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Abstract: A new experimental high-pressure setup for measuring diffusion coefficients in supercritical
fluids, based on Taylor dispersion method, and using an FTIR detector to operate up to 25.0 MPa
was designed and optimized. Tracer diffusivities, D12, of toluene and benzene in supercritical carbon
dioxide were measured in the temperature range of 306.15–320.15 K, and pressure range of 7.5–17 MPa
to evaluate the setup and experimental protocol. The effects of flow velocity, volume of the cell,
absorbance at different wavenumbers on the diffusion coefficient as well as all parameters respecting
the Taylor dispersion method have been analyzed. The obtained diffusion coefficients are in excellent
agreement with the available literature data. The dependence of D12 on temperature, pressure, and
solvent density were examined. Some correlation models based on the hydrodynamic theory were
used to estimate the diffusion coefficients in supercritical carbon dioxide, which is the best agreement
obtained for an improved version of the Wilke–Chang model.

Keywords: supercritical carbon dioxide; CCS; FTIR; diffusion; toluene; benzene

1. Introduction

The last decades of the 20th century have boosted the interest and importance of
research on supercritical technologies, mainly due to its contribution in the mitigation of
climate change. Nowadays, the amount of carbon dioxide (CO2) emitted to the atmosphere
is enormous (over 50 Gt annually) and the majority of that is related to anthropogenic activ-
ities [1]. As CO2 is a greenhouse gas, not so environmentally friendly, several technologies
started to appear with the main purpose of minimizing its harsh effects, focusing on sus-
tainability. Among them, carbon capture and storage (CCS) technologies, considered as one
of the most promising options for carbon reduction, make use of supercritical conditions to
allow the storage of large industrial quantities of CO2 into reservoirs in deep permeable
geologic formations. Current storage capacity is around 39 million tons of CO2 annually,
which equals slightly more than 0.1% of global emissions [2]. Perspective studies show that
up to 400 MtCO2 p.a. could be captured from electricity and industry combined (in Europe),
because only 80–90% of the CO2 emissions of thermal power plants can be captured [3].
Feasibility of CCS technologies appears quite reasonable with studies showing that for a
combined CCS and heat and power plant, it is possible to attain negative CO2 emissions
although this technology is still not economically feasible due to the small scale of the
projects (high operational costs) and underdevelopment of CCS technologies [2]. Still, CCS
must be validated to be a feasible option not only in terms of cost but also in safety to
the environment, which leads to research focused on the short- and long-term effects of
carbon dioxide injection into reservoirs [4–7]. Fundamental research in both the migration
of supercritical CO2 inside the geological formation, important for the knowledge of the
sequestration process (whose trapping mechanisms depend on the hydrodynamic, physical,
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and chemical conditions in the formation), or the assessment of the sealing efficiency, is
being conducted by more than a few research groups around the globe in order to better
comprehend the risks associated with this technology. This is, however, a very challenging
task since performing research in supercritical fluids near the supercritical point comes
with the possibility of minor changes either in pressure or temperature outcome in not so
accurate results, thus, the measurement of diffusion in supercritical fluids require specific
equipment prepared to operate in high stress conditions, that simulate temperature and
pressure in underground circumstances, and a validated method [8].

The physical state of carbon dioxide is very dependent on both temperature and
pressure, and the transition between states, in underground conditions, depends also on
the geothermal gradient. When under specific conditions (pc = 7.38 MPa, Tc = 304.18 K),
CO2 becomes a supercritical fluid, that can expand as a gas but has a density like a
liquid [9,10]. This low viscosity combined with its high solute diffusivity results in superior
mass transfer characteristics and has encouraged the use of carbon dioxide as a green
solvent in a large range of applications. Carbon dioxide chemical stability, inertness, low
critical temperature, relative non-toxicity, non-flammability, and availability at low cost
makes CO2, in a supercritical state, a tool that can be applied in the development of new
geothermal energy systems [11–13].

Thus, it is of great importance to research and understand the supercritical behavior
of fluids and their heat transfer processes. Literature can provide a few theoretical and
empirical correlative models capable to predict diffusion coefficients, e.g., hydrodynamic-
based models [14–19], but there is still insufficient information, namely, experimental data
for a given system that can allow to accurately calculate the diffusion coefficient values, as it
is the case of certain carbon mixtures, or the models fail in certain temperature and pressure
conditions. The availability of accurate diffusion coefficients is key to validly mimic real
geological conditions, becoming essential information to design and optimize any process
involving supercritical CO2, namely, to model the migration behavior inside the reservoirs
but also, to complement with other properties (solubility, vapor–liquid equilibrium, etc.) to
meliorate the already existent theoretical models.

Taylor dispersion technique (or chromatographic peak broadening technique) is one
of the experimental methods that can be adapted to investigate supercritical diffusion,
since it would allow to operate with a higher pressure range, providing transport data
measured in conditions corresponding to those in real geological reservoirs and thus
allowing to accurately predict the thermodynamic behavior of these multicomponent
systems. Taylor dispersion method has proved to be a fast and reliable method to achieve
diffusion coefficients for a wide range of aqueous and non-aqueous systems [10,20–25].
Taylor first applied his technique in the late 1950s [26] and since then, several academic
and research works were published where the dispersion technique was used to predict
diffusion coefficients of different mixtures.

