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Abstract: Wastewater disinfection is one of the most critical issues in protecting human health against
exposure to waterborne pathogenies. Chlorine is among the most commonly used disinfectants
in many wastewaters’ treatment plants. Nevertheless, disquiets regarding chlorine’s disinfection
by-products (DBPs) have grown recently. One of the most effective ways to reduce DBPs generation
is to reduce chlorine dosage by increasing disinfectant efficiency. Using magnetic field (MF) in
wastewater treatment is one of the promising research topics with significant progression. This study
aimed to evaluate the efficiency of using a magnetic field and/or sodium hypochlorite (NaClO)
disinfection on secondary slaughterhouse wastewater effluent quality and by-products. Three groups
of secondary slaughterhouse wastewater effluents were used: G1 was treated with NaClO only at 0,
2, 4, and 6 mg/L; G2 was treated with exposure to MF at 14,500 gausses, and G3 was pretreated with
MF, then NaClO at the exact chlorine dosages and MF strength. The results showed an augmented
effect when using a magnetic field as a pre-treatment step before NaClO treatment in the remediation
of slaughterhouse wastewater over the use of any of them solely. The removal rate of COD and BOD
increased by up to 26 and 20%, respectively, when pre-treatment with MF was employed as a mean
percentage at all chlorine dosages, while TSS, TDS, and EC increased by 23.5 and 5.5%, respectively.
Over and above, the removal rate for each TN and TP increased by 12 and 6.5% as a mean percentage
at all chlorine dosages when using a combination of the two. In addition, pre-treatment by MF
reduced the required concentration of NaClO from 6 to 4 mg/L, resulting in an 11% increase in the
reduction rate of total coliform count, 8% increase in the reduction rate of fecal coliforms, and 10%
increase in the reduction rate of E. coli and 5% in Salmonella via increasing the disinfection efficiency
of NaClO. Finally, it decreased the concentration of Chloroform produced by more than 77.2% by
using the higher concentration of NaClO (6 mg/L). The issue that approved the promising approach
of using MF as a pre-treatment step in the treatment of slaughterhouse wastewater provides the
advantage of using smaller dosages of disinfection, lowering the cost of the procedure process, and
reducing the harmful concentration of DBPs.
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1. Introduction

Environmental pollution is considered one of the most significant problems that the
world faces nowadays. One of the primary sources of polluting the environment is the
wastewater produced by human activities [1]. Slaughterhouses and Meat Processing Plants
(MPPs) are part of a large industry worldwide that uses approximately 62.0 million cubic
meters of water annually. A small volume of this amount is a component of the final meat
products, while wastewater’s most significant volume [2].

