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Abstract: The aim of this paper was to study the suppression influence of water mist on oil pool
fires, taking diesel fires and n-heptane fires as experimental objects. The effects of spray pressure
and temperature on water mist suppression were examined, and an experimental platform for the
suppression of water mist in a small space was set up. Their fire prevention performance and fire
extinguishing mechanisms were analyzed by comparing the flame temperature and extinguishing
time of diesel and n-heptane pool fire. Three types of spray pressure were set. Water mist was
designed at different temperatures and design experiments were carried out for this purpose. The
change process of smoke concentration, thermocouple temperature, and flame combustion under
different working conditions were analyzed, and the factors affecting the fire extinguishing effect of
water mist on oil pool fire were discussed. The results show that 20 ◦C water mist is more effective
at medium and high pressure than at low pressure. Moreover, 80 ◦C water mist at 9 MPa is more
effective in extinguishing n-heptane fire. The flame extinction time is about 10 s, which is more than
40 s higher than that of cold water.

Keywords: water mist; water mist temperature; pressure; oil pool fire; fire extinguishing effect

1. Introduction

Since the signing of the Montreal Convention in 1987, the international fire safety
field has been looking for alternatives to halogenated alkyl fire extinguishing agents [1].
Water mist fire extinguishing technology has the advantages of no pollution, rapid fire
extinguishing, less water consumption, and less damage to the protected objects. Water
mist has gradually been considered and has been successfully recognized internationally.
Against this background, the research on water mist fire extinguishing technology has
entered a golden period of development in recent decades [2]. Similarly, great progress has
been made in the research on its suppression efficiency [3].

Scholars from all countries pay close attention to water mist fire extinguishing tech-
nology because of its suppression efficiency [4]. To comprehensively study the fire-
extinguishing conditions of water mist, Liu et al. [5] pointed out that the reason for flame
expansion caused by water mist is the thick flammable vapor layer on the oil surface. Ankit
dasgotra et al. [6] found that the effect is primarily affected by operating parameters, such
as the ratio of the distance between two pools to the diameter of the pool, gap of platform,
nozzle ejection rate, and water mist particle size. Zhou et al. [7] added a small amount
of newly developed additive named MC to the water mist that can significantly improve
the fire extinguishing performance of the water mist system. Liu et al. [8] carried out
experiments and simulations to verify that under the smoke exhaust conditions, the water
mist can effectively extinguish the fire, but the time required for extinguishing the fire is
affected by the ventilation volume. Chelliah et al. [9] explored the quantitative information
of the coupling between the optimal droplet size and the flow residence time in suppressing
gas flames. Yao et al. [10] studied the interaction between water mist and the heat diffusion
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flame in a closed environment and found that the small water mist current can increase the
flame intensity.

Nevertheless, scholars have researched the temperature factor affecting water mist
suppression efficiency less. Most research focuses on the mechanism, additives and sur-
factants, ventilation conditions and obstacle position, fire heat release rate, and nozzle
characteristics [11,12]. This paper measured the fire extinguishing time, flame temperature
and smoke change parameters of water mist under low, medium and high pressure at differ-
ent temperatures. The fire extinguishing effects of water mist at different temperatures on
diesel and n-heptane fires were studied through experiments. The influence of temperature
on the fire extinguishing effect of water mist can be understood more comprehensively.
This paper provides experimental and data support for the engineering application of
a high-temperature water mist fire extinguishing system [13], which may influence the
developing fields of water mist fire extinguishing technology and fire protection [14].