In this work, we describe the design and assembling of a new experimental setup
for the measurement of supercritical diffusion, based on Taylor dispersion method and
integrating an FTIR detector, and aim to demonstrate the applicability of this spectroscopic
technique as a tool for the measurement of mass transport coefficients. The equipment and
experimental parameters are carefully tested and optimized.

Validation of the method is carried out by cross-checking the measurements of dif-
fusion coefficients for pure toluene and pure benzene in supercritical carbon dioxide at
temperature range 306.15–320.15 K and pressure range 7.5–17 MPa. Additional data for
these systems in the near-critical region is also provided. Effects of flow velocity, measure-
ments of absorbance at different wavelengths, and the inside volume of the cell, among
others, are parameters analyzed and discussed in detail. Thermodynamic empirical models
are also used to estimate the diffusion coefficients and their evaluation against experimental
data is conducted.
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2. Materials and Methods
2.1. Materials

Toluene 99.85% (CAS Number: 110-82-7) was supplied by Acros Organics and Benzene
99.8% (Cas Number: 71-43-2) was supplied by Sigma Aldrich. All liquids were used
as received, with no further purification. CO2 with purity higher than 99.995% (water
content < 40 ppm) was supplied by Messer.

2.2. Equipment and Procedure

In this work, we are using the principle of the Taylor dispersion technique for the
conception of a high-pressure apparatus for the measurement of supercritical diffusion
coefficients. Taylor dispersion technique consists of the injection of a small volume of
solute (or solution of different composition) into a laminar carrier stream of solvent. Radial
diffusion and axial convection shape the injected concentration pulse into a Gaussian
distribution as it flows through a long capillary tube. At the end of the tube, a detector
records the change in the concentration profile and the diffusion coefficients are calculated
from the broadened distribution of the dispersed sample. This method has numerous
advantages including relatively fast measurements, ease of automation, use of standard
high-performance liquid chromatography (HPLC) components, and especially, a fully
developed working equation that permits absolute measurements. Moreover, this method
has been widely used for the measurement of diffusion coefficients in a wide range of fluids
and conditions [10,20–25], solid reasons that justify its choice as a base for the design of our
high-pressure apparatus.

2.2.1. Bases of Instrument Design

The design of the experimental instrument for the measurement of diffusion coeffi-
cients in supercritical fluids must be validated at several levels, namely, in what concerns
the applicability of the method for supercritical fluids and the suitability of the use of the
FTIR detector from a spectroscopical and analytical point of view.

Alizadeh et al. [27] have reviewed the fundamental details that support the application
of the Taylor dispersion technique for the measurement of diffusion coefficients. Below, we
only summarize the main aspects used to validate the method and to attain the optimal
conditions for the equipment to operate.

In this experimental method, a small amount of solute is injected into a fluid (eluent)
flowing in laminar flow through a long, narrow tube. After injection, the solute is dispersed
by a combination of processes due to molecular diffusion, caused by the concentration
gradient and the parabolic velocity profile of the eluent. These processes act in opposition:
the laminar flow distorts the initial pulse of solute, tending to disperse it; if molecular
diffusion is fast enough, solute molecules move from the inside of the tube to the region
close to the walls, and vice versa, in a radial motion that diminishes the effect of axial
dispersion. After a certain time interval, the axial profile of concentration inside the tube
assumes an almost Gaussian shape that can be followed in the detector. The concentration
profile of the pulse of solute under the previously described conditions can be expressed as
the variance of the response curve, σ2 [28]:

σ2 =
2D12L

U0
+

r0
2U0L

24D12
= LH (1)

where D12 is the binary diffusion coefficient of the solute (1) in the fluid (2), L is the tube
length, U0 is the average velocity of the eluent, r0 is the inner radius of the dispersion
tube, and H is the theoretical plate height. The first term in third member represents
the dispersion due to the axial diffusion, and the second one considers the peak opening
because of the parabolic velocity profile and the diffusion in radial direction. The shape of
this distribution will be of the Gaussian type if:
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D12

U0L
+

r0
2U0

48D12L
< 0.01 (2)

Thus, D12, can be obtained from:

D12 =
U0

4


H ±

√

H2 −
r2

0
3


 (3)

where H can be calculated from the known tube length L and retention time (tR) by:

H =
LW2

1/2

5.545t2
R

(4)

by measuring the peak width at half height, W2
1/2.

While Equations (1) and (2) were specifically derived for a straight capillary tube, they
can be applied to a coiled tube added with the following restriction:

De2Sc < 10 (5)

where De and Sc are the Dean and Schmidt numbers, respectively, and are defined as

De = Re
(

rc
r0

) 1
2 where Re is the Reynolds number, r0 is the inner radius and rc is the coil

radius of the dispersion tube, and Sc = η/ρD12, where η and ρ are the viscosity and
density of the fluid. This restriction is particularly important to define the geometry of the
system in a way that it meets the main criteria of laminar flow and neglects secondary flow
induced by the capillary tube coiling. It is considered laminar flow in a tube for Reynolds
number inferior to 2000. In the case of typical Taylor experiments, Reynolds number is
usually inferior to 200. The ratio between the radius of the tube coiling and the inner radius
of the tube then becomes a parameter of great importance because the capillary tubes
employed in Taylor dispersion technique are usually quite long (usually 20 to 30 m long)
and have small inner radius (usually 0.5 mm or less), requiring it to be coiled to ensure
constant temperature conditions. When coiled, this circumstance leads to the existence
of two competing dispersion mechanisms inside the tube [29]. Curvature increases the
difference in the retention time across the flow in comparison to a straight tube, leading to
the increase of the dispersion coefficient (and thus a decrease in the diffusion coefficient),
but the secondary flow, which occurs due to centrifugal effects, creates radial mixing, which
increases diffusion coefficient. Although a correction factor, K, was defined to overcome
effects of the secondary flow by several authors [29–31], here, Equation (5) is primarily
used to define geometry and estimate the error introduced by the secondary flow, when
operating in conditions close to the supercritical point, rather than to make corrections on
the diffusion coefficients.

