FTIR as a Powerful Tool for Measurements of Diffusion in Supercritical Carbon Dioxide Using Taylor Dispersion Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment and Procedure
2.2.1. Bases of Instrument Design
2.2.2. Experimental Setup and Procedure
2.2.3. Processing of Results
3. Results and Discussion
3.1. Optimization of Experimental Parameters
3.1.1. Selection of Working Wavenumbers
3.1.2. Selection of Detector Volume
3.1.3. Optimal Capillary Coiling
3.1.4. Effects of the Flow Rate on the Diffusion Coefficient
3.2. Experimental Diffusion Coefficients for Toluene and Benzene in Supercritical CO2
3.3. Theoretical Diffusion Coefficients for Toluene and Benzene in Supercritical CO2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- Gladysz, P.; Sowizdzal, A.; Miecznik, M.; Hacaga, M.; Pajak, L. Techno-Economic Assessment of a Combined Heat and Power Plant Integrated with Carbon Dioxide Removal Technology: A Case Study for Central Poland. Energies 2020, 13, 2841. [Google Scholar] [CrossRef]
- Holz, F.; Scherwath, T.; Crespo del Granado, P.; Skar, C.; Olmos, L.; Ploussard, Q.; Ramos, A.; Herbst, A. A 2050 Perspective on the Role for Carbon Capture and Storage in the European Power System and Industry Sector. Energy Econ. 2021, 104, 105631. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Makhnenko, R.Y.; Rutqvist, J. Field and Laboratory Studies of Geomechanical Response to the Injection of CO2. In Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales; Newell, P., Ilgen, G.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 209–236. [Google Scholar] [CrossRef]
- Oraee-Mirzamani, B.; Cockerill, T.; Makuch, Z. Risk Assessment and Management Associated with CCS. Energy Procedia 2013, 37, 4757–4764. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Bielicki, J.M.; Oppenheimer, M.; Fitts, J.P.; Peters, C.A. Leakage Risks of Geologic CO2 Storage and the Impacts on the Global Energy System and Climate Change Mitigation. Clim. Chang. 2017, 144, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Liu, G. Risk Assessment of the Geological Storage of CO2: A Review. In Geologic Carbon Sequestration; Springer: Berlin/Heidelberg, Germany, 2016; pp. 249–284. [Google Scholar]
- Faro, M.P.R.T.; Ribeiro, A.C.F.; Santos, C.I.A.V. Geological Carbon Capture: A Literature Review on Diffusion Coefficients for Hydrocarbons in Supercritical CO2. In Research Methodologies in Applied Chemistry with Multidisciplinary Perspectives, Innovations and Visions for the Future; Nova Science Publishers: Hauppauge, NY, USA, 2020; pp. 83–113. [Google Scholar]
- Guo, P.; Liu, S.; Yan, J.; Wang, J.; Zhang, Q. Experimental Study on Heat Transfer of Supercritical CO2 Flowing in a Mini Tube under Heating Conditions. Int. J. Heat Mass Transf. 2020, 153, 119623. [Google Scholar] [CrossRef]
- Gaponenko, Y.; Gousselnikov, V.; Santos, C.I.A.V.; Shevtsova, V. Near-Critical Behavior of Fick Diffusion Coefficient in Taylor Dispersion Experiments. Microgravity Sci. Technol. 2019, 31, 475–486. [Google Scholar] [CrossRef]
- Buscheck, T.A.; Bielicki, J.M.; Edmunds, T.A.; Hao, Y.; Sun, Y.; Randolph, J.B.; Saar, M.O. Multifluid Geo-Energy Systems: Using Geologic CO2 Storage for Geothermal Energy Production and Grid-Scale Energy Storage in Sedimentary Basins. Geosphere 2016, 12, 678–696. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, K.; Molnár, L.; Harty, M.; Murphy, F. Feasibility Study of Carbon Dioxide Plume Geothermal Systems in Germany–utilising Carbon Dioxide for Energy. Energies 2020, 13, 2416. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Rutqvist, J. Thermal Effects on Geologic Carbon Storage. Earth-Sci. Rev. 2017, 165, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Hertz, H.G.; Erdey-Grúz, T. Transport Phenomena in Aqueous Solutions; Adam Hilger Ltd.: London, UK, 1974; p. 512. [Google Scholar] [CrossRef]