Throughout the slaughtering process, significant amounts of wastewater are generated
with blood, rumen contents, and contaminants from equipment and hall washing, which
seriously pollute surface water, groundwater, and agricultural lands by discharging into
the environment [3]. Many human pathogens can be transmitted by water contaminated
with wastewater runoffs. Slaughterhouse wastewater effluents enclose many pathogens
that could harm humans [4], such as Salmonella, Shigella, and Brucella [5]. At the same
time, the presence of coliform bacteria in the digestive tract of livestock and poultry is
harmless; their presence in water contaminates it and causes the possible presence of
other pathogens [6]. Disinfection is critical for wastewater treatment before discharge
into receiving waters, preventing pathogenic microorganisms and waterborne disease
transmission [7]. Chlorine, ozone (O3), and ultraviolet (UV) from the most common
disinfectants used for wastewater disinfection. Chlorination is the most widely used
disinfection method [8]. Well-established application practices, low cost, high disinfection
efficiency, and long-lasting disinfection effect from the most common advantages of chlorine
disinfectant [7]. However, the reaction of chlorine with organic/inorganic matter leads to
the formation of mutagenic/carcinogenic and toxic by-products (DBPs) that are potentially
harmful to human and aquatic organisms [9,10]. Secondary wastewater effluents are
composed of a mixture of natural organic matters, synthetic organic compounds, and
bromide at substantially high concentrations [11]. Upon reaction with chlorine form more
species of DBPs in higher concentrations. The most effective approach in the reduction
of disinfection by-products is reducing the applied dosage of disinfectant, were at the
same time assures the disinfection efficiency; thus, pre-treatment or combined disinfection
with physical disinfectant is a promising way to achieve this goal. In recent decades,
MF has shown great potential in medical, industrial, and environmental applications.
Using MF in wastewater treatment is one of the promising research topics with significant
progression, particularly after using magnetic fields in ecological engineering to improve
processing systems or processes [12]. MF has been employed in wastewater treatment to
remove colors, heavy metals, suspended solids and turbidity, organic compounds, and
hazardous substances [13]. Previous studies have established the remarkable efficacy of
MFs at enhancing the physical features of solid-liquid separation by encouraging colloidal
particle aggregation and the physical qualities of wastewater treatment by increasing
bacterial activity [14]. Much research on the effects of MFs on microorganisms, their
viability, and metabolism has already been published in the literature [15]. Magnetic
fields affect Gram-positive and gram-negative bacteria’s cell wall transport mechanisms
differently [16]. Johan-Sohaili et al. [17] explained the great potential of magnetic technology
in sewage treatment by enhancing the separation of suspended particles. MFs usage
showed significant advantages over conventional wastewater treatment, including safety,
compatibility, simplicity, environmentally friendliness, and low operating cost [18]. To the
best of the authors’ knowledge using magnetic field as a disinfection pretreatment step as
an environmentally friendly, and low-cost approach has not been investigated previously.
Therefore, this study aimed to assess the efficacy of using MF and/ or NaClO disinfectant on
the physicochemical quality of secondary effluents of slaughterhouse wastewater pretreated
with zeolite and rice straw. This is in addition to their efficacy on the microbiological quality
of wastewater effluents and inactivation of the key waste water indicator microorganisms
Escherichia coli and Sallmonella. Furthermore, their impact on the formation of the critical
disinfection by-products, THMs.
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2. Materials and Methods
2.1. Material
2.1.1. Wastewater Characterization

Wastewater samples were obtained from Kafrelshiekh slaughterhouse located in
the Kafrelshiekh governorate (31_6022.7520 0 N, and longitude of 30_56031.110 0 E),
Egypt, and treated by sedimentation to remove suspended solids; then coagulation using
1000 mg/L natural zeolite [19] for removal of suspended and dissolved solids and decreas-
ing COD and BOD. Finally, it was filtrated using a physically activated rice straw [19]. The
character of the obtained treated slaughterhouse wastewater (SHWW) used in this study is
illustrated in Table 1.

Table 1. Characteristics of the SHWW under examination in the experiment.

Parameters Treated SHWW (Mean Values)

pH 7.59

BOD (mg/L) 480

COD (mg/L) 1600

TSS (mg/L) 661

TP (mg/L) 10.6

TN (mg/L) 441

EC (ds/m) 2.72

TDS (mg/L) 1350

TCC (cfu/100 mL) 16875

FCC (cfu /100 mL) 8675

E coli (cfu /100 mL) 4850

Salmonella (cfu/100 mL) 10,500

2.1.2. Magnetic Field

Delta Magnetic water device of 14,500 Gauss magnet (Delta water company/80/8000,
Egypt) was used (Figure 1). Device specifications: Diameter size:1 inch; Flow rate
12 m3/h, Connection: Thread connection; Material: Stainless steel; Packing Box Dimension:
11 × 11 × 85 cm; Device weight: 6 kg; Temperature (up to):80 ◦C; Pressure (Up to): 7 bar.
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Figure 1. Delta water magnetic device.

2.1.3. Sodium Hypochlorite

A commercial stock solution of NaClO was used with available chlorine 12% w/v
and pH of 11.5–13 (Advent, CHEMBIO PVT.LTD, India) and prepared at different chlorine
dosages (2, 4, and 6 mg/L). Where all the mentioned NaClO dosages are denoted, the mean
available chlorine contents.