2. Experimental Setup
2.1. Experimental Platform

The experimental platform is composed of a confined space, water mist system, fire
source, temperature measurement system, gas analyzer, and video camera, as shown in
Figure 1. The experimental platform space was designed to be 1.8 m × 1.8 m × 3 m. The
frame of the confined space is a steel structure. Its bottom is ceramic tile, and the other
five sides are tempered glass. This ensures a particular thermal insulation effect, tightness,
and safety. In front of the confined space is a 0.8 m × 2 m glass door, which is convenient
for entering and leaving the burning dish for experiments. The upper part of the confined
space is a smoke exhaust pipe extending outdoors, and a gas analyzer is placed at the tail
of the smoke exhaust pipe to record the smoke concentration. The water mist nozzle is
placed 2.4 m above the fire source. The bottom thermocouple shall be placed 10 cm above
the fire source, and other thermocouples shall be placed every 30 cm upward.
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Figure 1. Diagram of the experimental system. Figure 1. Diagram of the experimental system.

Additionally, the height of 2.4 m is closer to the actual height. The oil pan with a
diameter of 60 cm was chosen in accordance with the experimental design of the oil fire.
Thermocouples are positioned every 30 cm to ensure accurate measurement of the fire
source temperature. Diesel oil and n-heptane were used as fuels in the experiment, which
were poured into a container with a diameter of 60 cm and a depth of 3 cm. An external
camera recorded and observed the flame image [15].

2.2. Nozzle Properties
2.2.1. Water Flow Rate

The size of droplets will affect the fire extinguishing effect of water mist. The pressure
and flow coefficient of the sprinkler will determine the size of water mist particles. This
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paper studies the characteristics of water mist under different pressures and temperatures.
The 0.7 flow coefficient nozzle is used for research in order to regulate the variable. The
nozzle’s flow coefficient K value is 0.7. The experimental findings are consistent with the
following formula. The nozzle flow is obtained by the following Equation (1):

q = K
√

10P (1)

where q (in L/min) is the water flow rate; K is the flow coefficient; P (in MPa) is the
working pressure.

2.2.2. Particle Size Distribution

The American Fire Protection Association has defined three pressure zones for the
fine water mist production technology: low pressure (0–1.21 MPa), medium pressure
(1.21–3.5 MPa), and high pressure (>3.5 MPa). The particle size distribution was measured
by using the LSP-800 laser particle size analyzer at 1 MPa, 3 MPa, and 9 MPa, respectively.
The R-R distribution map measurements are shown in Figures 2–5. Overall, the average
volume diameter (VAD), the average mass diameter (NAD), and Sauter average diameter
(SMD) of 80 ◦C water mist are smaller than 20 ◦C water mist [16]. The particle size
distribution of 80 ◦C water mist is relatively concentrated, while that of 20 ◦C water mist is
more dispersed. Table 1 shows that the particle size of water mist at the same temperature
decreases with the increase of pressure. The maximum volume average diameter of water
mist is 20 ◦C under 1 MPa, and the value is 173 µm. The minimum volume average
diameter of water mist is 80 ◦C under 9 MPa, and the value is 105 µm [17].
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Figure 2. Particle size distribution of 20 °C and 80 °C water mist at 1 MPa. Figure 2. Particle size distribution of 20 ◦C and 80 ◦C water mist at 1 MPa.
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Figure 4. Particle size distribution of 20 °C and 80 °C water mist at 9 MPa. 
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Figure 3. Particle size distribution of 20 ◦C and 80 ◦C water mist at 3 MPa.
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Figure 4. Particle size distribution of 20 °C and 80 °C water mist at 9 MPa. 
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Figure 4. Particle size distribution of 20 ◦C and 80 ◦C water mist at 9 MPa.
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Table 1. Particle size distribution of cold and hot water mist under various pressures.

Temperature/◦C Pressure/MPa Volume Average
Diameter/µm

Mass Average
Diameter/µm

Sauter Average
Diameter/µm

20 ◦C
1 173.154 60.363 132.789
3 159.446 51.700 121.535
9 113.671 27.307 80.220

80 ◦C
1 163.722 114.361 141.592
3 149.715 97.147 128.022
9 105.401 24.604 71.494
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2.2.3. Water Flux Density Distribution

A bucket experiment was carried out to fully show the characteristics of water mist in
the investigation and more intuitively see the adequate water acting on the fire source [18].
As shown in Figure 5, the nozzle is placed 2.4 m away from the ground. Below the nozzle
are 64 cubic barrels with a side length of 0.2 m. The barrels are made of acrylic, with a
depth of 0.2 m. The average water flux density in each barrel is calculated by the following
Equation (2):

Q =
V

t·A0
(2)

where Q (in L/min/m2) is the average bucket density in each bucket; V (in L) is the volume of
water collected in the bucket; A0 (in m2) is the bucket collection area (A0 = 0.2 × 0.2 = 0.04 m2);
t (in min) is the collection time.