Conventional Taylor dispersion setup can generally work in a broad range of tem-
peratures but is limited to a low-pressure range, generally bellow 0.5 MPa, and usually
integrate, as detector, a differential refractometer. Being that Taylor dispersion is a transient
response method, the signal originated from the injection of a pulse of solute is detected
in terms of a small change in concentration, in this case, the refractive index. The need to
achieve more data on diffusion in a wider range of pressure has driven the introduction
of adjustments to the Taylor dispersion technique, aiming for its application in the mea-
surement of diffusivities in high pressure conditions and thus integrating new equipment
accordingly [32–36]. One of the most usual adjustments is the introduction of restriction
tubes before the refractive index detectors [31,34], to allow higher pressures in the diffusion
tube, but this has the disadvantage of perturbing the diffusion process (e.g., the flow is
disrupted, the fluid velocity may change, and the dispersion of the solute becomes dis-
torted). More recently, the adoption of UV detectors, equipped with analytical flow cells of
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fixed size, and with pressure regulation by back-pressure regulators, is becoming a more
conventional solution [37]. Temporal changes in concentration of the sample are monitored
by the UV detector and followed in terms of wavelengths with time (between a range of
wavelengths or at a fixed wavelength).

For the equipment designed here, we have chosen an FT-IR spectrophotometer,
equipped with a high-pressure flow cell, and capable of investigating absorption peaks at
multiple wavenumbers, corresponding to one (or several) specific type of vibration modes
of a molecule.

In the last years, a growing number of investigators have recognized the potential
of employing spectroscopy-based techniques to diffusion studies, namely, for the study
of diffusion in polymers, e.g., self-diffusion by pulsed field gradient NMR and diffusion
of gases and liquids in polymers, by means of time-resolved FT-IR spectroscopy [38,39].
To our knowledge, an FT-IR spectrophotometer has not yet been applied as a detector for
the measurement of diffusion in liquids at high pressure, nor supercritical fluids, with
exception of our own studies [10,40,41], although this is a detection method typically used
in supercritical fluid chromatography [42,43]. The main reasons that justify the choice of the
FT-IR spectrophotometer as a detector are due to the high sampling rate, the sensitivity and
accuracy of the quantitative analysis, and, above all, the wealth of information at molecular
level contained in the vibrational spectrum. In fact, IR spectroscopy is a powerful tool
to detect vibrational motions in a molecule. Vibration modes of a molecule can be either
stretching, like a spring, or bending (changes on the angle of the atoms). There are four
bending vibrations: wagging, twisting, rocking, and scissoring. Each type of vibration
absorbs specific wavelengths of IR light. FT-IR is also a well-established technique to
identify functional groups in organic molecules based on their vibration modes at different
infrared wavenumbers. The presence or absence of functional groups, their protonation
states, or any changes due to new interactions can be monitored by analyzing the position
and intensity of the different infrared absorption bands. Consequently, IR spectrum acts as
a “fingerprint” for identification of the molecule from the vibrational modes in it.

Furthermore, and from a design point of view, the FT-IR spectrophotometer has one
more advantage. By introducing a high-pressure cell, it can be combined in line with
the Taylor dispersion tube and the back-pressure regulator, allowing for the flow to be
decompressed only after the detector, without causing any negative disturbing effects that
invalidate the measurement of the diffusion coefficient. Finally, FT-IR high pressure flow
cell can be adjusted for the optimal optical path and volume of the sample, and the optical
windows can be changed to increase the range of pressure where the equipment is able to
operate (raising up to 50 MPa in case of sapphire windows) against the 30 MPa limit in UV
high-pressure flow cells.

Based on the supercritical fluid chromatography (SFC) instrumentation using FT-IR
detectors, we can anticipate that supercritical CO2 is nearly an ideal solvent with broad IR
transparency. Indeed, transmittance spectra for supercritical carbon dioxide presents three
IR transparent regions ranging from 850–1200, 1400–2100, and 2600–3400 cm−1 [42–44],
thus meaning that it will be possible to detect any vibrational modes of the solute molecules
that appear in those regions (with the exception of the observation of the OH stretching
vibrational modes of hydroxy groups, the rest of the spectrum is remarkably free of interfer-
ing CO2 absorption bands). Quantitative studies via IR spectroscopy rely on measurements
of absorbance that are related to concentration by the Beer–Lambert law. Although it has
been observed that absorptivity can change with pressure (and thus with density), this can
be overcome by following several bands at the same time (e.g., overtone bands or bands
corresponding to vibrations with a smaller change of dipole movement). The use of a
flow cell also allows a dynamic measurement of the background, allowing to follow the
absorption bands for supercritical CO2 spectrum and to use it for subtraction purposes.