Processes 2022, 10, 1589 4 of 14

2.2. Methods
Study Design for SHWW Disinfection

The experiment was conducted at three aligned scenarios on slaughterhouse wastewa-
ter effluent to investigate the efficiency of using either (1) NaClO disinfectant alone, (2) MF
using Delta Magnetic water device alone, or (3) MF using Delta Magnetic water device as a
pre-treatment step and immediately after pre-treatment, NaClO was added as summarized
in Figure 2.
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Figure 2. Study design: SHWW; slaughterhouse wastewater treated previously by sedimentation
followed by coagulation using natural zeolite (1000 mg), then filtration through physically treated
rice straw [19]. Different disinfection methods achieved treatment; Gl) 0, 2, 4, and 6 mg/L active
chlorine; disinfection with 12% (w/v) commercial NaClO; G2) MF: disinfection with magnetic field
producing magnetically treated slaughterhouse wastewater (MTSHWW) and G3) was pretreated
with MF then NaClO at the exact chlorine dosages and MF strength.

Firstly, four containers of 10-L capacity were used with three replicates filled with
SHWW effluent and treated with a commercial stock solution of NaClO 12% (w/v) available
chlorine to reach a final concentration of 0, 2, 4, and 6 mg/L available chlorine [20], where
the first one kept as control. With continuous stirring for 1 h contact time (Figure 1). To test
the efficacy of the magnetic field as a pre-treatment step in the treatment of SHWW, a water
container made from plastic fiber with a capacity of 20 L was used and filled with 15 L of
SHWW. The influent of SHWW was directed through the magnetic device by installing
the water container containing SHWW at a higher level than the magnetic device, which
permits water flow by gravity, giving a flow rate of 66 mL/s that achieved 4 min exposure
period between the influent and magnetic field (nonstandard). This model is constructed
to project a perpendicular magnetic field into the SHWW flow. The magnetically effluent
was collected at the end of the device and managed on a storage tank, repeated three times
for sampling collection (Figure 1).

Finally, to test the efficacy of the magnetic field as a pre-treatment step of SHWW, four
wastewater samples with three replicates were allowed to pass through the magnetic field
under the exact circumstances of the previous step (Figure 1) and then immediately treated
with NaClO as mentioned in the first step. Wastewater samples were taken before and after
each step.

All of the disinfection studies above were stirred for three minutes to ensure the even
distribution of disinfectants. The experimental set-up was left alone for 1 h as a contact time.

2.3. Analytical Methods

All these treatments were investigated for their impacts on the quality of secondary ef-
fluent of slaughterhouse wastewater by studying its influence on (1) Organics degradation
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(COD, BOD); (2) Solids removal (TSS, TDS, and EC); (3) Nutrients contents (TN and TP);
(4) Microbial load for detection of the critical indicator microorganisms, (TCC, FCC,
Salmonella, and E.Coli). Finally, (5) DBPs, mainly Chloroform. The methods used to measure
pH, COD, BOD, TSS, EC, TDS, TP, TN, TCC, FCC, Salmonella, E. Coli, and detection of
DBPs are illustrated in Table 2.

Table 2. Analytical methods.

Parameter Method

pH Standard method 4500-H+ pH value

COD Standard method 5220

BOD Standard method 5210

TSS Standard Method 2540D

TP Standard method 4500-P

TN Standard method 4500-N

EC Standard method 2510

TDS Standard method 2540A

TCC Standard method 9222 A

FC Standard method 9222 A

E coli Standard method 9222A

Salmonella Standard method 9260

DBPs (Chloroform, CHCl3) Standard method 5710

2.4. Statistical Analyses

The treated (SWW) were subjected to a comprehensive analysis, as described in the
previous section, to establish the treatment removal efficiency for organics, solids, nutrients,
and microbial load via the following equation:

Removal efficiency Ci% = [Ci − Cf ] × 100
Ci and Cf are the initial and final concentrations of the measured parameters, respectively.