Since water splashes into the enclosed space outside the barrel and on the glass, an
error of 5–8% can be allowed [19]. As seen in Figure 5c,d, hot water is more effective than
cold water in the oil pan. In addition, temperature changes the movement mode of water
mist molecules, improving hot water fire extinguishing.

2.3. Experimental Procedure

In the fire extinguishing experiment, the primary fuels were diesel oil and n-heptane.
Four kinds of water with temperatures of 20, 40, 60, and 80 ◦C were used and the water
was subject to heat preservation treatment. We added 300 g diesel or 300 g n-heptane to
the oil pan, then diesel fuel with a bit of methanol was ignited [20]. To stabilize the flame
state, n-heptane fire and diesel oil were pre-ignited for 30 s and 60 s, respectively, then
we adjusted the pressure to open the water mist switch. We applied water mist until the
flame was extinguished and recorded the extinguishing time. Successful fire suppression is
defined as within 60 s after the fire is out, if not recurrent, and there is oil in the plate. Then,
the nozzle pressure, fuel, and water mist temperature were changed and the above steps
were repeated [21].

2.4. Summary of Working Condition Setting

Based on the above experimental platform and program, 19 comprehensive tests were
carried out. All working conditions are listed in Table 2. In addition, the fire extinguishing
time of each fuel at various pressures and temperatures was established.

Table 2. Extinguishing time of diesel and n-heptane fires with cold and hot water mist under
different pressures.

Condition No. Fire Extinguishing
Species Pressure/MPa Water Mist

Temperature/◦C
Precombustion

Time/s
Fire Extinguishing

Time/s

1

diesel oil

1
20

60

42
2 3 35
3 9 36
4 1

80
90

5 3 110
6 9 70

7

Heptane

1
20

30

65
8 3 42
9 9 54
10 1

40
42

11 3 31
12 9 17
13 1

60
55

14 3 28
15 9 14
16 1

80
59

17 3 30
18 9 10
19 Free burning 90



Processes 2022, 10, 1549 6 of 13

3. Results and Discussion
3.1. Analysis of the Experiment Results of Fire Extinguishing Time

According to the fire extinguishing time of the diesel pool fire and n-heptane pool
fire under 20 ◦C water mist, the fire extinguishing effect of medium-pressure water mist is
better than the high-pressure and low-pressure water mist. Therefore, the experimental
results are consistent with a previous study that found that medium-pressure water mist
is more appropriate for class B fires and low-pressure water mist is unsuitable for oil
pool fires.

For the water mist at 80 ◦C, there is no obvious advantage to diesel pool fire; even the
fire extinguishing effect is not as good as cold water mist. However, when putting out the
fire in the n-heptane tank, the fire extinguishing effect of hot water mist is better than that
of cold water mist. Under the pressure of 9 MPa, the fire extinguishing time is more than
40 s earlier, and the fire extinguishing efficiency is several times that of the cold water mist.