The lower range of T and p parameters required to perform the diffusion study in
supercritical CO2 is limited by the critical parameters of carbon dioxide: Tc = 304.18 K
and pc = 7.38 MPa [45]. Conditions of temperature and pressure need accurate control
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given that the mobile phase can present some spectral changes. It has been observed that a
decrease in the density of supercritical carbon dioxide induces a reduction in transparency
of the spectral region 1350–1430 cm−1 [43]. At a given pressure, the absorbance decreases
with increasing temperature, so the supercritical carbon dioxide transparency will be better
with a higher temperature. However, under subcritical detection conditions, the variation
of the carbon dioxide density may induce a small increase in solute peak concentration and
hence lead to higher absorbance [42].

2.2.2. Experimental Setup and Procedure

Accounting for all the previous considerations, our Taylor dispersion apparatus, for
the measurement of supercritical diffusion coefficients, was assembled as follows (Figure 1).
A stainless steel capillary tube of (30.916 ± 0.001) m length and 0.375 mm inner radii
was used. It was coiled, in the form of a helix, over an aluminum cylinder with 0.36 m
diameter, for both support and temperature regulation, and immersed in a temperature-
regulated water bath (Grant JD100 from Grant Instruments, UK) kept at the experimental
temperature ± 0.1 K. At the start of each run, a pulse of 5 µL of pure solute was injected
through a 6-port injection valve (Knauer model A1357, from Knauer, Germany) into carbon
dioxide flowing at a constant flow rate of 0.3 cm3 min−1, maintained by an HPLC analytical
pump (Jasco PU-4185, from Jasco Inc.,Tokyo, Japan). Attached to the pump head, there
is a custom-designed cooling jacket device, temperature regulated by a Peltier module
which is regulated itself through a circulating water bath (Lauda Eco RE415G from Lauda,
Lauda-Königshofen, Germany), set to 260.15 K, to ensure CO2 is in the liquid state and
the pump can pressurize liquid CO2 above its critical pressure. This cooling assembly
works in permanence. A heat exchanger of about 1.5 m long, placed at the pump outlet,
allows the preheating of the liquid CO2 to its supercritical state before entering the injection
valve. Dispersion of the injected samples was monitored at the outlet of the dispersion
tube using an FT-IR refractometer (Jasco FT-IR 4600 from Jasco Inc., Japan), equipped with
a high-pressure demountable cell (Harrick). The high-pressure cell was assembled with
ZnSe optical windows, with 6 mm thickness, allowing a maximum working pressure of
25 MPa. Inside the cell, a Teflon spacer defines the volume of the size of the optical path,
and thus the volume of sample analyzed. Different spacers with different thicknesses were
tested to attain for the best signal-to-noise ratio.

Response curves, corresponding to the changes in the flow with time, were monitored
in terms of absorbance/transmittance spectra at wavenumbers corresponding to different
vibration modes of the solutes here studied. The detector is connected to a computer for
digital data acquisition using the Spectra Manager software provided by Jasco. A back-
pressure regulator (Jasco BP-4340 from Jasco Inc., Japan) is used to establish the pressure
inside the system and the latter is controlled with a pressure sensor (Jumo dTrans p30 from
JUMO Process Control, Inc., New York, NY, USA) within ±0.05 MPa. Data were recorded
at increments of 4 cm−1 and at time intervals of 4 s for each measurement. Diffusion
coefficients presented here are the average of 4 to 6 injections of sample.

Before each experiment, the water bath, where the dispersion tube is immersed, is set to
the desired working temperature, and allowed to stabilize for at least 3 to 4 h. Refrigeration
circuit for the cooling device of the pump’s head, set to 260.15 K and permanently running,
is also cross-checked. Pressure is set at the back-pressure regulator and the pump is
switched on at the highest possible flow rate (4.0 mL/min). When the system attains the
desired pressure, the flow rate is then gradually decreased to the working flow rate (here
varying from 0.2 mL/min to 0.7 mL/min). To ensure a stationary baseline, the CO2 flow
through the tube is maintained for at least 1 h before the experiment begins. Then, the
solute is injected into the carrier flow. When the experiment is finished, the system is
depressurized, releasing the pressure to the ambient. Each experiment is performed 4 to
6 times, and injections are administered independently.
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2.2.3. Processing of Results

Determination of the diffusion coefficients from the solute absorbance response curves
was performed assuming the same procedure defined for the conventional Taylor equip-
ment using a differential refractometer [20,46–48]. That is, when a sample of concentration
C0 + ∆C is injected into a tube across which a carrier liquid (with composition C0) flow
in a steady laminar regime, it spreads out longitudinally under the combined effect of
molecular diffusion and advection with the flow, and the averaged concentration profile of
the dispersed sample (from Equation (1)) can be calculated from:

C(t) = C0 +
2∆C∆V

r3
0U0

√
3D

π3t
exp

(
−12D(t− tr)

