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Abstract: In order to improve the operation performance of the multi-stage double-suction centrifugal
pump and reduce the internal energy loss of the pump, this paper proposes a single-objective
optimization design method based on the non-hierarchical response surface methodology (RSM) and
the multi-island genetic algorithm (MIGA). Nine parameters, such as the blade outlet width and blade
wrap angle, were used as design variables, and the optimization objective was efficiency under design
conditions. In total, 149 sets of valid data were obtained under the Latin hypercube sampling method
(LHS), the corresponding thresholds were set for efficiency and head, and 99 sets of valid data were
obtained. A cross-validation analysis of the sieved data was carried out based on non-hierarchical
RSM, global optimization of the efficiency was carried out using MIGA, and numerical verification
was carried out via CFD. The research results show that compared with hierarchical RSM, non-
hierarchical RSM can approximate the nonlinear relationship between the objective function and the
design variables with higher accuracy, and the model fitting R2 value was 0.919. The efficiency was
improved by 3.717% after optimization. The overall prewhirl of the impeller inlet after optimization
decreased, the internal speed of the volute significantly improved, the large-area vortex at the volute
and the outlet pipe was eliminated, the impact loss at the volute separating tongue disappeared, and
the overall hydraulic performance of the pump was improved. The total entropy output value of the
optimized pump was reduced by 4.79 (W/K), mainly concentrated on the reduction in the entropy
output value of the double volute, and the overall energy dissipation of the pump was reduced.

Keywords: multi-stage double-suction centrifugal pump; non-hierarchical RSM; MIGA; optimization

1. Introduction

As general mechanical equipment in the field of fluid machinery, pumps are widely
used in production and in life for the purpose of conveying fluid media. For the multi-stage
double-suction centrifugal pumps used in the fields of sewage treatment, water diversion
irrigation, and industrial water supply, during the large-flow and high-head operation and
due to the complexity of the structure, it is easy to cause an internal flow disorder, which
results in the low overall efficiency of the pump [1,2].

However, current pump manufacturers and users have increasingly higher require-
ments for pump performance, and obtaining a high-efficiency pump type has become
essential. In the field of hydraulic machinery, the use of numerical simulation methods
to optimize the mechanical properties of pumps has been widely used [3]. Traditional
pump design is accomplished via a combination of numerical calculations and experiments;
the design process is very complicated, and the calculation process takes a long time. At
present, with intelligent optimization algorithms being applied more and more widely,
optimization design that combines numerical calculations and an intelligent optimization
algorithm is also very common. The operational speed and accuracy of this combination
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method are greatly improved as compared with those of the original model. This can
reduce the labor and experimental costs, and a better pump model is ensured. Ji et al. [4]
proposed to use a radial basis function (RBF) neural network to optimize the impeller of
a turbo centrifugal pump, with sampling based on the Latin hypercube sampling (LHS)
method; their results showed that the optimized model efficiency and head improved
as compared with the original model, at 5.74% and 4.85%, respectively. Chen et al. [5]
combined the Kriging model with numerical analysis to find the optimal design parameters
for a torque converter impeller, thereby improving the performance of the torque converter.
Piri et al. [6] proposed a hybrid analysis framework based on an artificial neural network
(ANN) to evaluate the probability of failure of sewage pumping stations; the framework
accurately predicted the safety margin of the pump and reduced the computational bur-
den. Nataraj et al. [7] used response surface methodology (RSM) and computational fluid
dynamics (CFD) to design an impeller to improve the performance of a centrifugal pump,
resulting in a 2.06 m increase in total head and a 65.22 W reduction in power dissipation.
Yang et al. [8] used RSM to study and optimize the jet pump, taking the pressure amplitude
and the time-averaged power dissipation of a jet pump as responses to achieve maximum
pressure amplitude and minimum power consumption. The final results showed that RSM
is feasible as an evaluation method for optimizing jet pumps. Alawadhi et al. [9] optimized
the efficiency of a pump based on RSM and the multi-objective genetic algorithm, and they
used geometric parameters, including the number of blades, impeller speed, etc., as design
variables to predict the performance of the pump under stable and transient conditions,
and also to predict corrosion. The Kriging model, radial basis neural network, and artificial
neural network are generally applicable to occasions with a large sample size, while RSM
is suitable for occasions with a small sample size, which can obtain better fitting accuracy
and randomness in the case of more design variables being available [10].

