Study and Mechanism Analysis on Dynamic Shrinkage of Bottom Sediments in Salt Cavern Gas Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Shrinkage Agent PAC30
2.3. XRD Analysis of Insoluble Sediments
2.4. Establish a Shrinkage Agent Evaluation Method
2.5. Mechanism Analysis of Shrinkage Agent
3. Results and Discussion
3.1. XRD Analysis of Insoluble Matter in Salt Cavern Gas Storage
3.2. Characterization of Shrinkage Agent PAC30
3.3. Analysis of Factors Influencing the Effect of Shrinkage Agent
3.3.1. Effect of Concentrations of PAC30 on Dynamic Shrinkage
3.3.2. Effect of Temperature on Shrinkage Effect of PAC30
3.3.3. Effect of Particle Size of Insoluble Sediments on Shrinkage Agent PAC30
3.3.4. Physics Simulation Experiment with Large Size Device
3.4. Study on Mechanism of Shrinkage
3.4.1. Adsorption of PAC30 on Mineral Surface
3.4.2. Zeta Potential
3.4.3. SEM Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Furuoka, F. Natural gas consumption and economic development in China and Japan: An empirical examination of the Asian context. Renew. Sustain. Energy Rev. 2016, 56, 100–115. [Google Scholar] [CrossRef]
- Mac Kinnon, M.A.; Brouwer, J.; Samuelsen, S. The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Prog. Energy Combust. Sci. 2018, 64, 62–92. [Google Scholar] [CrossRef]
- Song, S.; Li, T.; Liu, P.; Li, Z. The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China. Energy 2021, 238, 122037. [Google Scholar] [CrossRef]
- Tang, H.; Xiao, F.; Wang, D. Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by pacl and alum: A critical review. Adv. Colloid Interface Sci. 2015, 226, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wu, W. Preliminary advice for constructing the natural gas storage in Guangdong province. Chem. Eng. Oil Gas 2010, 39, 193–195. [Google Scholar]
- Wanyan, Q.; An, G.Y. Current status and development direction of salt cavern gas storage technology. Pet. Drill. Prod. Technol. 2020, 42, 5. [Google Scholar]
- Chen, J.; Lu, D.; Liu, W.; Fan, J.; Jiang, D.; Yi, L.; Kang, Y. Stability study and optimization design of small-spacing two-well (sstw) salt caverns for natural gas storages. J. Energy Storage 2020, 27, 101131.1–101131.11. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Qiu, X.S.; Ding, G.S. Experimental research on using residue void space in salt cavern gas storage. J. Salt Sci. Chem. Ind. 2019, 48, 14–19. [Google Scholar]
- Ren, Z.X.; Li, J.J.; Wang, H.M. Particle size distribution characteristics of salt stone reservoir cavity bottom accumulation based on fractal theory. Oil Gas Storage Transp. 2017, 36, 5. [Google Scholar]
- Sun, C.L.; Hou, J.R.; Ding, G.S. Study on the settlement pattern of insoluble residue particles in brine from salt cavern gas storage reservoirs. Salt Sci. Chem. 2017, 46, 3. [Google Scholar]
- Gan, S.T.; Xiao, Y.M.; Tang, N. Experiment on the expansion coefficient of insoluble material in salt rock. Oil Gas Storage Transp. 2018, 37, 5. [Google Scholar]
- Ren, Z.X.; Ba, J.H.; Ren, Z.X. Experimental study on gas injection and brine discharge in salt rock reservoir piles. Oil Gas Field Ground Eng. 2018, 37, 4. [Google Scholar]
- Wang, X.; Liu, Y.; Hou, J.; Li, S.; Kang, Q.; Sun, S.; Ji, L.; Sun, J.; Ma, R. The relationship between synsedimentary fault activity and reservoir quality—A case study of the Ek1 formation in the Wang Guantun area, China. Interpretation 2020, 8, SM15–SM24. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, X.; Li, S.; Zhang, N.; Ji, L.; Lu, H. Mechanism Study of Hydrocarbon Differential Distribution Controlled by the Activity of Growing Faults in Faulted Basins: Case Study of Paleogene in the Wang Guantun Area, Bohai Bay Basin, China. Lithospher 2022, 2021, 7115985. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Li, S.; Dou, L.; Liu, Y.; Ren, X.; Chen, D.; Zhao, W. The Architectural Surfaces Characteristics of Sandy Braided River Reservoirs, Case Study in Gudong Oil Field, China. Geofluids 2021, 2021, 8821711. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.; Li, Y.; Ma, H.; Ji, G. Experimental investigation on bulking-expansion coefficient of sediment of storage in bedded salt. Min. Res. Dev. 2013, 33, 34–37. [Google Scholar]
- Chen, Z.; Fan, B.; Peng, X.; Zhang, Z.; Fan, J.; Luan, Z. Evaluation of Al30 polynuclear species in polyaluminum solutions as coagulant for water treatment. Chemosphere 2006, 64, 912–918. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, C.; Luan, Z.; Zhang, Z.; Li, Y.; Jia, Z. Effect of total aluminum concentration on the formation and transformation of nanosized Al13 and Al30 in hydrolytic polymeric aluminum aqueous solutions. Chin. Sci. Bull. 2005, 50, 2010–2015. [Google Scholar] [CrossRef]
- Yao, E.; Xu, H.; Zhang, K.; Liu, S.; Sheng, L.; Li, B.; Zhou, F. Experimental and Mechanistic study of mudstone volumetric swelling at the bottom of salt cavern gas storage. Arabian J. Chem. 2022, 15, 104082. [Google Scholar] [CrossRef]
- Liu, S.; Yao, E.; Luo, Y.; Li, Y.; Zhou, F.; Ran, L.; Yuan, C. Study on Factors Influencing the Shrinkage of Swelled Deposits at the Bottom of Salt Cavern Gas Storage. Presented at the 55th U.S. Rock Mechanics/Geomechanics Symposium, Virtual, 18–25 June 2021.