- Wilke, C.R.; Chang, P. Correlation of Diffusion Coefficients in Dilute Solutions. AIChE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
- Scheibel, E.G. Correspondence. Liquid Diffusivities. Viscosity Gases. Ind. Eng. Chem. 1954, 46, 2007–2008. [Google Scholar] [CrossRef]
- Lusis, M.A.; Ratcliff, C.A. Diffusion in Binary Liquid Mixtures at Infinite Dilution. Can. J. Chem. Eng. 1968, 46, 385–387. [Google Scholar] [CrossRef]
- Vaz, R.V.; Magalhães, A.L.; Silva, C.M. Improved Stokes-Einstein Based Models for Diffusivities in Supercritical CO2. J. Taiwan Inst. Chem. Eng. 2014, 45, 1280–1284. [Google Scholar] [CrossRef]
- Magalhães, A.L.; Vaz, R.V.; Gonçalves, R.M.G.; da Silva, F.A.; Silva, C.M. Accurate Hydrodynamic Models for the Prediction of Tracer Diffusivities in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2013, 83, 15–27. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Ribeiro, A.C.F.; Esteso, M.A. Drug Delivery Systems: Study of Inclusion Complex Formation between Methylxanthines and Cyclodextrins and Their Thermodynamic and Transport Properties. Biomolecules 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.I.A.V.; Esteso, M.A.; Lobo, V.M.M.; Cabral, A.M.T.D.P.V.; Ribeiro, A.C.F. Taylor Dispersion Technique as a Tool for Measuring Multicomponent Diffusion in Drug Delivery Systems at Physiological Temperature. J. Chem. Thermodyn. 2015, 84, 76–80. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Esteso, M.A.; Sartorio, R.; Ortona, O.; Sobral, A.J.N.; Arranja, C.T.; Lobo, V.M.M.; Ribeiro, A.C.F. A Comparison between the Diffusion Properties of Theophylline/β-Cyclodextrin and Theophylline/2-Hydroxypropyl-β-Cyclodextrin in Aqueous Systems. J. Chem. Eng. Data 2012, 57, 1881–1886. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Shevtsova, V.; Burrows, H.D.; Ribeiro, A.C.F. Optimization of Taylor Dispersion Technique for Measurement of Mutual Diffusion in Benchmark Mixtures. Microgravity Sci. Technol. 2016, 28, 459–465. [Google Scholar] [CrossRef]
- Shevtsova, V.; Santos, C.; Sechenyh, V.; Legros, J.C.; Mialdun, A. Diffusion and Soret in Ternary Mixtures. Preparation of the DCMIX 2 Experiment on the ISS. Microgravity Sci. Technol. 2014, 25, 275–283. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Shevtsova, V.; Ribeiro, A.C.F. Diffusion and Thermodiffusion in Hydrocarbon Mixtures. In Chemical Science and Engineering Technology; Apple Academic Press: Waretown, NJ, USA, 2019. [Google Scholar]
- Taylor, G.I. Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1953, 219, 186–203. [Google Scholar] [CrossRef]
- Alizadeh, A.; Nieto de Castro, C.A.; Wakeham, W.A. The Theory of the Taylor Dispersion Technique for Liquid Diffusivity Measurements. Int. J. Thermophys. 1980, 1, 243–284. [Google Scholar] [CrossRef]
- Liong, K.K.; Wells, P.A.; Foster, N.R. Diffusion in Supercritical Fluids. J. Supercrit. Fluids 1991, 4, 91–108. [Google Scholar] [CrossRef]
- Nunge, R.J.; Lin, T.S.; Gill, W.N. Laminar Dispersion in Curved Tubes and Channels. J. Fluid Mech. 1972, 51, 363–383. [Google Scholar] [CrossRef]
- Erdogan, M.E.; Chatwin, P.C. The Effects of Curvature and Buoyancy on the Laminar Dispersion of Solute in a Horizontal Tube. J. Fluid Mech. 1967, 29, 465–484. [Google Scholar] [CrossRef]