RSM was firstly proposed by Box and Wilson; it is a comprehensive test technology
that deals with the relationship between input variables and output responses [11]. As
a commonly used statistical analysis technique, RSM has the characteristics of strong
applicability and wide application range, which enables it to effectively locate the individual
effects and interactions between parameters [12]. In an optimization process with many
design variables, a high-intensity nonlinear programming is generally used between the
objective function and the design variables. At present, most scholars use low-order
polynomial functions to fit the objective function. Miletic et al. [13] studied the usefulness
of combinations based on RSM and ANN in characterization, modeling, and optimization,
and they found better results for the prediction of second-order polynomial functions
by comparing the fitted R2 values of linear and second-order RSM polynomial functions.
Wang et al. [14] proposed an optimization strategy for developing a turbine runner model
based on CFD technology, a second-order RSM and a multi-objective genetic algorithm.
Taking six geometric parameters, such as the blade load, as design variables, some design
problems of the turbine runner were effectively solved, and the calculation cost was
reduced. Zhang et al. [15] proposed an integrated method based on second-order RSM and
the genetic algorithm to analyze the influence of various parameters of the standpipe inlet
and outlet and to obtain an optimal design; finally, the total head loss coefficient and the
inflow and outflow velocity distribution coefficients were reduced by 4.687%, 11.765%, and
38.596%, respectively. However, compared with low-order polynomial functions, using
high-order polynomial functions to fit functions can obtain higher prediction accuracy. In
order to obtain more reliable test data for an air source heat pump, Ciarrocchi et al. [16]
used fourth-order RSM to expand the data sample; they examined the performance of the
air source heat pump by changing the water supply temperature of the indoor terminal
under different environmental conditions. An optimal configuration of the system was
found, which minimized power consumption while maintaining interior comfort.

We can improve the quality of the higher-order RSM by eliminating unnecessary
terms, which also reduces the uncertainty of model prediction and improves the fitting
accuracy. This kind of polynomial that randomly ignores some lower-level terms is called
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a non-hierarchical polynomial [17]. Bao et al. [18] proposed an efficient stochastic update
method based on statistical theory and developed an incomplete fourth-order polynomial
RSM. Combining RSM with Monte Carlo Simulation (MCS) reduces computation and
enables fast random sampling. Tanaka et al. [19] applied an interactive hierarchical RSM to
the parameter optimization of photonic crystal nanocavities, and they demonstrated the
effectiveness of this method for parameter optimization.

In summary, although there are many studies on the application of RSM at home and
abroad, there are few applications for a complex high-order RSM. In this paper, the efficiency
of a multi-stage double-suction centrifugal pump is optimized based on the improved
fourth-order non-hierarchical RSM polynomial. The effects of different polynomial terms
on the approximate accuracy of RSM are compared. In Section 2, the hydraulic model, mesh
generation, and numerical calculations are presented. Then, in Section 3, the optimization
objectives, optimization variables, variable ranges, agent model, and the algorithm in the
optimization process are described. In Section 4, the sensitivity analysis of each geometric
parameter is carried out, and the inner flow state and entropy generation performance of
the pump before and after optimization are compared and analyzed. Finally, the conclusion
is given in Section 5.

2. Pump Model Parameters and Computational Method
2.1. Hydraulic Model

The first-stage single-suction impeller and the secondary double-suction impeller of
the multi-stage double-suction centrifugal pump use the same impeller hydraulic model.
In order to better eliminate the radial force of the impeller when the pump is running, the
volute of the flow passage adopts a double volute design. At the design operating point,
the design performance parameters of the pump are: flowrate Q = 540 m3/h, design head
H = 132 m, speed n = 1490 r/min, and specific speed ns = 64. The formula for calculating
the specific speed is as follows:

ns =
3.65nQ1/2

H3/4 (1)

The overall 3D pump fluid domain was modeled in the model design software UG
NX, as shown in Figure 1. After the water enters the suction chambers on both sides, it
flows into the middle symmetrical flow channel perpendicular to the axis through the
single-suction impellers on both sides. It then flows into the double-suction impeller from
the flow channel and finally discharges through the middle-pressure water chamber. The
specific details of the flow through the impeller are shown in Figure 2. The main design
parameters of the multi-stage double-suction centrifugal pump are shown in Table 1.

