Active Flow Control of a Flame-Holder Wake Using Nanosecond-Pulsed Surface-Dielectric-Barrier Discharge in a Low-Pressure Environment
Abstract
:1. Introduction
2. Experimental Setup
2.1. Actuator and Nanosecond-Pulse Power Supply
2.2. Model of Flame Holder
2.3. Measurements
2.3.1. Electrical Measurements
2.3.2. PIV Measurement System
2.3.3. Schlieren Imaging System
3. Results and Discussion
3.1. Electrical Characteristics
3.2. Thermal Characteristics of NS-DBD
3.3. Schlieren Visualization
3.4. Flow-Field Control of Flame-Holder Trailing Edge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corke, T.C.; Enloe, C.L.; Wilkinson, S.P. Dielectric Barrier Discharge Plasma Actuators for Flow Control. Annu. Rev. Fluid Mech. 2010, 42, 505–529. [Google Scholar] [CrossRef]
- Grossman, K.; Bohdan, C.; VanWie, D. Sparkjet Actuators for Flow Control. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2003. [Google Scholar]
- Opaits, D.; Roupassov, D.; Starikovskaia, S.; Starikovskii, A.; Zavialov, I.; Saddoughi, S. Plasma Control of Boundary Layer Using Low-Temperature Non-Equilibrium Plasma of Gas Discharge. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2005. [Google Scholar]
- De Giorgi, M.G.; Motta, V.; Suma, A. Influence of Actuation Parameters of Multi-DBD Plasma Actuators on the Static and Dynamic Behaviour of an Airfoil in Unsteady Flow. Aerosp. Sci. Technol. 2020, 96, 105587. [Google Scholar] [CrossRef]
- Benard, N.; Moreau, E. EHD Force and Electric Wind Produced by Plasma Actuators Used for Airflow Control. In Proceedings of the 6th AIAA Flow Control Conference, New Orleans, LA, USA, 25–28 June 2012; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012. [Google Scholar]
- Thomas, F.O.; Corke, T.C.; Iqbal, M.; Kozlov, A.; Schatzman, D. Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control. AIAA J. 2009, 47, 2169–2178. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Li, Y.-H.; Jia, M.; Liang, H.; Song, H.-M. Experimental Investigation of Nanosecond Discharge Plasma Aerodynamic Actuation. Chin. Phys. B 2012, 21, 045202. [Google Scholar] [CrossRef]
- Little, J.; Takashima, K.; Nishihara, M.; Adamovich, I.; Samimy, M. Separation Control with Nanosecond-Pulse-Driven Dielectric Barrier Discharge Plasma Actuators. AIAA J. 2012, 50, 350–365. [Google Scholar] [CrossRef]
- Starikovskii, A.Y.; Nikipelov, A.A.; Nudnova, M.M.; Roupassov, D. V SDBD Plasma Actuator with Nanosecond Pulse-Periodic Discharge. Plasma Sources Sci. Technol. 2009, 18, 034015. [Google Scholar] [CrossRef]
- Takashima (Udagawa), K.; Zuzeek, Y.; Lempert, W.R.; Adamovich, I. V Characterization of a Surface Dielectric Barrier Discharge Plasma Sustained by Repetitive Nanosecond Pulses. Plasma Sources Sci. Technol. 2011, 20, 055009. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Jia, M.; Song, H.; Liang, H. Optical Emission Characteristics of Surface Nanosecond Pulsed Dielectric Barrier Discharge Plasma. J. Appl. Phys. 2013, 113, 033303. [Google Scholar] [CrossRef]
- Durasiewicz, C.; Singh, A.; Little, J.C. A Comparative Flow Physics Study of Ns-DBD vs Ac-DBD Plasma Actuators for Transient Separation Control on a NACA 0012 Airfoil. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018. [Google Scholar]
- Wu, Y. Nanosecond Pulsed Discharge Plasma Actuation: Characteristics and Flow Control Performance. In Proceedings of the 45th AIAA Plasmadynamics and Lasers Conference, Atlanta, GA, USA, 16–20 June 2014; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2014. [Google Scholar]
- Van den Broecke, J. De-Icing Using Ns-DBD Plasma Actuators; Delft University of Technology: Delft, The Netherlands, 2016. [Google Scholar]
- Zhu, Y.; Wu, Y.; Wei, B.; Xu, H.; Liang, H.; Jia, M.; Song, H.; Li, Y. Nanosecond-Pulsed Dielectric Barrier Discharge-Based Plasma-Assisted Anti-Icing: Modeling and Mechanism Analysis. J. Phys. D Appl. Phys. 2020, 53, 145205. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, Y.; Cui, W.; Li, Y.; Jia, M. Modelling of Plasma Aerodynamic Actuation Driven by Nanosecond SDBD Discharge. J. Phys. D Appl. Phys. 2013, 46, 355205. [Google Scholar] [CrossRef]
- Jia, Y.; Liang, H.; Zong, H.; Hua, W.; Lin, Z. Flow Separation Control in S-Shaped ∼inlet with a Nanosecond Pulsed Surface Dielectric Barrier Discharge Plasma Actuator. J. Phys. D Appl. Phys. 2022, 55, 055201. [Google Scholar] [CrossRef]