- Cadogan, S.P.; Maitland, G.C.; Trusler, J.P.M. Diffusion Coefficients of CO2 and N2 in Water at Temperatures between 298.15 K and 423.15 K at Pressures up to 45 MPa. J. Chem. Eng. Data 2014, 59, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Funazukuri, T.; Kong, C.Y.; Kagei, S. Infinite Dilution Binary Diffusion Coefficients of Benzene in Carbon Dioxide by the Taylor Dispersion Technique at Temperatures from 308.15 to 328. 15 K and Pressures from 6 to 30 MPa. Int. J. Thermophys. 2001, 22, 1643–1660. [Google Scholar] [CrossRef]
- Funazukuri, T.; Kong, C.Y.; Kagei, S. Binary Diffusion Coefficients of Acetone in Carbon Dioxide at 308.2 and 313.2 K in the Pressure Range from 7.9 to 40 MPa. Int. J. Thermophys. 2000, 21, 651–669. [Google Scholar] [CrossRef]
- Secuianu, C.; Maitland, G.C.; Trusler, J.P.M.; Wakeham, W.A. Mutual Diffusion Coefficients of Aqueous KCl at High Pressures Measured by the Taylor Dispersion Method. J. Chem. Eng. Data 2011, 56, 4840–4848. [Google Scholar] [CrossRef]
- Bueno, J.L.; Suárez, J.J.; Dizy, J.; Medina, I. Infinite Dilution Diffusion Coefficients: Benzene Derivatives as Solutes in Supercritical Carbon Dioxide. J. Chem. Eng. Data 1993, 38, 344–349. [Google Scholar] [CrossRef]
- Lai, C.C.; Tan, C.S. Measurement of Molecular Diffusion Coefficients in Supercritical Carbon Dioxide Using a Coated Capillary Column. Ind. Eng. Chem. Res. 1995, 34, 674–680. [Google Scholar] [CrossRef]
- Kong, C.Y.; Sugiura, K.; Natsume, S.; Sakabe, J.; Funazukuri, T.; Miyake, K.; Okajima, I.; Badhulika, S.; Sako, T. Measurements and Correlation of Diffusion Coefficients of Ibuprofen in Both Liquid and Supercritical Fluids. J. Supercrit. Fluids 2020, 159, 3–5. [Google Scholar] [CrossRef]
- Musto, P.; Mascia, L.; Ragosta, G.; Scarinzi, G.; Villano, P. The Transport of Water in a Tetrafunctional Epoxy Resin by Near-Infrared Fourier Transform Spectroscopy. Polymer 2000, 41, 565–574. [Google Scholar] [CrossRef]
- Elabd, Y.A.; Baschetti, M.G.; Barbari, T.A. Time-Resolved Fourier Transform Infrared/Attenuated Total Reflection Spectroscopy for the Measurement of Molecular Diffusion in Polymers. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 2794–2807. [Google Scholar] [CrossRef]
- Ancherbak, S.; Santos, C.; Legros, J.C.; Mialdun, A.; Shevtsova, V. Development of a High-Pressure Set-up for Measurements of Binary Diffusion Coefficients in Supercritical Carbon Dioxide. Eur. Phys. J. E 2016, 39, 111. [Google Scholar] [CrossRef] [PubMed]
- Gaponenko, Y.; Mialdun, A.; Shevtsova, V. Diffusion of Quinine with Ethanol as a Co-Solvent in Supercritical CO2. Molecules 2020, 25, 5372. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.C.; Jordan, J.W.; Taylor, L.T.; Vidrine, D.W. On-Line Supercritical Fluid Chromatography with Fourier Transform Infrared Spectrometric Detection Employing Packed Columns and a High Pressure Lightpipe Flow Cell. Chromatographia 1985, 20, 717–723. [Google Scholar] [CrossRef]
- Morin, P.; Caude, M.; Richard, H.; Rosset, R. Carbon Dioxide Supercritical Fluid Chromatography-Fourier Transform Infrared Spectrometry. Chromatographia 1986, 21, 523–530. [Google Scholar] [CrossRef]
- Shafer, K.H.; Griffiths, P.R. On-Line Supercritical Fluid Chromatography/Fourier Transform Infrared Spectrometry. Anal. Chem. 1983, 55, 1939–1942. [Google Scholar] [CrossRef]
- Suehiro, Y.; Nakajima, M.; Yamada, K.; Uematsu, M. Critical Parameters of {xCO2+ (1−x)CHF3} Forx= (1.0000, 0.7496, 0.5013, and 0.2522). J. Chem. Thermodyn. 1996, 28, 1153–1164. [Google Scholar] [CrossRef]
- Lee, C.H.; Holder, G.D. Use of Supercritical Fluid Chromatography for Obtaining Mass Transfer Coefficients in Fluid-Solid Systems at Supercritical Conditions. Ind. Eng. Chem. Res. 1995, 34, 906–914. [Google Scholar] [CrossRef]