Table 1. Main design parameters of the multi-stage double-suction centrifugal pump.

Parameter Abbreviation Value

Flow rate Q 540 m3/h
Head H 132 m

Rotating speed n 1490 r/min
Specific speed ns 54.09

Impeller inlet diameter D1 196 mm
Impeller outlet diameter D2 485 mm

Impeller outlet width b2 15 mm
Volute inlet width b3 70 mm

Volute inlet diameter D3 495 mm
Volute outlet diameter D4 200 mm

Number of blades Z 8
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Figure 2. Schematic diagram of water flow through the impeller.

2.2. Mesh Generation and Numerical Calculation

Due to the complexity of the double volute internal structure of the multi-stage
double-suction centrifugal pump, ANSYS ICEM was used to generate unstructured meshes.
The impeller, suction chamber, interstage runner, and other components were based on
the commercial software TurboGrid, which has high precision and good convergence
performance in its high-quality structural grid. In order to better satisfy the subsequent
high-precision flow field analysis and more accurately characterize the complex flow
phenomena around the solid wall, the mesh of the solid surface was refined. Part of the
computational domain grid is shown in Figure 3.

The CFD in the commercial software ANSYS CFX was used to study and analyze the
hydraulic characteristics of the pump. The turbulence model adopted was the shear stress
transfer model (SST k-ω), which is widely used in multi-stage double suction centrifugal pumps
and can predict the flow separation and pump performance with good accuracy [20–22]. In
order to meet the requirements of the above turbulence model, the maximum y+ used for
the impeller blade was less than 10; Figure 4 shows the contour of y+.

In the independence analysis of the effect of the number of grid cells on the numerical
calculation results, a total of five groups of independent grid numbers were generated; the
calculation results of the corresponding lift and efficiency are shown in Table 2. After the
grid-independence analysis, the grid size was finally determined. The final number of cells
was 130.858 × 105. The total pressure inlet and mass flow outlet were set as the boundary
conditions of the pump. The computational domain generated a total of 11 networks,
including the suction chamber, suction pipe, first-stage impeller, inter-stage flow channel,
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second-stage impeller, double volute, and outlet pipe grid. The number of grid cells for
each computational domain is shown in Table 3.
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Table 2. Results of the grid independence analysis.

Grid number (×105) 113.236 121.46 130.858 145.749 153.758

Head (m) 129.885 136.956 138.62 135.78 128.875
Efficiency (%) 73.975 75.863 76.512 75.461 73.23
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Table 3. The number of grid cells for each computational domain.

Domain Number of Grid Cells (×105) Number

Suction pipe 1.67 2
Suction chamber 7.78 2

Impeller 12.45 4
Inter-stage flow channel 12.78 2

Double volute 27.10 1
Discharge pipe 9.48 1

2.3. Experimental Verification

A comparison between the test results and the numerical calculation results is shown
in Figure 5. It can be seen from the figure that the trends of the test curve and the numerical
calculation curve are almost the same. Since the energy loss generated by the pump itself
was not fully considered during the test, the test results for the head and efficiency were
generally lower than the numerical calculation results. At the design operating point, the
numerical calculation result of the pump was 76.512%, the test result was 73.705%, and the
absolute error of the two was 2.807%. Under non-design conditions, the error between the
numerical calculation results and the experimental results did not increase greatly, therefore
the numerical simulation method in this paper is reliable and can be used for subsequent
optimization studies.
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3. Optimization Process

Figure 6 presents the optimization flow chart for this paper. The efficiency under
the design condition of the multi-stage double-suction centrifugal pump was selected
as the optimization objective, the nine design parameters of the pump were used as the
optimization variables, and respective boundary conditions were set for the nine variables.
The Latin hypercube sampling (LHS) method was used to generate 149 groups of valid
sample data, the performance of the original scheme was compared, the data were screened,
the functional relationship between the objective function and the design variables was
established, and the objective function was fitted based on the improved response surface
methodology (RSM) using the multi-island genetic algorithm (MIGA). This algorithm finds
the optimal efficiency point for CFD verification and finally obtains the optimal geometric
parameter design of the volute and the impeller.
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3.1. Optimization Objective