3. Result
3.1. Effect of MF and/or NaClO Disinfectant on Organic Degradation and Solids Removal of
Secondary Effluent of Slaughterhouse Wastewater
3.1.1. Effect of NaClO Only as a Disinfectant

Figures 3 and 4 show that adding NaClO could reduce COD, BOD, TSS, TDS, and
EC concentrations at secondary slaughterhouse wastewater pretreated by zeolite and rice
straw. Where NaClO dosage of 2 mg/L CL2 recorded removal % of COD, BOD, TSS, TDS,
and EC by 19.4, 20, 36.46, 16.1, and 16.9, respectively. On the other hand, 4 mg/L CL2
dosages recorded removal % of COD, BOD, TSS, TDS, and EC by 35.4, 36, 51.59, 20.7, and
21.3. respectively. While the removal % recorded for 6 mg/L CL2 of COD, BOD, TSS, TDS,
and EC were 48.3, 48.8, 62.2, 21, and 21.7, respectively.
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Processes 2022, 10, x FOR PEER REVIEW 6 of 15 
 

 

Figure 3. Organics removal % of secondary effluents of SHWW treated by different disinfection 
methods; (l) 2, 4, and 6 mg/L active chlorine; Disinfection with 12% (w/v) commercial NaClO (2) 
disinfection with magnetic field; and (3) MF+ 2 mg/L, MF+ 4 mg/L, and MF+ 6 mg/L; pretreatment 
with magnetic field then disinfection with NaClO. 

 

Figure 4. Solids removal % of secondary effluents of SHWW treated by different disinfection meth-
ods; (l) 2, 4, and 6 mg/L active chlorine; Disinfection with 12% (w/v) commercial NaClO (2) MF: 
disinfection with magnetic field; and (3) MF + 2 mg/L, MF + 4 mg/L, and MF + 6 mg/L; pretreatment 
with magnetic field then disinfection with NaClO. 

3.1.2. Effect of MF 
Figures 3 and 4 showed that secondary effluent slaughterhouse wastewater exposed 

to MF showed removal % of COD, BOD, TSS, TDS, and EC concentrations 10, 9.12, 44.2, 
24.4, and 25, respectively. 

3.1.3. Effect of Pre-Treatment with MF Followed by NaClO Addition  
Figures 3 and 4 presented that secondary slaughterhouse wastewater pretreated with 

a magnetic field followed by NaClO addition showed amplified removal % of COD, BOD, 
TSS, TDS, and EC concentrations. At NaClO dosage of 2 mg/L CL2 the removal % of the 
previous parameters increased to 30, 29.5, 21.5, 4.2, and 4%, respectively. This is in addi-
tion to the increased removal rate was 30.1, 13.5, 22.5, 5.2, and 5%, respectively, at CL2 
dosage of 4 mg/L. Finally, CL2 dosage of 6 mg/L recorded increased removal % of 17.6, 
17.5, 25.7, 6, and 6%, respectively. 

Figure 4. Solids removal % of secondary effluents of SHWW treated by different disinfection meth-
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3.1.2. Effect of MF

Figures 3 and 4 showed that secondary effluent slaughterhouse wastewater exposed
to MF showed removal % of COD, BOD, TSS, TDS, and EC concentrations 10, 9.12, 44.2,
24.4, and 25, respectively.

3.1.3. Effect of Pre-Treatment with MF Followed by NaClO Addition

Figures 3 and 4 presented that secondary slaughterhouse wastewater pretreated with
a magnetic field followed by NaClO addition showed amplified removal % of COD, BOD,
TSS, TDS, and EC concentrations. At NaClO dosage of 2 mg/L CL2 the removal % of the
previous parameters increased to 30, 29.5, 21.5, 4.2, and 4%, respectively. This is in addition
to the increased removal rate was 30.1, 13.5, 22.5, 5.2, and 5%, respectively, at CL2 dosage
of 4 mg/L. Finally, CL2 dosage of 6 mg/L recorded increased removal % of 17.6, 17.5, 25.7,
6, and 6%, respectively.
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3.2. Effect of MF and/or NaClO Disinfectant on Nutrients Load (TP, TN) of Secondary Effluents of
Slaughterhouse Wastewater
3.2.1. Effect of NaClO Only as a Disinfectant

Figure 5 shows that adding NaClO could reduce TP and TN concentrations at sec-
ondary slaughterhouse wastewater pretreated by zeolite and rice straw. NaClO dosage
of 2 mg/L CL2 recorded removal % of TP and TN by 32.6 and 63.5, respectively. On the
other hand, 4 mg/L CL2 dosages recorded removal % of TP and TN at 40.6 and 85.1,
respectively. While the removal % recorded for 6 mg/L CL2 of TP and TN were 44.2 and
85.7, respectively.
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3.2.2. Effect of MF

Figure 5 shows that secondary effluent of slaughterhouse wastewater exposed to the
MF showed removal % of TP and TN concentrations of 50.2 and 83.5, respectively.