- Liu, W.; Zhang, Z.; Chen, J.; Fan, J.; Jiang, D.; Daemen, J.J.K. Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens. Energy 2019, 185, 682–694. [Google Scholar] [CrossRef]
- Ban, F.S. Status and development trend of solution mining technologies used for salt-cavern gas storage. Oil Gas Storage Transp. 2017, 36, 754–758. [Google Scholar]
- Li, Y.; Zhou, F.; Li, B.; Cheng, T.; Zhang, M.; Wang, Q.; Liang, T. Optimization of Fracturing Fluid and Retarded Acid for Stimulating Tight Naturally Fractured Bedrock Reservoirs. ACS Omega 2022, 7, 25122–25131. [Google Scholar] [CrossRef]
- Karlik, S.J.; Elgavish, G.A.; Eichhorn, G.L. Multinuclear NMR studies on aluminum (III) complexes of ATP and related compounds. J. Am. Chem. Soc. 1983, 105, 602–609. [Google Scholar] [CrossRef]
- Beck, L.W.; Haw, J.F. Multinuclear NMR studies reveal a complex acid function for zeolite beta. J. Phys. Chem. 1995, 99, 1076–1079. [Google Scholar] [CrossRef]
- Templin, M.; Wiesner, U.; Spiesss, H.W. Multinuclear solid-state-NMR studies of hybrid organic-inorganic materials. Adv. Mater. 1997, 9, 814–817. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, F.; Wang, J.; Li, B.; Xu, H.; Yao, E.; Zhao, L. Influence of Nanoemulsion Droplet Size of Removing Water Blocking Damage in Tight Gas Reservoir. Energies 2022, 15, 5283. [Google Scholar] [CrossRef]
- Titova, Y.Y.; Schmidt, F.K. What 27Al NMR Spectroscopy Can Offer to Study of Multicomponent Catalytic Hydrogenation Systems? J. Organomet. Chem. 2022, 975, 122410. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Luan, Z.K.; Fan, B.; Zhang, Z.G.; Li, Y.Z.; Jia, Z.P. Quantitative studies on Keggin polycation Al-13 and Al-30 in hydrolytic polymeric aluminum aqueous solution by Al-27 nuclear magnetic resonance. Chin. J. Anal. Chem. 2006, 34, 38–42. [Google Scholar]
- Chen, F.; Ye, L.; Ma, H.; Shi, X.; Liu, H.; Yang, C. Subsidence above gas storage in salt caverns predicted with viscoelastic theory. J. Nat. Gas Sci. Eng. 2022, 103, 104620. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.; Shi, X.; Zhao, K.; Liang, X.; Ma, H.; Liu, K. Compaction and restraining effects of insoluble sediments in underground energy storage salt caverns. Energy 2022, 249, 123752. [Google Scholar] [CrossRef]
- Ran, L.; Liu, S.; Wanyan, Q.; Yao, E.; Bai, S. Optimization and Evaluation of Chemical Shrinking Agent for Deposits in Salt Cavern Gas Storage. In Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering, Virtual, 21–30 June 2021; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 85208, p. V010T11A057. [Google Scholar]
- Li, J.L.; Shi, X.L.; Wang, T.T.; Yang, C.H.; Li, Y.P.; Ma, H.L.; Ma, X.Q.; Shi, H. A prediction model of the accumulation shape of insoluble sediments during the leaching of salt cavern for gas storage. J. Nat. Gas Sci. Eng. 2016, 33, 792–802. [Google Scholar] [CrossRef]
- Yang, Y.; Li, L.; Yu, W.; Zhou, Y.; Zhu, K.; Yuan, B. The Application of Breakthrough Pressure in the Evaluation of the Sealing Ability of Cement–Casing Interface and Cement Matrix in Underground Gas-Storage Wells. Processes 2022, 10, 620. [Google Scholar] [CrossRef]