2

r2
0

)
(6)

where tR is retention time of the peak (calculated from tr = L
U0

), L is the length of
the dispersion tube, U0 is the average velocity of the carrier liquid, ∆V is the volume
of the sample, and D is the solute diffusion coefficient. Equation (6) is valid under the
assumption that D is constant across the dispersion profile. In our particular case, the
FT-IR detector does not sample the concentration directly; it can be assumed there is a
direct proportionality between the small changes in concentration C and the variations
in absorbance, and thus extracting the diffusion coefficients by fitting the experimentally
measured signal to:

A(t) = A0 + A1t + A2t2 + R(C(t)− C0) = A0 + A1t + A2t2 + ∆A

√√√√ tR
t

exp

(
−12D(t− tR)

2

R2t

)
(7)

where the three first terms A0 + A1t + A2t2 consider the drift and curvature of the baseline
due to small concentration and temperature variations; tR is retention time of the peak,
R = (∂A/∂C)λ is the sensitivity of the detector (that depends on the wavenumber upon which
the measurements are carried); ∆A is the peak height relative to the baseline. Diffusion
coefficients D are then obtained by fitting the response curve to the theoretical solution
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expressed by Equation (7), by withdrawing the baseline, and offset by non-linear least-
squares procedures [20,49,50].

3. Results and Discussion
3.1. Optimization of Experimental Parameters

Validation and optimization of the Taylor setup for operating at high pressure was
conducted by carrying out measurements of diffusion coefficients for toluene and benzene
in supercritical CO2; both systems are very well studied in literature [36,46–48,51–56].
Optimization tests were all performed at 306.15 K and 10.5 MPa. We validated both FT-IR
parameters and Taylor dispersion parameters.

The accuracy of diffusion coefficient measurements is directly dependent on the accu-
racy of absorbance measurements obtained by FT-IR. The contribution on the uncertainty
of the measurements, arising from the use of the FT-IR detector, can have an origin on
detector linearity or detector volume, or both, which are reason for these parameters to be
optimized.

3.1.1. Selection of Working Wavenumbers

Transmittance spectra of pure toluene [57] and pure benzene [40] were obtained prior
to the experiment. Toluene shows the maximum absorbance at wavenumbers 1506 cm−1,
2925 cm−1, and 3036 cm−1, which correspond, respectively, to C = C stretching, C-CH3,
and aromatic C-H (sp2) stretching vibrational modes, respectively. In the case of benzene,
the detected wavenumbers with maximum absorbance were 1035 cm−1, 1478 cm−1, and
3036 cm−1, that correspond to =C-H bending in ring plane, C = C stretching, and aromatic
C-H stretching vibrational modes, respectively.

All of these vibration modes appear in the supercritical CO2 IR transparent regions;
therefore, the detected signal corresponds to the dispersion of the pulse of injected hydro-
carbon molecule in supercritical CO2. Additionally, and with the purpose of controlling the
stability of the baseline during the experiments, we have selected, from the IR transmit-
tance spectra for scCO2, a wavenumber at which absorbance of the hydrocarbon solutes is
minimum, at 2100 cm−1.

The typical response curve for the dispersion of a solute in supercritical carbon dioxide
is a Gaussian shape representation. In Figure 2, it is possible to identify three peaks for the
diffusion of toluene in supercritical CO2, each obtained by following the absorbance of the
flow at the wavenumbers defined below. At 2100 cm−1, the absorption is minimum and
remains stable during the measurement, and this information is equivalent to the reading
of a baseline signal. An analogous response was obtained for benzene; in both cases, the
solutes present Gaussian curves with good symmetry and have no associated peak tailing
effect [40].

When processing the experimental data to calculate the diffusion coefficient, it was
verified that the calculated diffusion coefficients do not depend on the wavenumber. For
the experiment presented in Figure 2, the estimated diffusion coefficient values obtained
for 1506, 2925, and 3032 cm−1 were 1.439, 1.443, and 1.437, respectively. That represents a
solely 1% variation.

In each experiment, the injection of solute was repeated 4 to 6 times. Experimental
random error was estimated as a standard deviation, SD, over repeated runs. Then, the
average value of the diffusion coefficient over wavenumbers for each run was assessed,
followed by the calculation of the averaged diffusion coefficients and of the respective
standard deviations over all runs at given pressure and temperature. We believe that within
the experimental error, the small variation of the diffusion coefficients obtained at various
wavenumbers is a demonstration of the detector linearity within the selected wavelength
range.
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3.1.2. Selection of Detector Volume

FT-IR detector flow cell is demountable and can be adjusted to attain the optimal
optical path and volume of the sample by introducing, between the ZnSe windows, a PTFE
spacer with defined thickness. Thickness can range from 6 to 950 µm. We have tested the
different thicknesses to attain optimal results by measuring the diffusion coefficients of
toluene in supercritical carbon dioxide at 306.15 K and 10.5 MPa.

We have observed that the smaller spacers lead to sharper Gaussian curves (smaller
amplitude), even though symmetrical, while larger spacers produce broader peaks but
with some type of asymmetry. The fitting of results has revealed that a midterm thickness
leads, in general, to a smaller scattering of the results. Within the experimental error, the
Beer–Lamber law is respected. Spacer of thickness 150 µm is, then, the one that presents
better results. As seen by the results presented in Table 1, a simple variation on the volume
of the sample can contribute by as much as 5% to the uncertainty of the results.

Table 1. Experimental diffusion coefficients for toluene in supercritical carbon dioxide at 306.15 K
and 10.5 MPa and different high-pressure cell spacer thickness.