3.2.3. Effect of Pre-Treatment with MF Followed by NaClO Addition

Figure 5 shows that secondary slaughterhouse wastewater pretreated with magnetic
field observed by NaClO addition showed removal % of TP and TN concentrations at
NaClO dosage of 2 mg/ L CL2 49.9 and 79.4, respectively. On the other hand, four mg/L
CL2 dosages recorded removal % of TP and TN at 50.6 and 85.4, respectively. At the same
time, the removal % recorded at 6mg/L CL2 for TP and TN was 54.6 and 87.3, respectively.

The findings declared increased TP and TN removal rates by 16.3 and 16%, respectively,
at two mg/L CL2 dosages. In addition, increased removal rate of TP and TN by 10 and
0.5%, respectively, at four mg/L CL2 dosages. Finally, TP and TN increased the removal
rate by 10 and 3% at six mg/L CL2 dosages. The highest verified removal % was recorded
for a CL2 dosage of 6 mg/L. The results declare the same trend of a magnified effect of
using a magnetic field as a pre-treatment step before NaClO application in the remediation
of slaughterhouse wastewater over the single use of each of them.

3.3. Effect of MF and/or NaClO Disinfectant on Microbial Load of Secondary Effluents of
Slaughterhouse Wastewater
3.3.1. Effect of NaClO Only as a Disinfectant

Results in Figure 6 explain that secondary effluents of slaughterhouse wastewater
showed removal % for TCC, FC, E-coli, and Salmonella at a two mg/L NaClO were 38.1,
32.2, 31.7, and 53.8, respectively. Additionally, 35.5, 33.7, 32.9 and 54.8 % at 4 mg/L NaClO
for TCC, FC, E-coli and Salmonella respectively. Finally, were 40, 35, 35.6 and 57.14 % at
6 mg/L NaClO for TCC, FC, E-coli and Salmonella, respectively.
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3.3.2. Effect of MF

Figure 6 shows the effect of MF treatment for secondary effluents of slaughterhouse
wastewater on the removal % of TCC, FC, E-coli, and Salmonella, which recorded 24.1, 23.6,
20 and 31.3%, respectively.

3.3.3. Effect of Pre-Treatment with MF Followed by NaClO Addition

Figure 6 showed that pre-treatment with MF followed by NaClO addition could
remove TCC, FC, E-coli, and Salmonella by 41.5, 42.4, 44.6, and 60%, respectively, at a NaClO
dosage of 2 mg/L. Furthermore, 51.8, 43.8, 45.9, and 61.9%, respectively, were removed at a
NaClO dosage of 4 mg/L. In addition, 61.6, 48.1, 50.5 and 71.4 were removed, respectively
at 6 mg/L NaClO dosage.

The presented results declared increased disinfection performance at all used dosages
based on TCC, FC, E-coli and Salmonella removal percentages.

3.4. Effect of MF and/or NaClO Disinfectant on the Formation of the Key Disinfection by-Products THMs
3.4.1. Effect of NaClO Only as a Disinfectant

Figure 7 shows that the values of DBPs, mainly Chloroform, were 6.7, 5.6, and 26.8 at
a dosage of 2, 4, and 6 mg/L NaClO.
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3.4.2. Effect of Pre-Treatment with MF Followed by NaClO Addition

Figure 7 recorded DBPs, particularly Chloroform of secondary slaughterhouse wastew-
ater exposed to MF as a pre-treatment step, were 6.2, 4.2, and 6.1 mg/L at 2, 4, and 6 mg/L
NaClO dosage, respectively.