Due to the significant effect of the water mist temperature on the n-heptane fire,
the middle 40 and 60 ◦C were also explored and then integrated. Figure 6 shows the
extinguishing time of n-heptane fire at different temperatures. It can be seen that the water
mist at 40 ◦C has the shortest extinguishing time under 1 MPa pressure. Under the pressure
of 3 MPa, the extinguishing time of 60 ◦C water mist is the shortest, and the extinguishing
time is 28 s. Under the pressure of 9 MPa, the extinguishing time of 80 ◦C water mist is the
shortest, and the extinguishing time is 10 s. Considering the limitations of the low-pressure
fire extinguishing system, the comprehensive analysis of the medium- and high-pressure
results shows that the temperature with the short overall fire extinguishing time and the
highest fire extinguishing efficiency is 80 ◦C.
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The fire extinguishing mechanism of pure cold water mist mainly includes gas-phase
cooling, attenuation of heat radiation, surface cooling, and oxygen isolation [22]. The
fire extinguishing mechanism of hot water and fine water mist is different. When the
cooling action is carried out, in other words, the heat absorbed by the water during
gasification is much greater than when the water temperature rises. For example, the
heat required for 1 kg of water to increase from 20 to 100 ◦C is 80 kcal, while the heat
required for 1 kg to be gasified at 100 ◦C is 539 kcal. Therefore, the temperature gap
leads hot water mist to vaporize faster in fire extinguishing experiments and requires a
large amount of heat during gasification, resulting in a faster drop in the fire temperature.
The cold water mist does not reach the saturation temperature, and no phase change is
happening. When the asphyxiation is performed, the hot water reaching the boiling point is
continuously vaporized and heated into a large amount of water vapor. Therefore, it reaches
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the steam extinguishing concentration locally in the fire area. When the concentration of
the fire area drops to a specific limit, the flame will be extinguished [23]. Therefore, in this
experiment, a large amount of water vapor formed by hot water mist gasification occupies
a particular area, locally reducing the oxygen concentration and providing conditions for
fire extinguishing.

3.2. Analysis of the Changes in the Flame Temperature

Each figure is divided into four stages: a, b, c, and d. Stage a is the ambient temperature
before ignition; b is the temperature change of oil pool free combustion after ignition; c is
the water mist fire extinguishing stage; d is the stage of free cooling to room temperature.

In Figure 7, this study selected the water mist temperature curve with a good fire
extinguishing effect of 3 MPa, including diesel and n-heptane fires. For the diesel pool
fire, the violent burning in the free combustion stage and the air roll suction effect are
particularly obvious. After applying water mist, it quickly interacts with flame and fuel.
However, in the early stage of applying water mist, the flame size and temperature have
slightly improved. When fine water mist interacts with pool fires, both mechanisms that
promote combustion and inhibit combustion work simultaneously. In some incomplete
combustion of the pool fires, the influence of fine water mist can aggravate the combustion
process [24]. With the incessant release of water mist, the flame size and temperature
decreased significantly, and the flame is completely suppressed and goes out at 35 s. For
the n-heptane fire, the initial flame combustion is stable and increased by the temperature.
When water mist is applied, the flame temperature gradually decreases until the flame
disappears and completely extinguishes at 42 s.
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Figure 8 shows the flame temperature curve of the hot water mist to extinguish the
n-heptane fire under high and medium pressure conditions. Under the pressure of 3 MPa
and 9 MPa, the initial flame state is stable, and the temperature keeps rising. After the
fine water mist is applied, the flame temperature decreases rapidly. When the flame is
extinguished, the fine water mist is stopped, and then the temperature decreases to the
end of the room temperature experiment. The fire extinguishing time is 30 s under the
pressure of 3 MPa and 10 s under the pressure of 9 MPa. The fire extinguishing efficiency
of high-pressure hot water mist is better than that of medium-pressure hot water mist and
is far better than that of cold water mist.
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With the increase of pressure, the initial combustion promoting stage of hot water mist
will disappear. When the hot water mist acts on the flame and fuel, it absorbs more heat than
the cold water mist. The cooling effect is noticeable, and the fire extinguishing efficiency
is greatly improved. When the hot water mist acts on fire, it will be vaporized to form
steam after reaching the boiling point, expelling oxygen and forming a local anoxic state.
The asphyxiation effect is noticeable [25]. In addition, the droplet size of hot water mist
is smaller than that of cold water, and the smaller the surface area of water mist droplets,
the easier it is for them to interact with the flame, so the fire extinguishing performance
of hot water mist is much better than that of cold water mist. The experimental results
and temperature curves also reveal that the fire extinguishing effect of hot water mist at
high pressure is more significant than that at medium pressure. The atomization effect of
high-pressure water mist is more obvious, which can make the water mist fill the entire fire
extinguishing space. This makes the impact of water mist on the fire source more effective
and has a stronger ability to reduce heat radiation [26]. To sum up, the hot water mist has
the best fire extinguishing effect and the fastest fire extinguishing time under the pressure
of 9 MPa, which improves safety.