Spacer
Thickness

/µm

Peak
Amplitude

D a

/(10−8 m2 s−1)
Peak

Symmetry
Signal-to-Noise

Ratio

25 0.029 1.40 Perfect Low
100 0.049 1.44 Symmetric Medium
150 0.078 1.45 Symmetric High
250 0.135 1.46 Asymmetric High
500 0.256 1.48 Asymmetric High

a The results presented in the table are for experimental diffusion coefficient calculated for the 3032 cm−1

wavenumber.

Taylor dispersion parameters were verified and optimized in terms of optimal design
for capillary coiling, optimal flow rate, and negligible effects of secondary flow.

3.1.3. Optimal Capillary Coiling

Theoretically, Taylor dispersion experiments are normally performed with the use
of small diameter capillaries. Here, we used a stainless steel tube of a length, L, of
(30.916 ± 0.001) m and with a circular cross-section of radius r = 0.375 mm. Equation (5)
has been used to estimate the optimal coil radius for our system, departing from the
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assumption that the experimental working conditions would use flow velocities below
0.5 mL min−1, diffusion coefficients for solutes in supercritical carbon dioxides are in the
order of 10−8 m2 s−1, and viscosity in the order of 10−5 cP. We have assessed that we would
be needing a minimum of 0.34 m helix diameter in order to ensure that the error associated
with tube coiling [27] was negligibly small.

In a second step, once the equipment was assembled and tested, with real work-
ing conditions and experimental diffusion coefficients, we have estimated the secondary
flow effects related to the coiled column, with a diameter of 0.36 m, and obtained from
Equation (5) the result De2Sc < 14, thus proving they were negligible.

3.1.4. Effects of the Flow Rate on the Diffusion Coefficient

It is established that the experimentally determined diffusion coefficients for the
measurements of a solute in supercritical fluids are only reliable if they are independent
of the flow velocity [27,51]. Moreover, as stated before, the secondary flow produced by
the centrifugal force can significantly influence the final diffusion results (Equation (5)).
Having known that, we verified the flow velocity influence on the diffusion coefficients for
pure toluene. The tests were conducted at p = 10.5 MPa and T = 306.15 K, and flow velocity
was varied from 0.2 to 0.7 mL min−1.

Figure 3 shows a graphical representation of the effect of the flow velocity on the
diffusion coefficient values of toluene in supercritical carbon dioxide. Our results show an
increase of the diffusion coefficient with the increase of the flow velocity in the lower range
of velocities, then a flat region where the diffusion coefficients show to be independent of the
flow velocity for the intermediate velocities and, a new increase of the diffusion coefficient
at higher velocities. Our studies with benzene [40] have presented the same plateau region
in the same range of flow velocities (from approximately 0.3 to 0.5 mL·min−1), and this is
also in agreement with other studies in literature (benzene and naphthalene) [51,58]. The
observed much lower diffusion coefficient for the small flow rate (0.2 mL·min−1) can be
due to local oscillations on the mobile phase (supercritical carbon dioxide), caused by the
occurrence of pressure pulses at the back-pressure regulator. In consequence, the peaks
are more asymmetrical and broadened (as can be seen in Figure 4), and there is a higher
scattering of the results. In the high flow velocity range, the calculated diffusion coefficient
is higher because it is being enhanced by the secondary flow effect. The peak profile is
generally sharper, and asymmetry is also noticed, e.g., the peak at 0.73 mL min−1 presents
a tail on the right side.
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From both the study of the effect of flow velocity in the diffusion coefficient (Figure 3)
and the shape of the observed peaks (Figure 4), it is relatively easy to infer that the choice of
the working flow rate should both be in a region where the diffusion coefficient shows no
dependence on this variable but also where the detector signal shows the most symmetrical
peaks and, thus, a smaller scattering of the results. Flow rates of 0.3–0.32 mL min−1 have
been verified to be the optimal experimental conditions and given rise to the best results.

Compliance of our concentration profiles, resulting from the dispersion of the initial
pulse of solute to a Gaussian shape, was verified by following the inequality in Equation (2)
that states that D/u0L < 0.01. We have obtained a value of 0.0024 for our experimental
conditions. Additionally, we have proven the laminar regime of the solvent flow in our
experiments that are characterized by a Reynolds number, Re, ranging from 55 to 144 for
supercritical CO2.

3.2. Experimental Diffusion Coefficients for Toluene and Benzene in Supercritical CO2

Diffusion coefficients for toluene and benzene in supercritical carbon dioxide were
measured in the temperature range of 306.15 K to 320.15 K and in the pressure range
of 7.5 to 17 MPa. The obtained diffusion coefficients are presented in Table 2 and were
determined from four to six replicate dispersion profiles. Mobile phase parameters, that
is, the calculated density and viscosity [59] for supercritical carbon dioxide in the range of
temperatures and pressures studied are also presented. Standard deviation is estimated as
stated before.
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Table 2. Experimental diffusion coefficients D for toluene and benzene in supercritical CO2 at pressure
range p from 7.5 to 17 MPa, calculated density ρ, and viscosity η [59] for supercritical CO2 at different
temperatures from 306.15 to 320.15 K.