4. Discussion

We found that adding NaClO could reduce COD, BOD, TSS, TDS, and EC concentrations
at secondary slaughterhouse wastewater pretreated by zeolite and rice straw. Those findings
are possible due to the organic compound oxidation process, which takes place quickly with
the addition of Cl2 compound in the wastewater [21]. The expressed results in Figures 3 and 4
explained that the organic compound degradation of slaughterhouse wastewater negatively
correlated with the applied Cl2 dosage. The results are in harmony with a previous study [22],
which reported a decrease in COD concentrations in industrial wastewater effluent from
356 mg/L to 247 mg/L by increasing the hypochlorite Cl2 dosage from 60 mg/L Cl2 to
300 mg/L Cl2. The dosage of 6 mg/L Cl2 gave the best record for declining the most
examined physicochemical parameters of slaughterhouse wastewater. The results were
consistent with Mulyani et al. [23], who recorded a decrease in COD concentration from
7933.333 mg/L at Cl2 dose 2 mg/L to 3483.333 mg/L at Cl2 dose 6 mg/L.

In addition, the removal of the organic achieved by NaClO TSS (often specified as
turbidity) reduction is also reported by using a different dosage of hypochlorite where it be-
haved in the same manner of decreasing values with increasing hypochlorite concentration.
The results are in the same line as those [24]. Zerva et al. [25] showed that the full-scale
wastewater treatment plant’s BOD and COD removal efficiencies exceeded 89%. As well
as, the TSS showed a sharp decrease in the effluent, reaching 93.8 %, an issue that indicates
biosolids removal.

The ability of a solution to conduct electric current is defined as electrical conductivity
(EC), which is highly reliant on the availability of ionic species (Julian et al., 2016). A
high EC in wastewater indicates a high concentration of total dissolved solids. The total
dissolved solids (TDS) concentration is directly proportional to the EC.

The TDS and EC removal percent at secondary slaughterhouse wastewater effluent
employing NaClO decreased as the dosage of NaClO was used as an oxidizing agent. The
results that in harmony with those results given by Vasanth et al. [26]. The results could be
explained based on the previous findings of removing the organic achieved by NaClO and
TSS (often specified as turbidity). TDS is a measure of inorganic salts, organic matter, and
other dissolved components in water [27].

The findings are consistent with those of the initial research that revealed the re-
markable efficiency of MFs as adjunctive or alternative to traditional wastewater treat-
ment [18]. The results declared that MF treatment achieved the highest removal rate for TSS.
Basavaiah [28] demonstrated that an appropriate MF could strengthen coagulation and
the biodegradation of organic compounds of the activated sludge. Under specific circum-
stances, it considers one factor determining pollutant removal’s efficacy. Wahid et al. [29]
demonstrated that a magnetic field could increase the removal of suspended solids by
41 to 49% at 670 Gauss compared to untreated raw sewage. The removal rate of suspended
solids could improve as magnetic field strength and exposure time increased, and flow rate
decreased. Wahid et al. [29] explained the issue based on extra energy produced due to the
exposure to a magnetic field where the charged particles will vibrate excessively due to this
energy. As a result, more particles collide with one another. This reaction produces more
ions (positive and negative charge), resulting in a natural magnetic attraction between the
oppositely charged particles. This situation exaggerates the coagulation that facilitates the
flocculation and perception of collides when they become denser. However, the recorded
removal rate of suspended solids may be lower than those demonstrated in those results
due to differences in the type and characteristics of wastewater and the strength of the
magnetic field.
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The enhancement effect of using a magnetic field as a pre-treatment step before adding
NaClO in the remediation of slaughterhouse wastewater over the single use of each of
them at each Cl2 concentration. The finding in the same line of [18] demonstrated that
the magnetic-based wastewater treated (WWT) system treated sewage containing 0.2 g/L
COD, removing 72–94% COD with a retention time of 8 h. As well as intensifying organic
compound (COD) removal from domestic wastes [30]. In addition, the issue that may be
attributed to the PH effect is MF exposed wastewater showed a higher PH value which
has proven that high PH contributes to increasing (SBR) Sequencing Batch Reactor ability,
especially in COD removal [31]. The biodegradability of wastewater is usually shown by
increasing the BOD/COD ratio and the increasing pH [23]. NaClO reduces TP and TN
in slaughterhouse effluent cleaned with zeolite and rice. The results are in harmony with
those obtained by Collivignarelli et al. [20], who reported removal% of urban wastewater
TN and TP via disinfection at (65 and 77%, respectively).

