∂t

= α
(

β2
1 + β2

2 + β2
3

)
β4eα(β2

1+β2
2+β2

3)t−(β1x+β2y+β3z) (19d)

Substitution of (19) into (6) yields the expression shown in (20), whose identity proves
that the function given in (17) is a solution to the heat diffusion equation described in (6).

αγβ4eαγt−w ≡ α
[

β2
1β4eαγt−w + β2

2β4eαγt−w + β2
3β4eαγt−w

]
(20)

Remark 4. Both the polynomial and exponential analytical solutions cannot be obtained by the
method of separation of variables.

2.3. Validation of the Solutions

To validate the analytical solutions generated with each of the proposed solution
strategies, such solutions will be compared with the corresponding numerical solutions of
the heat diffusion equation. The method of finite differences is used to obtain the numerical
solution to the heat diffusion equation. The discretization of the equation is carried out
in its implicit form because it has greater stability than the explicit form, and because it
does not have restrictions on the values of the space and time differentials. To make a fair
comparison, the numerical solutions are obtained using the initial and boundary conditions
present in the analytical solutions.

The discretized one-dimensional heat diffusion equation is shown in Equation (21).
This equation was applied to each of its nodes in the mesh.

u(i, j)− u(i, j− 1)
∆t

= α
u(i + 1, j)− 2u(i, j) + u(i− 1, j)

∆x2 ; (21)

where, i is the iterative index for the spatial variable, and j is the iterative index for the
temporal variable.

Remember that, applying the method of finite differences in its implicit form, a matrix
system must be solved for each iteration on the time axis. The size of this matrix system
coincides with the number of nodes on the spatial axis.

3. Results

Two strategies to generate closed solutions that satisfy the three-dimensional heat
diffusion equation with transient state and without internal heat generation are the main
result of this study. These two strategies consist of explicit formulas capable of generating
an infinite number of solutions to the three-dimensional heat diffusion equation. The
traditional solutions obtained with the method of separation of variables consist of the
product of two functions, one that depends only on time and the other one that depends
only on space. The solutions generated with the strategies proposed here cannot be obtained
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by this method because such solutions consist of several terms that are necessary to all
them satisfy the heat diffusion equation.

The simplest way to generate the coefficients for each of the terms in the polynomial is
through recursive equations. These recursive equations have variable coefficients, which
increases their complexity; however, in this text such equations are solved in an explicit
manner, which greatly facilitate the generation of the polynomials, especially if they are
intended to be programmed since they save computing time.

3.1. Solution Graphs

That partial differential equation (PDE) addressed in this study is multidimensional
makes it impossible to draw the graphs of the scalar fields, which are solutions to the heat
diffusion equation; however, that terms for each spatial variable in the solutions have the
same algebraic structure allows outlining the behavior of temperature graphically using a
single spatial variable. In other words, the graphs of the scalar fields of the solutions to the
three-dimensional heat diffusion equation will be presented using only the spatial variable
x. The behavior of the remaining spatial variables can be understood as similar.

The scalar fields that are solutions of the heat diffusion equation were plotted using
the R2017b version of Matlab® Natick, MA, USA. These graphs are presented and analyzed
below. The domain of the analytic solutions is the entire space; however, to view the graphs,
it was decided to use the interval (−10 ≤ x ≤ 10) for the spatial variable, and the interval
(0 ≤ t ≤ 20) for the temporal variable.

It can be verified that the scalar field corresponding to the polynomial given in
Equation (11) presents a typical behavior of a function whose spatial variable contains
even exponents (Figure 1). This means that the temperature increases with the spatial
variable on both the positive and negative axes. Since β1 > 0, the temperature increases
positively, while if β1 < 0, the temperature would increase negatively. In addition, it can be
seen that the temperature increases with time on the positive side of the space axis.

0
20

10

15 10

20

u
(x

,t
) 

(K
)

5

30

t (s)

10

x (m)

0

40

5 -5
0 -10

Figure 1. Scalar field resulting from Equation (11) with β1 = 0.8× 10−3, β2 = 0, β3 = 0, and α = 1.2.

It can be verified that the scalar field corresponding to the polynomial given in
Equation (14) presents a typical behavior of a function whose spatial variable contains
odd exponents (Figure 2). This means that the temperature increases with the spatial
variable on the positive axis and decreases on the negative axis. This occurs because β1 > 0.
The opposite case would occur if β1 < 0. Similar to the previous scalar field, it can be seen
that the temperature increases with time on the positive side of the space axis.
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Figure 2. Scalar field resulting from Equation (14) with β1 = 0.4× 10−4, β2 = 0, β3 = 0, and α = 1.2.