T
/K

p
/MPa

ρ
/kg/m3

η
/(10−5 cP)

(DToluene ± SD) a

/(10−8 m2 s−1)
(DBenzene ± SD) a

/(10−8 m2 s−1)

306.15 75 311.47 0.23026 2.89 b ± 0.02 3.08 ± 0.04
306.15 90 700.34 0.56202 1.60 ± 0.03
306.15 105 752.75 0.63738 1.44 b ± 0.03
306.15 125 793.27 0.70498 1.14 b ± 0.02
306.15 146 823.00 0.75998 1.11 ± 0.03
306.15 170 844.64 0.81257 1.05 ± 0.03
309.15 75 261.40 0.2104 3.11 ± 0.03 3.42 ± 0.03
309.15 146 802.88 0.72279 1.20 ± 0.04 1.08 c ± 0.02
309.15 170 832.20 0.77787 1.09 ± 0.05 1.03 c ± 0.02
319.95 146 716.67 0.58967 1.26 c ± 0.03
319.95 170 761.96 0.65706 1.14 c ± 0.02
320.15 75 202.57 0.19596 3.32 ± 0.03 3.85 ± 0.05
320.15 146 716.67 0.7746 1.50 ± 0.05
320.15 170 761.96 0.82993 1.34 ± 0.05

a Standard deviation of the mean. b from [57]. c from [40]. Standard uncertainties are uc (T) = 0.01 K and uc
(p) = 0.005 MPa. The expanded uncertainties uc (D) ∼= 0.05 × 10−8 m2 s−1 (level of confidence 0.95).

As anticipated, diffusion coefficients for toluene and benzene decrease with the in-
crease of pressure at constant temperature and increase with the increase of temperature
at constant pressure, as expected, due to the increase of kinetic energy. Figure 5 shows
the variation with pressure of the diffusion coefficients for toluene in supercritical carbon
dioxide at 306.15 K. Experimental diffusion coefficients decrease non-monotonically with
the increase of pressure at a constant temperature, with a sharp decrease in the near critical
zone. Our experimental data best fit to a third-order polynomial (with r2 = 0.97). Although
the diffusion coefficients for benzene presented here cover a smaller range of temperature
and pressure, it is observed the same non-monotonic decrease of the diffusion coefficient
with pressure, at both 309.15 and 319.15 K, and the best fit of experimental data, is given by
a second-order polynomial (with r2 = 0.99).
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It has become a standard to assess the dependence of the diffusion coefficients D on
carbon dioxide density rather than directly over the operating temperature and pressure,
because these directly influence the solvent density and viscosity. Since both toluene and
benzene diffusion on supercritical carbon dioxide has been the focus of investigation of
several teams, we have included all the available literature data for toluene [36,46–48,51]
and benzene [35,51,52,54,55,60–62] in our analysis. Although there are many studies, data
remains scattered and scarce in the near critical region, most likely because of the carbon
dioxide high-density fluctuations. In that sense, with this work, we aim to contribute with
a little more consensual, if not, more accurate data. Figures 6 and 7 show the behavior of
the diffusion coefficients for toluene and benzene in supercritical CO2 at pressure range p
from 7.5 to 17 MPa and at different temperatures from 306.15 to 320.15 K. Values of density
for supercritical carbon dioxide were obtained from NIST [59].

We can see that diffusion coefficients for both toluene and benzene decrease with
increasing density of scCO2, because the increase in density brings molecules in closer
proximity, and the mean free path available for the molecules to move becomes smaller.
The observed diffusion coefficient for benzene is approximately 5 to 10% smaller than for
toluene, due to the smaller molecular weight of the latter. Interestingly, notwithstanding
the similarity of the molecular structures, diffusion coefficient for toluene seems to have a
monotonous (linear) dependence on carbon dioxide density, while for benzene, the trend is
more precisely represented by a second-order polynomial.
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We have found an excellent agreement between our results and the available literature
data for toluene [36,46,47,50,51], with less than 6% difference for the measurements in
similar conditions of Sengers et al. [51] and Lai et al. [36] and, in the case of benzene,
less than 5% difference for the measurements in similar conditions of Ellert [61] and
Swidersky [62], thus within the experimental error (uncertainty of our results is in the
order of 5–6%). We have also contributed to provide diffusion coefficients for toluene and
benzene in supercritical CO2 in the near critical region, which is scarce in information due
to the high difficulty of the measurements in the vicinity of the critical point.

3.3. Theoretical Diffusion Coefficients for Toluene and Benzene in Supercritical CO2

Diffusion coefficients in liquids can be estimated from theoretical and empirical models.
Thermodynamic models, based on the Stokes–Einstein equation, have shown to be a simple
and useful tool to obtain valuable information about the diffusion process, namely, to
achieve a reasonable estimation of the diffusion coefficients. Wilke–Chang (WC) [15],
Scheibel (Sch) [16], and Lusis–Ratcliff (LR) [17] are some of the most usual models; they
have been built for estimation of the transport occurring in liquid systems. Recently, they
have been revised and improved by Vaz et al. [18]. For the specific case of transport in
supercritical fluids, the Lai–Tan (LT) [36] model is available. Equations (8)–(11) for the WC,
Sch, LR, and LT models are presented below.