Krzemieniewski et al. [30] demonstrated the possibility of an MF influencing phosphorus
removal from domestic wastes intensifying. Tomska and Wolny [32] also showed that exposing
activated sludge systems to MFs improved the nitrogen compounds transformations in the
system compared with the system without MF treatment. The same trend was observed by
Geng et al. [12], who demonstrated that magnetic fields improved the ability of the activated
sludge to remove TN, and TP by 15.2 and 4.3%, respectively, at 70 mT compared with that of
the reactor with no magnetic field. Nevertheless, those recorded results are lower than the
removal % recorded in this study. The issue may be attributed to the different wastewater
characteristics and higher magnetic field strength (1450 mT).

At two mg/L Cl2, TP and TN removal rates increased by 16.3 and 16%. At 4 mg/L
Cl2, TP and TN removal rates rose by 10% and 0.5%. TP and TN elimination rates rose
10% and 3% at 6 mg/L Cl2. The results declare the same trend of a magnified effect of
using a magnetic field as a pre-treatment step before NaClO application in the remediation
of slaughterhouse wastewater over the single-use of each of them. The highest verified
removal % was recorded for a Cl2 dosage of 6 mg/L. The outcomes may be attributed to the
magnetic field’s intensifying effect in removing TP and TN. The results in the same harmony
with those given by Liu et al. [33], who demonstrated that an anaerobic TN elimination
in synthetic sewage with a lab-cultivated anammox microbial population increased up to
50% at 75 mT. Similarly, synthetic sewage with municipal sludge was raised at 48 mT, with
higher proliferation and activity of nitrite-oxidizing bacteria [34].

Disinfection is among the essential steps in wastewater treatment before discharge
into receiving waters. Disinfection reduces the number of pathogens to a manageable level,
preventing the spread of waterborne disease [7].

The explained results approved that chlorination of wastewater effluents is a well-
established technology and effective against a wide range of pathogenic microorgan-
isms [35] where the significant oxidizing capability of NaClO affects bacterial cell membrane
structure, protein functionality, and DNA [36]. The obtained results demonstrated increas-
ing the bactericidal effect of NaClO by increasing the applied dose. The results are in
harmony with those given by Johansson [37], who showed that NaClO has different dis-
infection effects on different types of indicator organisms depending on the dose of the
disinfectant. Du et al. [38] also approved that chlorinated effluents of MBR in municipal
wastewater treated with NaClO at a dosage of 3 mg/L showed a higher inhibition rate (48%)
for indicator organisms than the control. The NaClO disinfectant products irreversibly
kill bacterial cells by denaturing proteins in the biofilm matrix and inhibiting primary
enzymatic functions in bacterial cells [39].

Concerning previous results, it could elucidate the promising abilities of MF for
enhancing water and wastewater quality. The issue explained in the literature about the
apparent impacts of MF on microorganisms, their viability and metabolism depending
on strength and type of MF (static, pulsating), and length of exposure [15]. For example,
exposure to a pulsing (50 Hz) MF with a strength of 10 mT reduced the growth of Escherichia
coli, Leclercia adecarboxylata, and Staphylococcus aureus [40]. As well as, Filipic et al. [41]
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demonstrated the growth of E. coli and Pseudomonas putida, during exposure to static MF
(17 mT) at their ideal development temperature (28 and 37) ◦C was suppressed in municipal
wastewater treatment facilities.

The results showed that the pre-treatment magnetic field could have a synergistic dis-
infection effect. MF could produce multiple products, firstly antimicrobial and antibacterial
properties of different frequency bands of MF spectrum, which resemble ultraviolet (UV)
radiation [42], which helps kill microorganisms. Secondly, the role of MFs in removing
suspended solids from sewage. Accelerating sludge settling and rising sludge density and
sedimentation rate are the fundamental mechanisms of MF action for enhancing broken
solids removal [18]. Accordingly, more particles associated with bacteria were exposed to
NaClO. The results that in harmony with those given by Burgess et al. [43], who found that
magnetically treated swimming pool water showed increasing in the E. coli killing rate for
a given disinfectant dose by 25% as a result of improved chlorine solubility. Furthermore,
the findings showed that MF pre-treatment could reduce the necessary amount of NaClO
from 6 to 4 mg/L, resulting in a 12% increase in the reduction rate in total coliform count,
9% increase in the reduction rate of fecal coliforms, and 10% reduction in E. coli and 5% in
Salmonella via increasing the disinfection efficiency of NaClO.