- Suárez, J.J.; Medina, I.; Bueno, J.L. Diffusion Coefficients in Supercritical Fluids: Available Data and Graphical Correlations. Fluid Phase Equilibria 1998, 153, 167–212. [Google Scholar] [CrossRef]
- Bruno, T.J. A Supercritical Fluid Chromatograph for Physicochemical Studies. J. Res. Natl. Bur. Stand. 1989, 94, 105. [Google Scholar] [CrossRef] [PubMed]
- Tyrell, H.J.V.; Harris, K.R. Diffusion in Liquids; Elsevier: Amsterdam, The Netherlands, 1984; ISBN 9780408175913. [Google Scholar]
- Callendar, R.; Leaist, D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solut. Chem. 2006, 35, 353–379. [Google Scholar] [CrossRef]
- Levelt Sengers, J.M.H.; Deiters, U.K.; Klask, U.; Swidersky, P.; Schneider, G.M. Application of the Taylor Dispersion Method in Supercritical Fluids. Int. J. Thermophys. 1993, 14, 893–922. [Google Scholar] [CrossRef]
- Sassiat, P.R.; Mourier, P.; Caude, M.H.; Rosset, R.H. Measurement of Diffusion Coefficients in Supercritical Carbon Dioxide and Correlation with the Equation of Wilke and Chang. Anal. Chem. 1987, 59, 1164–1170. [Google Scholar] [CrossRef]
- Kong, C.Y.; Funazukuri, T.; Kagei, S. Chromatographic Impulse Response Technique with Curve Fitting to Measure Binary Diffusion Coefficients and Retention Factors Using Polymer-Coated Capillary Columns. J. Chromatogr. A 2004, 1035, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Feist, R.; Schneider, G.M. Determination of Binary Diffusion Coefficients of Benzene, Phenol, Naphthalene and Caffeine in Supercritical CO2 between 308 and 333 K in the Pressure Range 80 to 160 Bar with Supercritical Fluid Chromatography (SFC). Sep. Sci. Technol. 1982, 17, 261–270. [Google Scholar] [CrossRef]
- Umezawa, S.; Nagashima, A. Measurement of the Diffusion Coefficients of Acetone, Benzene, and Alkane in Supercritical CO2 by the Taylor Dispersion Method. J. Supercrit. Fluids 1992, 5, 242–250. [Google Scholar] [CrossRef]
- Suárez, J.J.; Bueno, J.L.; Medina, I. Determination of Binary Diffusion Coefficients of Benzene and Derivatives in Supercritical Carbon Dioxide. Chem. Eng. Sci. 1993, 48, 2419–2427. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Barros, M.C.F.; Ribeiro, A.C.F. Diffusion of Ethanol in Supercritical Carbon Dioxide—Investigation of ScCO2-Cosolvent Mixtures Used in Pharmaceutical Applications. Processes 2022, 10, 660. [Google Scholar] [CrossRef]
- Akgerman, A.; Erkey, C.; Orejuela, M. Limiting Diffusion Coefficients of Heavy Molecular Weight Organic Contaminants in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 1996, 35, 911–917. [Google Scholar] [CrossRef]
- Lemmon, E.W.; McLinden, M.O. Thermophysical Properties of Fluid Systems. In NIST Chemistry Webbook; NIST Standard Reference Database No. 69; Linstrom, P.J., Mallard, W.G., Eds.; NIST: Gaithersburg, MD, USA, 1998; p. 20899. [Google Scholar] [CrossRef]
- Swaid, I.; Schneider, G.M. Determination of Binary Diffusion Coefficients of Benzene and Some Alkylbenzenes in Supercritical CO2 Between 308 and 328 K in the Pressure Range 80 To 160 Bar With Supercritical Fluid Chromatography (Sfc). Ber. Bunsenges./Phys. Chem. Chem. Phys. 1979, 83, 969–974. [Google Scholar] [CrossRef]
- Ellert, J. Differentialkalorimetrie (DSC) bei hohen Drücken. Diploma Thesis, University of Bochum, Bochum, Germany, 1986. Available online: http://www.ub.rub.de/katalog/titel/1257414 (accessed on 23 June 2022).
- Swidersky, P. Spektroskopische Hochdruckuntersuchungen zur Löslichkeit von Anthrachinonfarbstoffen in überkritischen Gasen bei Drücken bis zu 180 MPa und Temperaturen zwischen 300 K und 360 K. Diploma Thesis, University of Bochum, Bochum, Germany, 1991. Available online: http://www.ub.rub.de/katalog/titel/1412001 (accessed on 23 June 2022).