- Hosokawa, S.; Ikeda, Y.; Minato, M.; Nakajima, T. Flow Measurements behind V-Gutter under Non-Combusting Condition. In Proceedings of the 31st Aerospace Sciences Meeting, Reno, NV, USA, 11–14 January 1993; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1993. [Google Scholar]
- Yue, L.; Yang, M. Discussion on the Instantaneous Viewpoint About the Flame Stability Mechanism of Flameholder. J. Aerosp. Power 2001, 16, 340–344. [Google Scholar]
- Li, G.; Wang, J. V-shaped flame stabilizes at low pressure. J. Aviat. 1996, 11, 48–52. [Google Scholar]
- Tepper, J.; Lindmayer, M.; Jüttner, B. Optical and Electrical Measurements of Homogeneous Barrier Discharges at Atmospheric Pressure. In Proceedings of the 13th International Conference on Gas Discharges and their Applications, Glasgow, Scotland, 3–8 September 2000; pp. 303–306. [Google Scholar]
- Biganzoli, I.; Barni, R.; Gurioli, A.; Pertile, R.; Riccardi, C. Experimental Investigation of Filamentary and Non-Filamentary Regimes in a Surface Dielectric Barrier Plasma Actuator. J. Phys. Conf. Ser. 2014, 550, 012038. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, H.; Zhang, C.; Che, X.; Yan, P.; Shao, T. Comparison of Discharge Characteristics in Surface Dielectric Barrier Discharge Driven by Nanosecond and Microsecond Pulsed Powers. High Volt. Eng. 2014, 40, 3091–3097. [Google Scholar]
- Joussot, R.; Boucinha, V.; Weber-Rozenbaum, R.; Rabat, H.; Leroy-Chesneau, A.; Hong, D. Thermal Characterization of a DBD Plasma Actuator: Dielectric Temperature Measurements Using Infrared Thermography. In Proceedings of the 40th Fluid Dynamics Conference and Exhibit, Chicago, IL, USA, 28 June–1 July 2010; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Tirumala, R.; Benard, N.; Moreau, E.; Fenot, M.; Lalizel, G.; Dorignac, E. Temperature Characterization of Dielectric Barrier Discharge Actuators: Influence of Electrical and Geometric Parameters. J. Phys. D Appl. Phys. 2014, 47, 255203. [Google Scholar] [CrossRef]
- Correale, G.; Michelis, T.; Ragni, D.; Kotsonis, M.; Scarano, F. Nanosecond-Pulsed Plasma Actuation in Quiescent Air and Laminar Boundary Layer. J. Phys. D Appl. Phys. 2014, 47, 105201. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, Y.; Cui, W.; Li, Y.; Jia, M. Numerical Investigation of Energy Transfer for Fast Gas Heating in an Atmospheric Nanosecond-Pulsed DBD under Different Negative Slopes. J. Phys. D Appl. Phys. 2013, 46, 495205. [Google Scholar] [CrossRef]
- Jiang, H.; Shao, T.; Zhang, C.; Yan, P. Distribution Characteristics of Nanosecond-Pulsed Surface Dielectric Barrier Discharge at Different Electrode Gaps. Trans. China Electrotech. Soc. 2017, 32, 33–42. [Google Scholar]
- Chen, J.; Liang, H.; Wei, B.; Zhao, G.Y.; Su, Z. Discharge Characteristics of Surface Dielectric Barrier Discharge Driven by Parameterized Nanosecond Pulsed Power Supply. High Volt. Eng. 2019, 45, 3365–3374. [Google Scholar]
- Zhao, G.Y.; Liang, H.; Li, Y.H.; Hua, W.Z.; Han, M.H.; Wu, Y. Study of Electrical Characterization and Induced Flow by Nanosecond Pulsed Dielectric Barrier Discharge Actuator. Sci. Sin. Technol. 2015, 45, 1195–1206. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, W.; Jia, M.; Lin, D.; Lin, M. Active Flow Control of a Flame-Holder Wake Using Nanosecond-Pulsed Surface-Dielectric-Barrier Discharge in a Low-Pressure Environment. Processes 2022, 10, 1519. https://doi.org/10.3390/pr10081519
Cui W, Jia M, Lin D, Lin M. Active Flow Control of a Flame-Holder Wake Using Nanosecond-Pulsed Surface-Dielectric-Barrier Discharge in a Low-Pressure Environment. Processes. 2022; 10(8):1519. https://doi.org/10.3390/pr10081519
Chicago/Turabian StyleCui, Wei, Min Jia, Dong Lin, and Mei Lin. 2022. "Active Flow Control of a Flame-Holder Wake Using Nanosecond-Pulsed Surface-Dielectric-Barrier Discharge in a Low-Pressure Environment" Processes 10, no. 8: 1519. https://doi.org/10.3390/pr10081519
APA StyleCui, W., Jia, M., Lin, D., & Lin, M. (2022). Active Flow Control of a Flame-Holder Wake Using Nanosecond-Pulsed Surface-Dielectric-Barrier Discharge in a Low-Pressure Environment. Processes, 10(8), 1519. https://doi.org/10.3390/pr10081519