DBPs values (trichloromethane)(THMs) mainly, Chloroform was 6.7, 5.6, and 26.8 at a
2, 4, 6 mg/L NaClO dosage. However, the high disinfecting power of chlorine, its reaction
with organic/inorganic matter forms toxic disinfection by-products (DBPs) [44]. The main
THM created by HOCl is Chloroform (CHCl3). Chloroform is among the most studied
DBPs due to its dominance [45]. The reaction of chlorine with humic compounds [46],
triclosan [47], citric acid [48], and resorcinol [49] has been studied for the formation of
Chloroform. When they contact chlorine species, aldehydes and ketones are converted to
Chloroform by a base-catalyzed reaction pattern [50].

The results demonstrated an increase in Chloroform concentration with increasing
NaClO formation. The results may be explained based on the pH change at different NaClO
doses. Özbelge [49] indicated that as pH decreases, chloroform formation reduces.

A higher concentration of NaClO (6 mg/L) was found to reduce the concentration of
Chloroform produced by more than 77.2%, which provides the advantage of using the most
efficient dose of NaClO in the degradation of various chemical compounds and microbial
contaminates without increasing the formation of DBPs.

The results are inconsistent with Sun et al. [51]. They reported using combination
methods of disinfection such as using oxidants such as H2O2, O3, Cl2, ClO2, and metal
oxides along with UV light have been used for various disinfection.

Decontamination applications, as well as Burgess et al. [43] found that swimming pool
water that was magnetically treated showed to some extent, reduced chloroform generation.

5. Conclusions

This study proves that using MF as a pre-treatment approach before the addition of
NaClO in the treatment of secondary effluents of slaughterhouse wastewater is a promising
technique in treating wastewater. Where represented a high efficiency in treating secondary
effluents of slaughterhouse wastewater achieving high potency of COD, BOD, TSS, TDS
and EC removal rate. As well as a decline of nutrient-rich effluents TP and TN. In addition,
high efficiency at microbial inactivation was achieved firstly due to antimicrobial and
antibacterial properties of different frequency bands of MF spectrum, which resemble
ultraviolet (UV) radiation. Secondly, the role of MF in removing suspended solids from
wastewater is most likely owing to the suspended particles’ shielding effect, which protects
bacteria from the effects of the disinfectant agents. The findings approved that this approach
could reduce the necessary dose of NaClO from 6 to 4 mg/L, resulting in an 11% increase in
the reduction rate of total coliform count, 8% increase in the reduction rate of fecal coliforms,
and a 10% increase the reduction rate of E. coli and 5% in Salmonella via increasing the
disinfection. Finally, decreasing the concentration of Chloroform produced by more than
77.2% by using the higher concentration of NaClO (6 mg/L) give the advantage of using
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the most efficient dose of NaClO in the degradation of various chemical compounds and
microbial contaminates without increasing of DBPs. The synergetic effect of MF and
NaClO, wastewater treatment technique is a critical attitude that should be examined
further because it has the potential to ensure a higher level of global disinfection efficiency,
even when using smaller dosages of disinfection, potentially lowering the cost of the
procedure process and reducing the harmful concentration of DBPs.
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Nomenclature

BOD Biological oxygen demand
COD Chemical oxygen demand
DBPs Disinfection by-products
EC Electrical conductivity
FC Fecal coliform
MF Magnetic field
MPPs Meat Processing Plants
NaClO Sodium hypochlorite
SHWW Slaughterhouse wastewater
TCC Total coliform
TDS Total dissolved solids
THMs Trihalomethane
TN Total nitrogen
TP Total phosphorus
TSS Total suspended solids
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