3.3. Comparison of the Volume Fraction Change of the Flue Gas Fraction

Figures 9 and 10 respectively show the change of flue gas composition of diesel and
n-heptane fires extinguished by hot and cold water mist measured by the flue gas analyzer
under the pressure of 3 and 9 MPa. At the beginning of combustion, because n-heptane has
a higher combustion calorific value than diesel, it needs to consume more O2, and complete
combustion will produce more CO2 accordingly. Therefore, the volume fraction of each
flue gas component of n-heptane fire changes more obviously and faster than that of diesel
fire. We started spraying after 30 s of n-heptane and 60 s of diesel combustion. The space
temperature of n-heptane pool fire is higher than that of diesel pool fire, so the rate of water
mist entering and evaporating with the flame is faster, resulting in insufficient oxygen
supply and easier flame extinction. However, the diesel pool fire is more complex and
has a higher boiling point, which makes it easier to carry out incomplete combustion and
produces more CO [27]. After the flame is extinguished, we closed the water mist generator,
and the flue gas test was completed when each flue gas component drops to normal.
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Figure 9. Change diagram of flue gas composition of diesel and n-heptane under the action of hot 

water mist at 3 MPa and 9 MPa. 
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Figure 9. Change diagram of flue gas composition of diesel and n-heptane under the action of hot
water mist at 3 MPa and 9 MPa.

The longitudinal comparison (Figure 9) shows that the pressure acting on the n-
heptane fire of 9 MPa consumes more oxygen than 3 MPa. As a result, less CO is produced,
so the fire extinguishing effect is better under the pressure of 9 MPa. Although the CO
produced by diesel fire under 3 MPa pressure is relatively small, the rate of oxygen reduc-
tion is not as apparent as 9 MPa, so the fire extinguishing effect of hot water mist under
3 MPa pressure on diesel fire is not obvious. Figure 10 shows that the change rate of O2
volume fraction of cold water mist on n-heptane and diesel fires at 3 MPa is faster than that
at 9 MPa because the CO produced is also less. Therefore, the cold water mist under 3 MPa
pressure can control the fire more, and the fire extinguishing time is also shorter [28].

Comparing all working conditions in Figures 9 and 10, the n-heptane pool fire under
hot water mist is easier to vaporize and form water vapor when it acts with the flame,
consuming oxygen. In addition, the water vapor eliminates part of the oxygen to form local
anoxia, resulting in a faster change rate of O2 than that of cold water. Therefore, the fire
extinguishing efficiency of hot water mist is superior. On the other hand, when the cold
water mist acts on the diesel pool fire, the production of CO decreases, and the change rate
of O2 accelerates [29]. Furthermore, the boiling point of the diesel fire is also very high, so
the cold water mist fire extinguishing efficiency is dominant. That is to say, cold water mist
is more effective for diesel fire, and hot water mist is more effective for n-heptane fire.