- Molíková, A.; Vítězová, M.; Vítěz, T.; Buriánková, I.; Huber, H.; Dengler, L.; Urbanová, I. Underground gas storage as a promising natural methane bioreactor and reservoir? J. Energy Storage 2021, 47, 103631. [Google Scholar] [CrossRef]
- Tiwari, S.; Namsani, S.; Singh, J.K. Effect of salt on the adsorption of ionic surfactants at the air-water interface. J. Mol. Liquids 2022, 360, 119498. [Google Scholar] [CrossRef]
- Sultana, H.; Bokhari, T.H.; Usman, M. Adsorptive micellar flocculation (surfactant-based phase separation technique): Theory and applications. J. Mol. Liquids 2021, 323, 115001. [Google Scholar] [CrossRef]
- Bakhtiari, M.; Shad, S.; Zivar, D.; Razaghi, N. Coupled hydro-mechanical analysis of underground gas storage at Sarajeh field, Qom formation, Iran. J. Nat. Gas Sci. Eng. 2021, 92, 103996. [Google Scholar] [CrossRef]
- Farhadian, A.; Naeiji, P.; Varfolomeev, M.A.; Peyvandi, K.; Kiiamov, A.G. Reconsideration of the micellization theory: Promotion or inhibition of gas hydrate formation for gas storage and flow assurance applications. Chem. Eng. J. 2022, 427, 131852. [Google Scholar] [CrossRef]
Sample Number | Plagioclase | Quartz | Calcite | TCCM |
---|---|---|---|---|
Content (wt%) | 35 | 31 | 22 | 12 |
Sample Number | S | It | Kao | I/S | C/S |
---|---|---|---|---|---|
Content (wt%) | 48 | 7 | 4 | 10 | 31 |
Particle Size (mesh) | 10~14 | 14~24 | 24~32 | 32~60 | 60~80 | 80~140 |
---|---|---|---|---|---|---|
particle size combination 1 (%) | 70.0 | 16.0 | 4.0 | 4.0 | 4.0 | 2.0 |
particle size combination 2 (%) | 88.0 | 3.4 | 4.0 | 1.6 | 2.0 | 1.0 |
Rock Powder Minerals | Montmorillonite | Quartz | Plagioclase | Illite | Calcite | Chlorite | Insoluble Sediments |
---|---|---|---|---|---|---|---|
Zeta potential (mV) | −37 | −4.43 | −17.1 | −8.48 | −1.96 | −18.8 | −18.1 |
adsorption (mg/g) | 0.967 | 0.566 | 0.902 | 0.499 | 0.622 | 0.951 | 0.466 |
Insoluble Sediments Amount (g) | PAC30 Concentration (ppm) | Zeta Potential (mV) |
---|---|---|
15 | 0 | −18.10 |
100 | −11.40 | |
200 | 0.36 | |
300 | 4.73 | |
500 | 14.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Zhang, M.; Deng, W.; Que, J.; Liu, W.; Zhou, F.; Wang, Q.; Li, Y.; Liang, T. Study and Mechanism Analysis on Dynamic Shrinkage of Bottom Sediments in Salt Cavern Gas Storage. Processes 2022, 10, 1511. https://doi.org/10.3390/pr10081511
Wu B, Zhang M, Deng W, Que J, Liu W, Zhou F, Wang Q, Li Y, Liang T. Study and Mechanism Analysis on Dynamic Shrinkage of Bottom Sediments in Salt Cavern Gas Storage. Processes. 2022; 10(8):1511. https://doi.org/10.3390/pr10081511
Chicago/Turabian StyleWu, Baocheng, Mengchuan Zhang, Weibing Deng, Junren Que, Wei Liu, Fujian Zhou, Qing Wang, Yuan Li, and Tianbo Liang. 2022. "Study and Mechanism Analysis on Dynamic Shrinkage of Bottom Sediments in Salt Cavern Gas Storage" Processes 10, no. 8: 1511. https://doi.org/10.3390/pr10081511
APA StyleWu, B., Zhang, M., Deng, W., Que, J., Liu, W., Zhou, F., Wang, Q., Li, Y., & Liang, T. (2022). Study and Mechanism Analysis on Dynamic Shrinkage of Bottom Sediments in Salt Cavern Gas Storage. Processes, 10(8), 1511. https://doi.org/10.3390/pr10081511