Due to the long-term and continuous operation of the pump and its frequent operation
under low load or variable load, the operating point of the pump easily deviates from the
high-efficiency area; the operating efficiency of the pump is then greatly reduced, and a
large amount of energy is wasted. In order to save energy and reduce the internal energy
loss so as to improve the operating efficiency of the two-stage split centrifugal pump, this
paper takes the efficiency at the design operating point as the optimization goal. The
efficiency equation is as follows:

η =
Q

3600
× p2t − p1t

T × ω
(2)

where Q is the flow rate at the design operating point (m3/h); p2t and p1t are the total
pressure at the inlet and outlet, respectively (Pa); T is the torque of the impeller (N m); and
ω is the rotational speed of the impeller (rad/s).

3.2. Design Variables and Parameter Ranges

Since this paper only addresses the design and optimization of the blade profile, in
order to reduce the complexity and error of the overall calculation, the diameter of the
impeller inlet and outlet and the thickness of the blade were kept unchanged. There were
nine design variables to be optimized and controlled, and the range of each design variable
is shown in Table 4. In the table, x1 represents the outlet width of the blade, which is used
to control the variation range of the size of the impeller on the axial projection diagram. x2
and x3 represent the inlet placement angles of the rear and front cover plates of the blade,
respectively, while x4 and x5 represent the outlet placement angles of the rear and front
cover plates of the blade, respectively. The blade wrap angle was set as the design variable
x6; variable x7 is the Stepanoff number that controls the change of the cross-sectional area
in the volute; x8 and x9 represent the volute inlet width and the starting position of the
volute baffle, respectively.



Processes 2022, 10, 1529 8 of 16

Table 4. Boundary range of design parameters.

Design Parameter Lower Limit Upper Limit

x1 10 20
x2 25 35
x3 20 30
x4 20 30
x5 20 30
x6 115 135
x7 0.15 0.3
x8 70 90
x9 150 180

3.3. Latin Hypercube Sampling Method

As an important step in the optimization process of an experimental design, it is
necessary to choose an appropriate sampling technique. Since there are many variables
in this optimization design, in order to obtain better space-filling randomness, accuracy,
and robustness for the sample parameters, the LHS method was used to generate 149 sets
of valid data for the defined nine variables and the range of the design variables. In
order to further reduce the error of the sample and obtain more concentrated data sample
points, thereby improving the convergence and fitting accuracy of the data, corresponding
thresholds were set for the head and efficiency in the sample data. The threshold of the
head was set to 135 m and the threshold of efficiency to 78%. Finally, three partial data sets,
as shown in Figure 7, were screened out. Namely, zone 1 represents data that exceeds the
efficiency threshold; zone 2 represents data within the set efficiency and head thresholds;
zone 3 represents data that exceeds the head threshold. The 99 groups of valid data screened
in the zone 2 were selected for subsequent model training and prediction.
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3.4. Non-Hierarchical Response Surface Methodology

As a common approximation model established between the objective function and
the design variables, RSM has multiple selectable polynomial orders, such as first- (linear),
second-, third-, and fourth-order polynomial functions. Based on the multi-parameter
optimization design in this paper, in order to improve the accuracy of the model prediction
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results, the fourth-order RSM was selected for the fitting calculations. The fourth-order
RSM polynomial function is expressed as follows:

f (x) = a0 +
n

∑
i=1

bixi + ∑
ij(i<j)

cijxixj +
n

∑
i=1

dix2
i +

n

∑
i=1

eix3
i +

n

∑
i=1

gix4
i (3)

where x = (x1, x2, . . . , xn), xi (i = 1, 2, . . . , n) are design variables, a0, bi, cij, di, ei, gi are the
regression coefficients of each polynomial, and the number of hierarchical polynomials is
1 + 9 + (81 − 9)/2 + 9 + 9 + 9 = 73. The non-hierarchical RSM was selected to be able to use
non-hierarchical polynomials in analyzing and verifying the accuracy of the model.