Processes 2022, 10, 1549 10 of 13

Processes 2022, 10, x FOR PEER REVIEW 10 of 14 
 

 

0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

350

400

450

500

550

 CO

 O2

Time(s)

C
a
r
b

o
n

 m
o
n

o
x
id

e
 v

o
lu

m
e
 f

r
a
c
ti

o
n

(p
p

m
)

（a）N-heptane fire

12

13

14

15

16

17

18

19

20

21

O
x
y
g
e
n

 v
o
lu

m
e
 f

r
a
c
ti

o
n

(%
)

80℃ water mist

 

0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

300

350

400

 CO

 O2

Time (s)

C
a

rb
o

n
 m

o
n

o
x

id
e 

v
o

lu
m

e 
fr

a
ct

io
n

(p
p

m
)

（b）Diesel fire

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

O
x

y
g

en
 v

o
lu

m
e 

fr
a

ct
io

n
(%

)

80℃ water mist

 

3 MPa 

0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

350

400

450

500

 CO

 O2

Time (s)

C
a

r
b

o
n

 m
o

n
o

x
id

e
 v

o
lu

m
e
 f

r
a

c
ti

o
n

(p
p

m
)

（a）N-heptane fire

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

O
x

y
g

e
n

 v
o

lu
m

e
 f

r
a

c
ti

o
n

(%
)

80℃ water mist

 

0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

300

350

400

450

500

 CO

 O2

Time (s)

C
a

rb
o

n
 m

o
n

o
x

id
e 

v
o

lu
m

e 
fr

a
ct

io
n

(p
p

m
)

（b）Diesel fire

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

O
x

y
g

en
 v

o
lu

m
e 

fr
a

ct
io

n
(%

)

80℃ water mist

 

9 MPa 

Figure 9. Change diagram of flue gas composition of diesel and n-heptane under the action of hot 

water mist at 3 MPa and 9 MPa. 
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3.4. Flame Status Analysis

Figure 11a,b show the flame diagram before water mist is applied; Figure 11c,d show
the flame diagram when the cold and hot water mist extinguishes the fire for 3 s; and
Figure 11e,f show the flame diagram when the cold and hot water mist extinguishes the fire
for 8 s. When the water mist is applied, it has a combustion-supporting effect, and the flame
keeps jumping and rolling [30]. The fire size and height of hot water mist fire extinguishing
are relatively small at the beginning and near the end of the fire. The lower surface tension
of hot water than that of cold water occurs since the temperature of cold water is low, the
activity of water molecules is poor, and the ability to overcome intermolecular attraction
is weak, while hot water molecules have good activity and strong ability to overcome
intermolecular attraction. Surface tension is the intermolecular attraction and the weaker
the ability to overcome the intermolecular attraction, the greater the surface tension, so
the surface tension of hot water is small. When the water mist is applied, the hot water
is more likely to form a wrapping system, which hinders the interaction between the oil
pool and the oxygen, and the flame size and temperature are greatly reduced until it is
extinguished [31].
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4. Conclusions

Through the experimental study of inhibiting confined space n-heptane and diesel
fires, the following conclusions are drawn:

(1) Medium- and high-pressure water mist is better than low-pressure water mist in
extinguishing oil pool fires, but for hot water mist this is not the case.

(2) N-heptane pool fire has the best fire extinguishing effect under the pressure of hot
water mist of 9 MPa, which is better than medium pressure hot water mist and much better
than cold water mist, but the effect on diesel fire is not significant.

(3) When water mist acts on n-heptane flame, the fire extinguishing effect is susceptible
to temperature. The higher the water mist temperature, the better the fire extinguishing effect.

(4) The particle size of high-temperature fine water mist is generally less than that of
cold water fine water mist, and the fire extinguishing effect is the best when the particle
size of 80 ◦C fine water mist under 9 MPa pressure is 105.4 µm.
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(5) The hot water mist distributes water more effectively on the fire source than the
cold water mist, and the water flux density distribution on the fire source is also higher.
Therefore, the hot water mist saves more water and has higher fire extinguishing efficiency.

(6) The fire extinguishing mechanism of hot water is more optimized for cooling and
suffocation than cold water. When cooling, the heat absorbed by hot water is much larger
than when the water temperature rises, resulting in a faster reduction in the fire-fighting
temperature; when suffocating, the hot water reaching the boiling point is continuously
evaporated and heated into a large amount of water vapor. As a result, it eliminates the
surrounding oxygen and forms local hypoxia. This causes the flame to have no combustion
conditions and eventually go out.
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