The exponential scalar field of Equation (17) is also plotted (Figure 3). It can also
be seen that the temperature increases with time. In particular, when positive constants
are used, the temperature increases at the left end, i.e., at x = 0; however, this can be
changed. When negative constants are used, the exponential solution becomes similar to
the polynomial solution (Figure 4).
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60
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Figure 3. Scalar field resulting from Equation (17) with β1 = 0.5, β2 = 0, β3 = 0, β4 = 0.1, β5 = 0,
and α = 1.2.
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a) Polynomial solution
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b) Exponential solution
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Figure 4. (a) Scalar field resulting from Equation (11) with β1 = 0.8× 10−3, β2 = 0, β3 = 0, and
α = 1.2. (b) Scalar field resulting from Equation (17) with β1 = −0.2, β2 = 0, β3 = 0, β4 = 2,
β5 = −2, and α = 1.2.
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3.2. Numerical Validation of Solutions

The analytical solutions generated with the proposed strategies will be validated.
The way to do it will be generating their corresponding numerical solutions, which must
coincide quantitatively.

The analytical solution to be validated will consist of the linear combination of the
two polynomial solutions addressed in Equations (11) and (14), this polynomial is shown
in Equation (22).

u(x, y, z, t) =
1

45, 712
u2,1 +

−1
925, 600

u3,0; (22)

where the constants β1 = 1, β2 = 0, and β3 = 0, and the thermal diffusivity α = 1.2 were
used in both scalar fields. The coefficients that multiply each scalar field were chosen so
that each of them was normalized over the simulated time. To make a fair comparison, the
initial and boundary conditions used in the numerical solution were the same as those that
resulted in the analytical solution.

As a result, it can be seen that the graphs of the analytical solution and the numerical
solution are identical (Figure 5). The difference between them is no more than 14× 10−4.
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10
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) 

(K
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0.15

a) Analytic polynomial solution
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b) Numerical solution
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c) Difference

t (s)

10

x (m)

15

5

0 0

Figure 5. Validation of the scalar field of Equation (22). (a) Analytical solution, (b) numerical solution,
and (c) difference between both solutions. Note that the amplitude of the difference is negligible.

3.3. Execution of the Formula of the Polynomial Solution Strategy

To provide greater clarity on the polynomial solution strategy corresponding to
Equation (10), the coefficients of the resulting polynomials for the first values of N will
be presented. Table 2 shows the coefficients of the polynomials whose spatial variables
have even exponents, while Table 3 shows the coefficients of the polynomials whose spatial
variables have odd exponents. It should be noted that, for each set of coefficients appearing
in Table 2, the last underlined coefficient multiplies only the temporary variable t, and it is
calculated with the additional term to the summation that appears in Equation (10).

Table 2. Coefficients generated by polynomials whose spatial variables have even exponents (q = 1).

N Coefficients

1 [1; 2]
2 [1; 12; 12]
3 [1; 30; 180; 120]
4 [1; 56; 840; 3360; 1680]
5 [1; 90; 2520; 25,200; 75,600; 30,240]
6 [1; 132; 5940; 110,880; 831,600; 1,995,840; 665,280]

...
...
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Table 3. Coefficients generated by polynomials whose spatial variables have odd exponents (q = 0).

N Coefficients

1 [1]
2 [1; 6]
3 [1; 20; 60]
4 [1; 42; 420; 840]
5 [1; 72; 1512; 10,080; 15,120]
6 [1; 110; 3960; 55,440; 277,200; 332,640]

...
...

An interesting fact is that the solution found to the recursive equation used in the poly-
nomial solution strategy in Equation (10) reproduces the coefficients of the one-dimensional
heat polynomial in Equations (4) and (5). For the case of even exponents (q = 1) in
Equation (10), the coefficients that are generated for the three-dimensional heat polyno-
mials with N = N0 turn out to be similar to the coefficients that are generated for the
one-dimensional heat polynomials with N = N0 + 1 in Equation (4). For the case of
odd exponents (q = 0) in Equation (10), the coefficients that are generated for the three-
dimensional heat polynomials turn out to be similar to the coefficients that are generated
for the one-dimensional heat polynomials in Equation (5).

3.4. Physical Application of the Analytical Solutions

The solutions strategies to the heat diffusion equation proposed here can be used
in engineering. In this section, a simple and meaningful example of a use of the heat
polynomial applied to a physical phenomenon is provided.