3.5. Optimization Algorithm

As an improved genetic algorithm based on the traditional genetic algorithm, MIGA
is a pseudo-parallel genetic algorithm based on population grouping. The function of
diversity and the prevention of premature maturity solve the problem experienced by
traditional genetic algorithms, which are prone to falling into local optima [23,24].

Based on the 99 groups of sample data obtained by screening the original data, the
above-mentioned fourth-order RSM polynomial function was used to establish the relation-
ship between the optimization objective and the design variables; the MIGA was then used
for optimization, and the performance of the impeller was finally verified. The parameter
settings of the optimization algorithm are shown in Table 5.

Table 5. The parameter settings of the optimization algorithm.

Option Value

Sub-population size 10
Number of islands 10

Number of generations 50
Rate of crossover 1.0
Rate of mutation 0.01

Elite size 1
Rel tournament size 0.5
Penalty multiplier 1000
Penalty exponent 2

Default variable bound 1000
Max failed runs 5

4. Results
4.1. Approximate Model Fit Accuracy

In order to verify the accuracy of the approximate model, this paper compares the
model prediction accuracy of the third-order and fourth-order RSM polynomials in the
hierarchical and non-hierarchical models. The R2 value is used to represent the degree of
agreement between the approximate model and the sample points. The closer the value is
to 1, the higher the prediction accuracy of the approximate model. For the fourth-order
RSM polynomial, the number of polynomials when layered is 73, and for the third-order
RSM polynomial, the number of polynomials when layered is 64. Figure 8a,b present
the corresponding R2 values of the third-order and fourth-order polynomials under the
hierarchy. It can be seen that the R2 value is higher under the third-order hierarchical fitting,
and the fitting effect is better. Figure 8c,d present the R2 values corresponding to third-
order and fourth-order non-hierarchical polynomials. In this optimization process, the
cross-validation method was used for error analysis, and 50 groups of random data were
selected for cross-validation error analysis. At the same time, automatic three-dimensional
modeling and numerical simulation were performed on these 50 groups of data, and the



Processes 2022, 10, 1529 10 of 16

corresponding calculation results were finally obtained. After many instances of repeated
training, it can be seen that the fitting effect of the fourth-order non-hierarchical model is
better than that of the third-order model, and the fitting accuracy of non-hierarchical model
is higher than that of the hierarchical model.

In this model verification, when the fourth-order model is non-hierarchical, and when
the number of polynomials selected is 40, a higher fitting accuracy can be obtained. Table 6
shows the design variable values before and after optimization. The efficiency of the
optimal scheme is 80.939%, which is 4.427% higher than the 76.512% before optimization.
The efficiency value verified by CFD is 80.229%, and the relative error is 0.88%. There-
fore, the optimization model has good reliability and can be accurately used for pump
performance prediction.
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Table 6. Design variable values before and after optimization.

Variables b2/mm β1h/◦ β2h/◦ β1s/◦ β2s/◦ ϕ/◦ Ks b3/mm θ/◦

Original 15 33.82 25.38 25.53 25.15 124 0.2982 70 190

Optimal 14.74 32.58 26.15 20.03 26.58 127.74 0.1992 70.01 165.32
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4.2. Sensitivity Analysis

In order to verify the influence of the design variables on the performance and ef-
ficiency of the pump, a sensitivity analysis was carried out for the nine variables in the
optimal design. Table 7 shows the corresponding coefficient values of each polynomial
using the fourth-order non-hierarchical fortieth-degree polynomial. It can be seen from the
table that the coefficients of x1, x4, x6, x8, and x9 are negative numbers; that is, the blade
outlet width b2, the blade front cover inlet placement angle β1s, the blade wrap angle ϕ, the
volute outlet width b3, and the double-volute starting position θ of the diaphragm have
a negative effect on the overall efficiency of the pump. The blade wrap angle ϕ and the
starting position θ of the diaphragm of the double volute have a significant impact on the
hydraulic power of the pump. The blade outlet width, the blade front cover inlet placement
angle, and the volute outlet width have little influence on the overall performance of the
pump and can almost be ignored. Because the coefficients of x3 and x7 are positive values,
the outlet placement angle β2h of the rear cover plate of the blade and the Stepanoff number
Ks have a positive impact on the overall efficiency of the pump, with the Stepanoff number
Ks having a greater influence. The influence of the placement angle β2h at the outlet of the
rear cover plate of the blade is small.