Spacer Thickness /μm | Peak Amplitude | Da /(10−8 m2 s−1) | Peak Symmetry | Signal-to-Noise Ratio |
---|---|---|---|---|
25 | 0.029 | 1.40 | Perfect | Low |
100 | 0.049 | 1.44 | Symmetric | Medium |
150 | 0.078 | 1.45 | Symmetric | High |
250 | 0.135 | 1.46 | Asymmetric | High |
500 | 0.256 | 1.48 | Asymmetric | High |
T /K | p /MPa | ρ /kg/m3 | η /(10−5 cP) | (DToluene ± SD) a /(10−8 m2 s−1) | (DBenzene ± SD) a /(10−8 m2 s−1) |
---|---|---|---|---|---|
306.15 | 75 | 311.47 | 0.23026 | 2.89 b ± 0.02 | 3.08 ± 0.04 |
306.15 | 90 | 700.34 | 0.56202 | 1.60 ± 0.03 | |
306.15 | 105 | 752.75 | 0.63738 | 1.44 b ± 0.03 | |
306.15 | 125 | 793.27 | 0.70498 | 1.14 b ± 0.02 | |
306.15 | 146 | 823.00 | 0.75998 | 1.11 ± 0.03 | |
306.15 | 170 | 844.64 | 0.81257 | 1.05 ± 0.03 | |
309.15 | 75 | 261.40 | 0.2104 | 3.11 ± 0.03 | 3.42 ± 0.03 |
309.15 | 146 | 802.88 | 0.72279 | 1.20 ± 0.04 | 1.08 c ± 0.02 |
309.15 | 170 | 832.20 | 0.77787 | 1.09 ± 0.05 | 1.03 c ± 0.02 |
319.95 | 146 | 716.67 | 0.58967 | 1.26 c ± 0.03 | |
319.95 | 170 | 761.96 | 0.65706 | 1.14 c ± 0.02 | |
320.15 | 75 | 202.57 | 0.19596 | 3.32 ± 0.03 | 3.85 ± 0.05 |
320.15 | 146 | 716.67 | 0.7746 | 1.50 ± 0.05 | |
320.15 | 170 | 761.96 | 0.82993 | 1.34 ± 0.05 |
Model | AAD % Toluene | AAD% Benzene | ||
---|---|---|---|---|
Original | Modified | Original | Modified | |
Wilke–Chang (Equation (8)) | 1.9 a | 2.0 e | 6.28 a | 1.76 e |
Scheibel (Equation (9)) | 9.1 b | 5.3 e | 11.67 b | 9.26 e |
Lusis–Ratcliff (Equation (10)) | 3.7 c | 2.2 e | 7.79 c | 1.95 e |
Lai–Tan (Equation (11)) | 7.7 d | 9.05 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.I.A.V.; Barros, M.C.F.; Faro, M.P.R.T.; Shevtsova, V.; Ribeiro, A.C.F. FTIR as a Powerful Tool for Measurements of Diffusion in Supercritical Carbon Dioxide Using Taylor Dispersion Method. Processes 2022, 10, 1528. https://doi.org/10.3390/pr10081528
Santos CIAV, Barros MCF, Faro MPRT, Shevtsova V, Ribeiro ACF. FTIR as a Powerful Tool for Measurements of Diffusion in Supercritical Carbon Dioxide Using Taylor Dispersion Method. Processes. 2022; 10(8):1528. https://doi.org/10.3390/pr10081528
Chicago/Turabian StyleSantos, Cecilia I. A. V., Marisa C. F. Barros, Maria P. R. T. Faro, Valentina Shevtsova, and Ana C. F. Ribeiro. 2022. "FTIR as a Powerful Tool for Measurements of Diffusion in Supercritical Carbon Dioxide Using Taylor Dispersion Method" Processes 10, no. 8: 1528. https://doi.org/10.3390/pr10081528
APA StyleSantos, C. I. A. V., Barros, M. C. F., Faro, M. P. R. T., Shevtsova, V., & Ribeiro, A. C. F. (2022). FTIR as a Powerful Tool for Measurements of Diffusion in Supercritical Carbon Dioxide Using Taylor Dispersion Method. Processes, 10(8), 1528. https://doi.org/10.3390/pr10081528