DWC = 7.4× 10−8 T
√

φM1

η1V0.6
bp,2

(8)

DSch = 8.2× 10−8 T
η1V1/3

bp,2


1 +

(
3Vbp,1

Vbp,2

)2/3

 (9)
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DLR = 8.52× 10−8 T
η1V1/3

bp,1


1.4

(
Vbp,1

Vbp,2

)1/3

+

(
Vbp,1

Vbp,2

)
 (10)

DLT = 2.5× 10−7 T
√

M1

(10η1)
0.688V1/3

c,2

(11)

In the Equations (8)–(11), temperature T is in K, η1 is the solvent viscosity in cP, ϕ is
a dimensionless association factor of the solvent, M1 is the solvent molecular weight in
g/mol, Vbp,1 and Vbp,2 are the solvent and solute molar volumes at their normal boiling
points in cm3/mol, respectively, and Vc,2 is the solute critical volume in cm3/mol. In these
equations, the diffusion coefficient is correlated with temperature and solvent viscosity,
having as base the Stokes–Einstein equation. They follow the same assumption of a large
rigid spherical molecule of solute moving through a continuum of solvent under infinitely
dilute conditions and thus, the diffusion coefficient is controlled by the viscosity and the
hydrodynamic radius of the solute. In general, these correlations have specific constants
obtained from the fitting of data obtained for a relatively large number of solutes. They
introduce the solute molar volume at the normal boiling point, because the effect of solvent
viscosity on the rate of diffusion also depends on the size of diffusing molecules. In the case
of Wilke–Chang and Lai–Tan models, the correlations also include the molecular weight of
the solute, accounting for an additional dependence on the latter, arising from the fact that
the diffusivities in supercritical fluids present values between those of liquids and gases.
Still, while Wilke–Chang model (and Sch and LR) were originally developed for diffusion
in liquids, the Lai–Tan model was built having as base the diffusion coefficients obtained
in supercritical carbon dioxide. While the former tends to significantly overestimate D12,
most likely due to their inability to describe the role of viscosity in the diffusion process, it
is expected that the Lai–Tan model can provide more accurate predictions on the diffusion
coefficient.

The average absolute deviation (AAD) allows to evaluate the performance of these
models in the calculation of the diffusion coefficients, when compared to the experimental
ones, being that:

AAD (%) =
100
n

n

∑
i = 1

∣∣∣∣
Dexp − Dpred

Dexp

∣∣∣∣ (12)

where the subscripts “exp” and “pred” refer to the experimental and calculated diffusion
coefficients, and n is the number of experimental points. Table 3 shows results for the
various correlations tested for the prediction of diffusion coefficients of toluene and benzene
in supercritical CO2.

Table 3. The average absolute deviation (AAD) for the hydrodynamic models adopted for the
prediction of the diffusion coefficients for toluene and benzene in supercritical carbon dioxide.

Model
AAD %
Toluene

AAD%
Benzene

Original Modified Original Modified

Wilke–Chang (Equation (8)) 1.9 a 2.0 e 6.28 a 1.76 e

Scheibel (Equation (9)) 9.1 b 5.3 e 11.67 b 9.26 e

Lusis–Ratcliff (Equation (10)) 3.7 c 2.2 e 7.79 c 1.95 e

Lai–Tan (Equation (11)) 7.7 d 9.05 d

a [15], b [16], c [17], d [36], e [18]; n for toluene is 60 and for benzene is 36.

Even though the equations from WC, Sch, and LS empirical models are not specific for
the estimation of diffusion coefficients in supercritical CO2, they can reasonably predict
the diffusion coefficients in this media, with values of AAD% ranging from 2 to 12%, being
the Wilke–Chang model the one that presents the best performance in the prediction of the
diffusion coefficients. This is not surprising since for diffusion in liquids, where the solute
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molecules are significantly larger than the solvent molecules, the hydrodynamic theory has
been proven effective. The improved models developed by Vaz et al. [18] can effectively
enhance the accuracy of prediction, and ADD values decrease when these are used.

Application of the Lai–Tan model was expected to deliver a higher accordance to our
experimental results, considering that this is a model developed from measurements of
diffusion in supercritical carbon dioxide. The authors provide a possible explanation to
this, since, in the supercritical region, there can be clustering of the solutes and the degree
of clustering depends on the density. Nevertheless, deviations presented in the estimations
using this model are in the same range of general hydrodynamic models but still in very
good agreement with our data. In summary, they can be assumed as reliable models for the
prediction of the diffusion coefficients of solutes in supercritical CO2, particularly for new
systems at any condition.

4. Conclusions

We have designed and tested a new experimental setup for the measurement of
supercritical diffusion, based on Taylor dispersion method and integrating an FTIR detector.
The applicability of FT-IR as a tool for the measurement of mass transport coefficients was
demonstrated. The equipment and experimental parameters were carefully tested and
optimized.

Molecular diffusion coefficients for toluene and benzene in supercritical CO2 were
measured using the new assembly of the high-pressure Taylor dispersion technique, in the
temperature range of 306.15 to 320.15 K and pressure range of 7.5 to 17 MPa. D decreased
with the increase of pressure (non-linearly) and with the increase of carbon dioxide density,
and results were consistent with similar studies in the literature, within the 5-6% uncertainty
for this method at high pressure. Various correlation models were assessed to estimate the
diffusion coefficients, with the best results obtained for the Wilke–Chang optimized model.
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