Table 7. Corresponding coefficients for each polynomial.

Term Coefficient Term Coefficient Term Coefficient Term Coefficient

x1 −9.82 x4
2 1.98 × 10−3 x2x8 −3.43 × 10−3 x6

3 −0.04

x3 0.38 x6
2 7.26 x3x6 −1.20 × 10−3 x7

3 2.54 × 104

x4 −0.49 x7
2 −9.13 × 103 x3x7 0.19 x8

3 −1.56 × 10−4

x6 −612.25 x8
2 3.61 × 10−2 x3x8 −1.82 × 10−3 x9

3 −4.11 × 10−3

x7 1418.98 x9
2 1.01 x4x6 1.60 × 10−3 x1

4 1.07 × 10−3

x8 −2.79 x1x7 2.28 x4x7 0.22 x2
4 −5.70

x9 −111.13 x1x8 −4.20 × 10−3 x7x9 −0.09 x6
4 7.52

x1
2 1.19 x1x9 3.00 × 10−3 x8x9 1.06 × 10−3 x7

4 −2.67 × 104

x2
2 −0.10 x2x4 3.71 × 10−3 x1

3 −0.06 x9
4 6.23

x3
2 −2.41 × 10−3 x2x7 0.25 x2

3 4.49 × 10−3 const 2.40 × 104

4.3. Inner Flow Analysis

Figure 9 presents a comparison of the impeller inlet peripheral speed before and after
optimization. The inlet peripheral speed of the impeller has an important influence on
the pump head. If the peripheral speed is too large, it easily forms a prewhirl at the inlet
and affects the impeller head. In the steady calculation, due to the uneven distribution of
the dual-inlet flow channels and the water suction chamber, the inter-stage flow channels
of the second-stage impeller have a great influence on the flow distribution. Under the
centrifugal force of the first-stage impeller, the overall increase in the velocity distribution
of the second-stage impeller is higher than that of the first-stage impeller. Compared with
that before optimization, the peripheral velocity distribution of the first-stage impeller inlet
shows almost no great change. After optimization, the average circumferential speed at the
inlet of the second-stage impeller is 4.45 (m s−1), and the average circumferential speed
of the second-stage impeller inlet of the original scheme is 6.14 (m s−1). Thus, compared
with the original model, the overall prewhirl of the impeller inlet is reduced, therefore
significantly improving the hydraulic performance of the impeller and the optimized
second-stage impeller.
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Figure 9. Comparison of the peripheral speed distribution of the impeller inlet before (a) and after
(b) optimization.

Figures 10 and 11 present a comparison of the speed distribution before and after
the optimization of the first-stage impeller and the second-stage impeller, respectively.
It can be seen from the figures that the internal flow of the first-stage impeller of the
original scheme fits better with the blade profile, while the hydraulic performance of the
optimized first-stage impeller is not improved to a certain extent, but flow separation occurs
in two of the flow channels. For the optimized second-stage impeller, the internal flow of
the second-stage impeller of the original scheme is smooth overall, and the streamlines in
the other optimized flow channels show no obvious change; however, there is a backflow
phenomenon in the upper flow channel, which results in a vortex.
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Figure 11. Comparison of the second-stage impeller velocity distribution before (a) and after
(b) optimization.

Figure 12 presents a comparison of the distribution of the velocity streamlines of the
double volute before and after optimization. It can be seen from the figure below that the
velocity of the volute after optimization is significantly improved, the vortex at the volute
and the outlet pipe is eliminated, and the impact loss at the volute tongue is eliminated.
The overall velocity inside the volute is reduced, so the overall hydraulic performance of
the volute is improved. Since the volute is a static water-passing component, we generally
think that it has little effect on the pump’s efficiency. However, as an energy-recovery
component that converts kinetic energy into pressure energy, the volute has a considerable
impact on the efficiency of the pump. Therefore, an improvement of the internal flow
performance of the volute can effectively improve the overall operating efficiency of the
pump [25].
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4.4. Characteristic Analysis of the Entropy Field

Due to the phenomena of secondary flow, backflow, pressure pulsation, and flow
separation that aggravate energy dissipation during pump operation, energy dissipation
can be effectively evaluated by comparing the entropy production results before and after
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optimization. For this analysis of entropy production, the inclusion of wall dissipation,
turbulent dissipation, and direct dissipation is considered based on the Reynolds time-
averaged turbulent motion.