Problem Statement. An iron rod of length L = 0.4 m is subjected to a finite flow of
constant surface heat of q

′′
s = −6544.32 W/m2 at one end, while the other end is kept

insulated to avoid heat flow. The initial condition corresponds to a quadratic function of
the form β10x2 + β20, with β10 = 102 and β20 = 293. The final temperature profile after 10
min will be determined.

Material properties. Iron has a thermal conductivity of kt = 80.2 W/m·K, a density of
ρ = 7874 kg/m3 and a specific heat of cp = 440 J/kg·K; therefore, its thermal diffusivity is
α = 2.3148× 10−5 m2/s.

Solution. A three-dimensional heat polynomial generated with N = 1 and q = 1 meets
the specifications given in the statement of the problem as will be seen below. Considering
that the body of study is a rod, it is possible to address the problem in one-dimensional way,
therefore only the spatial variable x will be used, while constants β2 and β3 in Equation (10)
will be zero; this will favor the presentation of the graphs. The heat polynomial generated
is written in Equation (23).

u1,1(x, t) = β1x2 + 2β1αt + β20 (23)

Note that a constant has been added to the scalar field, but that does not change the
fact that it is still a solution of the heat diffusion equation. The constant was incorporated
so that the heat polynomial meets the initial condition specified in the statement of the
problem.

The initial condition indicated by the problem is specified in Equation (24).

u(x, 0) = β10x2 + β20 (24)

The boundary conditions indicated by the problem are specified in Equation (25).

− kt
∂u
∂x
|x=0= 0 (25a)
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− kt
∂u
∂x
|x=L= q

′′
s (25b)

The Equation (26) shows the derivative of u1,1(x, t) with respect to x.

∂u
∂x

= 2β1x (26)

Substituting Equation (26) into Equation (25), the following is obtained.

− kt(2β1x) |x=0= 0 (27a)

− kt(2β1x) |x=L= q
′′
s (27b)

Equation (27) confirms that the heat polynomial used in Equation (23) is sufficient to
solve this problem. Evaluating Equation (27a) at x = 0, it is possible to see that the left end
of the rod is, indeed, adiabatic since there is no heat flow. Evaluating Equation (27b) at
x = L, and clearing the constant β1, it is possible to obtain its numeric value.

β1 =
q
′′
s

2ktL
= β10 (28)

Note that, evaluating Equation (23) at t = 0, the structure of the initial condition is
recovered. From here, it is also possible to obtain the numeric value of the constant β1.

The scalar field that constitutes the solution of the problem will be plotted (Figure 6).
For a better appreciation, the temperature has been expressed in Celsius degrees. It is also
possible to compare the initial and final temperature profiles.
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Figure 6. (left) Scalar field corresponding to the solution of the problem. (right) Initial and final
temperature profiles in the iron rod.

4. Discussion and Conclusions

The main contribution of this work was to provide two strategies to generate different
analytical solutions to the three-dimensional heat diffusion equation. Relevant proofs of
the generated particular solutions for each strategies were provided.

Since the solutions generated by both strategies satisfy the three-dimensional heat
diffusion equation, it can be inferred that the linear combination of two or more generated
solutions will also satisfy it.

The one-dimensional heat polynomial served as the basis for formulating the polyno-
mial strategy to solve the heat diffusion equation in three dimensions; therefore, a polyno-
mial generated in this way may well be called a “three-dimensional heat polynomial”.
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One aspect to keep in mind when using the presented solution strategies is that not all
initial and boundary conditions can be used. Such conditions must be compatible with the
dynamic behavior of the analytical solutions. This constitutes an important limitation when
generating solutions for the heat diffusion equation. As seen in the generated solutions,
the temperature increases with time, mainly at one end of the scalar field; therefore, a
pertinent scenario in which these techniques can be applied occurs when the Newmann
boundary condition is obtained, which is a finite flow of constant surface heat, which causes
precisely this effect. Another way to take this to an advantage is to fit either the initial
or boundary conditions to those of the given problem by a linear combination of several
heat polynomials. Solutions with a stationary behavior in time and space are usually of
greater interest.

A numerical analysis was developed to validate the analytical solutions generated.
This analysis was performed using a single spatial variable so that the scalar fields of
the proposed solutions could be plotted. This numerical analysis contributed to the cer-
tainty that the analytical solutions generated were correct. The fact that the temperature
graphically increases with time in both solution strategies is consistent with the algebraic
information contained in the analytical solutions.

Finally, an example of a physical application using a particular analytical solution was
presented. In particular, the initial and final temperature profiles in a heating process of a
rod were obtained.
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