Table 8 shows the entropy production values corresponding to the wall, turbulence,
and direct dissipation of different components before and after optimization, where Imp
1st1 represents the first-stage impeller on the left side of Figure 1, Imp 1st2 is the first-stage
impeller on the right side, Vol is the double volute, and Imp 2nd is the second-stage impeller.
It can be seen from the table that the entropy production of various dissipations of the
optimized first-stage impeller is increased, and the wall dissipation of the second-stage
impeller is reduced to a certain extent. The dissipation of the volute in all three parts is
reduced, mainly concentrated in the dissipation of the wall, which is reduced by 9.07 (W/K)
as compared with that before optimization.

Figure 13 presents a comparison chart of the entropy production results of the first-
stage impeller, the second-stage impeller, and the double volute before and after optimiza-
tion. As can be seen from the figure, due to the optimization of the structure of the double
volute, the entropy production value after optimization is reduced by 9.64 (W/K), and the
energy dissipation of the volute is significantly reduced. The other parts may have a small
increase in entropy production due to the deterioration of the optimized flow state, but the
overall entropy production of the pump is decreased by 4.79 (W/K). Hence, the overall
energy loss of the pump is reduced, the performance is improved, and the optimization
effect of the volute is better than that of the impeller.

Table 8. Entropy production for the wall, turbulence, and direct dissipation of different components
before and after optimization.

Original Optimization

Dissipation type Wall Turbulence Direct Wall Turbulence Direct
Imp 1st1 12.12 2.32 2.04 12.44 3.01 2.77
Imp 1st2 12.13 2.32 2.04 12.29 3.05 2.82

Vol 35.25 7.82 0.60 26.18 7.18 0.67
Imp 2nd 23.95 5.53 4.57 23.84 6.34 5.32
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5. Conclusions

In this paper, the efficiency of a multi-stage double-suction pump under its design
conditions was selected as the optimization target, and nine design parameters were used
as the optimization variables. The LHS method was used to sample and screen the data
based on the improved RSM in order to optimize the efficiency. Finally, the MIGA was
used for global optimization, and the hydraulic performance of the pump before and after
optimization was compared and analyzed.

(1) The non-hierarchical RSM selected in this paper, namely the fourth-order fortieth-
degree non-hierarchical polynomial, can effectively approximate the nonlinear rela-
tionship between the optimization target efficiency and the design variables. The fitted
R2 value was 0.919, which was significantly improved compared with the fourth-order
hierarchical polynomial and met the accuracy requirements. The efficiency under the
design case after the final numerical verification was increased by 3.717%.

(2) For the fourth-order fortieth-degree hierarchical polynomial selected in this paper,
the degree of influence of each variable on the efficiency can be obtained through the
coefficients of each polynomial, among which the blade front cover inlet placement
angle β1s, the baffle starting position θ, and the blade wrap angle ϕ were found to
have a greater impact on the efficiency, while the other variables were found to have
less impact.

(3) The internal flow of the optimized double volute was well improved, eliminating the
large-area vortex phenomenon in the low-pressure area at the outlet of the volute. The
overall velocity inside the volute was reduced, therefore converting kinetic energy
into pressure energy to a greater extent, and the energy loss was reduced.

(4) By comparing and analyzing the entropy production value of each component before
and after optimization, it can be concluded that the total entropy production of the
pump is reduced by 4.79 (W/K) as compared with that before optimization, while the
optimized double volute entropy production is reduced by 9.64 (W/K). This is mainly
due to the reduction in the wall surface entropy generation as well as the dissipation
value in the double volute, which effectively reduces the energy loss of the pump and
improves the overall operating performance of the pump.
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